第二十讲 升降压变换电路
- 格式:doc
- 大小:236.61 KB
- 文档页数:4
直流电压升压降压变换原理DC-DC电路原理:DC-DC是英语直流变直流的缩写,所以DC-DC电路是某直流电源转变为不同电压值的电路。
DC-DC是开关电源技术的一个分支,开关电源技术包括AC-DC、DC-DC两ff个分支。
DC-DC电路按功能分为:升压变换器:将低电压变换为高电压的电路。
降压变换器:将高电压变换为低电压的电路。
反向器:将电压极性改变的电路,有正电源变负电源,负电源变正电源两类。
三个主要分支,当然应用时在同一电路中会有升压反向、降压升压等功能同时存在。
DC-DC变换器的基本电路有升压变换器、降压变换器、升降压变换器三种。
降压变换器原理图如图1所示,当开关闭合时,加在电感两端的电压为(Vi-Vo),此时电感由电压(Vi-Vo)励磁,电感增加的磁通为:(Vi-Vo)*Ton。
当开关断开时,由于输出电流的连续,二极管VD变为导通,电感削磁,电感减少的磁通为:(Vo)*Toff。
当开关闭合与开关断开的状态达到平衡时,(Vi-Vo)*Ton=(Vo)*Toff,由于占空比D<1,所以Vi>Vo,实现降压功能。
图1 降压变换器原理图升压变换器原理图如图2所示,当开关闭合时,输入电压加在电感上,此时电感由电压(Vi)励磁,电感增加的磁通为:(Vi)*Ton。
当开关断开时,由于输出电流的连续,二极管VD变为导通,电感削磁,电感减少的磁通为:(Vo- Vi)*Toff。
当开关闭合与开关断开的状态达到平衡时,(Vi)*Ton=(Vo- Vi)*Toff,由于占空比D<1,所以Vi 。
图2 升压变换器原理图升降压变换器、入出极性相反原理如图3, 当开关闭合时,此时电感由电压(Vi)励磁,电感增加的磁通为:(Vi)*Ton;当开关断开时,电感削磁,电感减少的磁通为:(Vo)*Toff。
当开关闭合与开关断开的状态达到平衡时,增加的磁通等于减少的磁通,(Vi)*Ton=(Vo)*Toff,根据Ton比Toff值不同,可能Vi< Vo,也可能Vi>Vo。
降压式变换电路(Buck电路)详解降压式变换电路(Buck电路)详解一、BUCK 电路基本结构开关导通时等效电路开关关断时等效电路二、等效的电路模型及基本规律(1)从电路可以看出,电感L 和电容C 组成低通滤波器,此滤波器设计的原则是使us(t)的直流分量可以通过,而抑制us(t) 的谐波分量通过;电容上输出电压uo(t)就是us(t) 的直流分量再附加微小纹波uripple(t) 。
(2)电路工作频率很高,一个开关周期内电容充放电引起的纹波uripple(t) 很小,相对于电容上输出的直流电压Uo 有:电容上电压宏观上可以看作恒定。
电路稳态工作时,输出电容上电压由微小的纹波和较大的直流分量组成,宏观上可以看作是恒定直流,这就是开关电路稳态分析中的小纹波近似原理。
(3)一个周期内电容充电电荷高于放电电荷时,电容电压升高,导致后面周期内充电电荷减小、放电电荷增加,使电容电压上升速度减慢,这种过程的延续直至达到充放电平衡,此时电压维持不变;反之,如果一个周期内放电电荷高于充电电荷,将导致后面周期内充电电荷增加、放电电荷减小,使电容电压下降速度减慢,这种过程的延续直至达到充放电平衡,最终维持电压不变。
这种过程是电容上电压调整的过渡过程,在电路稳态工作时,电路达到稳定平衡,电容上充放电也达到平衡,这是电路稳态工作时的一个普遍规律。
(4)开关S 置于1 位时,电感电流增加,电感储能;而当开关S 置于2 位时,电感电流减小,电感释能。
假定电流增加量大于电流减小量,则一个开关周期内电感上磁链增量为:此增量将产生一个平均感应电势:此电势将减小电感电流的上升速度并同时降低电感电流的下降速度,最终将导致一个周期内电感电流平均增量为零;一个开关周期内电感上磁链增量小于零的状况也一样。
这种。
升降压电路工作原理升降压电路是一种常见的电路,用于将电源电压升高或降低到所需的电压水平。
它在各种电子设备和电路中广泛应用,例如电源适配器、电动车充电器等。
本文将介绍升降压电路的工作原理。
升降压电路的工作原理基于变压器和电子元件的相互作用。
变压器是升降压电路的核心部件,它能够通过电磁感应原理将输入电压转化为所需的输出电压。
在升压模式下,输入电压低于输出电压。
当输入电压加到变压器的原边绕组上时,通过变压器的磁场感应作用,将输入电压变换到变压器的副边绕组。
由于副边绕组的匝数比原边绕组多,根据变压器的转换规律,输出电压将会比输入电压高。
因此,在升压模式下,升压电路通过变压器将输入电压升高到所需的输出电压水平。
在降压模式下,输入电压高于输出电压。
当输入电压加到变压器的原边绕组上时,通过变压器的磁场感应作用,将输入电压变换到变压器的副边绕组。
由于副边绕组的匝数比原边绕组少,根据变压器的转换规律,输出电压将会比输入电压低。
因此,在降压模式下,降压电路通过变压器将输入电压降低到所需的输出电压水平。
升降压电路除了变压器外,还需要其他电子元件来实现电压的稳定输出。
例如,稳压二极管和滤波电容器,它们能够对输出电压进行稳定和滤波处理,确保输出电压的稳定性和纹波度。
升降压电路的选择取决于具体应用的需求。
对于升压电路,输入电压需要低于输出电压;对于降压电路,输入电压需要高于输出电压。
在设计升降压电路时,需要考虑输入电压范围、输出电压稳定性、效率等因素。
升降压电路是一种常见的电路,用于将电源电压升高或降低到所需的电压水平。
其工作原理基于变压器和电子元件的相互作用,通过变压器将输入电压转换为所需的输出电压。
在选择和设计升降压电路时,需要考虑具体应用的需求,并确保输出电压的稳定性和效率。
通过合理的设计和选择,升降压电路能够在各种电子设备和电路中发挥重要作用。
升降压电路工作原理一、引言升降压电路(Boost-Buck Converter)是一种用于调节输入电压的电路,可以将电源电压升高或降低到所需的输出电压。
它广泛应用于各种电子设备和系统中,例如手机充电器、电动车充电器等。
本文将详细介绍升降压电路的工作原理、组成部分以及其应用领域。
二、升降压电路的组成升降压电路一般由以下几个组成部分:1. 输入电源输入电源是指供给升降压电路的电源,可以是直流电源或交流电源,具体根据应用场景而定。
2. 输入滤波器输入滤波器用于去除输入电源中的高频噪声和杂散信号,确保电路正常工作。
3. 开关管开关管(Switch)是升降压电路的核心部分,它负责将输入电压转变为脉冲信号,通过控制开关管的通断实现升压或降压。
4. 磁性元件磁性元件包括变压器和电感器,用于存储能量和传递能量。
在升压模式下,磁性元件负责储存电能;在降压模式下,磁性元件负责释放储存的电能。
5. 输出滤波器输出滤波器用于去除输出电压中的高频噪声,确保输出电压的稳定性和纹波度。
6. 控制电路控制电路根据输出电压的变化情况,对开关管的通断进行调节,以保持输出电压的稳定性和精度。
三、升降压电路的工作原理升降压电路的工作原理可以分为升压模式和降压模式两种情况,具体如下:1. 升压模式在升压模式下,开关管周期性地开启和关闭,将输入电压转换为高频脉冲信号。
当开关管断开时,磁性元件中的电流会急剧减小,此时磁性元件会释放储存的能量,输出电压将增加;当开关管闭合时,磁性元件中的电流会急剧增加,此时磁性元件会储存能量,输出电压将减小。
通过控制开关管的通断,可以实现对输出电压的调节。
2. 降压模式在降压模式下,开关管周期性地开启和关闭,将输入电压转换为高频脉冲信号。
当开关管闭合时,磁性元件中的电流会急剧减小,此时磁性元件会释放储存的能量,输出电压将减小;当开关管断开时,磁性元件中的电流会急剧增加,此时磁性元件会储存能量,输出电压将增加。
升降压电路原理分析本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.MarchBUCK BOOST电路原理分析电源网讯Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。
图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。
Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。
开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。
电感Lf在输入侧,称为升压电感。
Boost变换器也有CCM和DCM两种工作方式Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。
Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。
Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。
LDO的特点:① 非常低的输入输出电压差② 非常小的内部损耗③ 很小的温度漂移④ 很高的输出电压稳定度⑤ 很好的负载和线性调整率⑥ 很宽的工作温度范围⑦ 较宽的输入电压范围⑧ 外围电路非常简单,使用起来极为方便DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。
斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。
其具体的电路由以下几类:(1)Buck电路——降压斩波器,其输出平均电压 U0小于输入电压Ui,极性相同。
(2)Boost电路——升压斩波器,其输出平均电压 U0大于输入电压Ui,极性相同。
升降压电路基本原理升压电路(Boost Circuit)和降压电路(Buck Circuit)是电子电路中常用的两种基本电路类型,用来改变电源输入电压的大小。
两者的基本原理和实现方式有所不同。
升压电路的基本原理是将输入电压提升到较高的输出电压。
升压电路通常由一个能储存能量的电感、一个开关管和一个输出电容组成。
当开关管导通时,电感储存能量;当开关管断开时,电感释放储存的能量,输出电压也随之增加。
升压电路可以通过改变开关管的导通和断开时间,调整输出电压的大小。
升压电路的工作原理如下:1.开关管导通:当开关管导通时,电能从电源输入电压转化为磁能存储在电感中;2.开关管断开:当开关管断开时,电感中储存的磁能会释放,并通过二极管供给输出电容和负载;3.输出电压增加:通过控制导通和断开时间的比例,可以调整输出电压的大小。
降压电路的基本原理是将输入电压降低到较低的输出电压。
降压电路通常由一个开关管、一个电感和一个输出电容组成。
降压电路的关键是通过开关管的导通和断开控制,改变电感中储存的能量传递到输出电容和负载的比例。
降压电路的工作原理如下:1.开关管导通:当开关管导通时,电能从电源输入电压转化为储存在电感中的磁能;2.开关管断开:当开关管断开时,电感中储存的磁能会释放,一部分能量通过二极管供给输出电容和负载;3.输出电压降低:通过控制导通和断开时间的比例,可以调整输出电压的大小。
升降压电路(Buck-Boost Circuit)是一种可以实现升压和降压功能的电路,它可以通过调整开关管的导通和断开时间来实现输出电压的变换。
升降压电路通常由一个开关管、一个电感和一个输出电容组成,类似于升压电路和降压电路的组合。
升降压电路可以应用于多种场景,例如电源适配器和汽车点火系统。
升压、降压和升降压电路在电子设备和电路中应用广泛。
它们可以用于改变电源输入电压的大小,以满足不同电路和设备的需求。
在设计和调整升降压电路时,需要考虑电流和功率的变化,确保电路的工作稳定和高效。
升降压电路工作原理在电子设备中,升降压电路是非常常见的一种电路结构。
它可以将输入电压转换为高于或低于输入电压的输出电压,以满足不同电子元件的电压要求。
升降压电路的工作原理基于电感和电容的特性,通过控制开关管的导通和断开来实现电压的升降。
升降压电路主要由开关管、电感、电容和滤波电路组成。
开关管可以是晶体管、场效应管或者双向导通管等。
在升压电路中,当开关管导通时,电流通过电感,电感储存能量。
当开关管断开时,电感释放储存的能量,使电流通过电容,从而提高输出电压。
在降压电路中,工作原理相反,当开关管导通时,电流通过电容,电容储存能量;当开关管断开时,电容释放储存的能量,使电流通过电感,从而降低输出电压。
升降压电路的关键是控制开关管的导通和断开。
这可以通过控制开关管的驱动信号来实现。
驱动信号可以是固定频率的脉冲信号,也可以是根据输出电压变化而变化的脉冲信号。
当输出电压低于设定值时,驱动信号使开关管导通,电路开始工作,电压开始升高或降低。
当输出电压达到设定值时,驱动信号使开关管断开,电路停止工作,电压保持在设定值。
升降压电路中的电感和电容起到储能和滤波的作用。
电感的储能作用使得电流连续性地通过电容,从而实现电压的升降。
电容的滤波作用可以滤除电路中的高频噪声,保证输出电压的稳定性。
滤波电路通常由电感和电容组成,其参数的选择和电路的设计需要根据实际需要和性能要求进行调整。
升降压电路的工作原理可以通过数学模型进行分析和计算。
但在本文中,我们避免使用数学公式和计算公式,以便更好地理解和描述升降压电路的工作原理。
升降压电路的工作原理可以用简单的语言描述如下:通过控制开关管的导通和断开来实现电压的升降。
开关管导通时,电感储存能量,电压升高;开关管断开时,电容释放能量,电压降低。
驱动信号控制开关管的导通和断开,使电路工作在设定的电压范围内。
升降压电路是一种常见的电路结构,它通过控制开关管的导通和断开来实现电压的升降。
升降压电路的工作原理基于电感和电容的特性,通过储存和释放能量来实现电压的升高或降低。