高频电子线路
- 格式:ppt
- 大小:873.00 KB
- 文档页数:50
⾼频电⼦线路教案.⾼频电⼦线路教案说明:1. 教学要求按重要性分为3个层次,分别以“掌握★、熟悉◆、了解▲”表述。
学⽣可以根据⾃⼰的情况决定其课程内容的掌握程度和学习⽬标。
2. 作业习题选⾃教材:张肃⽂《⾼频电⼦线路》第五版。
3. 以图表⽅式突出授课思路,串接各章节知识点,便于理解和记忆。
1. 第⼀章绪论第⼀节⽆线电通信发展简史第⼆节⽆线电信号传输原理第三节通信的传输媒质⽬的要求1. 了解⽆线电通信发展的⼏个阶段及标志2. 了解信号传输的基本⽅法3.熟悉⽆线电发射机和接收机的⽅框图和组成部分4. 了解直接放⼤式和超外差式接收机的区别和优缺点5. 了解常⽤传输媒质的种类和特性讲授思路1. 课程简介:⾼频电⼦技术的⼴泛应⽤课程的重要性课程的特点详述学习⽅法与前导课程(电路分析和模拟电路)的关系课程各章节间联系和教学安排参考书和仿真软件2. 简述⽆线电通信发展历史3. 信号传输的基本⽅法:图解信号传输流程哪些环节涉及课程内容两种信号传输⽅式:基带传输和调制传输▲三要素:载波、调制信号、调制⽅法各种数字调制和模拟调制⽅法▲详述AM、FM、PM(波形)4. 详述⽆线电发射机和接收机组成:◆图解⽆线电发射机和接收机组成(各单元电路与课程各章对应关系)超外差式和直接放⼤式⽐较5. 简述常⽤传输媒质:常⽤传输媒质特点及应⽤有线、⽆线双绞线、同轴电缆、光纤天波、地波各⾃适⽤的⽆线电波段(⽆线电波段划分表)作业布置思考题:1、画出超外差式接收机电路框图。
2、说明超外差式接收机各级的输出波形。
1. 第⼆章选频⽹络第⼀节串联谐振回路第⼆节并联谐振回路第三节串、并联阻抗的等效互换与回路抽头时的阻抗变换⽬的要求1. 掌握串联谐振回路的谐振频率、品质因数和通频带的计算2. 掌握串联谐振回路的特性和谐振时电流电压的计算3.掌握串联谐振回路的谐振曲线⽅程4.了解串联谐振回路的相位特性曲线5.了解电源内阻和负载电阻对串联谐振回路的影响6.掌握并联谐振回路的谐振频率、品质因数和通频带的计算7.掌握并联谐振回路的特性和谐振时电流电压的计算8.掌握并联谐振回路的谐振曲线⽅程9.了解并联谐振回路的相位特性曲线10.了解电源内阻和负载电阻对并联谐振回路的影响11.了解低Q值并联谐振回路的特点12.熟悉串并联电路的等效互换计算13.了解并联电路的⼀般形式14.熟悉抽头电路的阻抗变换计算讲授思路★◆▲1. 选频⽹络概述:选频⽹络(后续章节的基础)谐振回路(电路分析课程已讲述)滤波器单振荡回路耦合振荡回路(耦合回路+多个单振荡回路)并联谐振回路2. 详述串联谐振回路:串联谐振回路电路图详述回路电流⽅程的推导(运⽤电路分析理论)谐振状态特性⾮谐振状态特性★计算谐振频率、特性阻抗、能量关系、★幅频特性曲线、▲相频特性曲线阻抗特性、电压特性、空载品质因数▲计算有载品质因数★计算通频带(电源内阻和负载电阻对品质因数的影响)串联谐振回路适⽤场合3. 简述并联谐振回路:参照串联谐振回路的讲述过程运⽤串联、并联电路的对偶性4. 详述串并联电路的等效互换和抽头电路的阻抗变换:运⽤上述标准串联或并联谐振回路的已知结论,分析复杂谐振回路混联电路到串联或并联电路推导抽头电路到⽆抽头电路的等效互换◆推导串并联电路的等效互换电感抽头电容抽头(依据等效前后阻抗虚实部恒等)谐振回路的应⽤电路只需推导串联或并联电路形式之⼀不考虑互感、谐振条件下推导◆推⼴到⼀般情况(⾮谐振、有互感)抽头电路等效互换举例1. 第⼆章选频⽹络第五节耦合回路第六节滤波器的其他形式⽬的要求1. 了解耦合回路的⼀般性质2.掌握耦合回路频率特性曲线及⽅程3.掌握耦合因数η不同时曲线形状的变化及特点4. 了解LC集中选择性、⽯英晶体、陶瓷和表⾯声波滤波器特性和应⽤讲授思路1. 详述耦合回路:单振荡回路缺点(阻抗变换不灵活 + 选频特性不理想)耦合回路+多个单振荡回路互感耦合串联型(串并联电路可等效互换)电容耦合并联型推导耦合回路反射阻抗(电路分析课程已讲述)★推导耦合回路频率特性⽅程(节点电压法或KCL)▲反射阻抗性质★频率响应曲线克服单振荡回路缺点:阻抗变换不灵活临界耦合、过耦合、⽋耦合★推导通频带2. 简述各种滤波器特点及应⽤:LC选频⽹络缺点(选频特性不理想+体积⼤)LC集中选择性(选频特性好)⽯英晶体、陶瓷和表⾯声波滤波器(选频特性好+体积⼩)▲根据Q值、通频带、插⼊损耗⽐较各种滤波器优缺点作业布置思考题:1、在调谐放⼤器的回路两端并联⼀个电阻,放⼤器的通频带将如何变化?2、串联谐振回路发⽣谐振时,电容两端的电压⼤⼩与输⼊电压有什么关系?3、若已知并联谐振回路的R、L、C,则并联谐振频率为多少?4、耦合回路的频率响应曲线当η<1和η>1时,曲线的形状有什么不同?5、并联谐振回路发⽣谐振时,流过电感的电流⼤⼩与输⼊电流有什么关系?6、若已知串联谐振回路的R、L、C,则谐振回路的品质因数为多少?7、选频⽹络分为两⼤类。
高频电子线路(知识点整理).doc
高频电子线路是指在射频或超高频范围内工作的电子线路,通常涉及到信号的传输、
处理和放大。
这种电子线路在通信、雷达、卫星通信、无线电等领域中被广泛应用,它有
着复杂的工作原理和设计技术。
下面就是对于高频电子线路的几个知识点整理和介绍。
1.谐振器:谐振器是高频电子线路中经常用到的一个组件,其作用是让电路产生特定
的共振频率,以便信号能够在电路中传输。
谐振器通常由其结构和材料决定,比如管型谐
振器、光纤谐振器、奇异谐振器等。
2.混频器:混频器是将两个输入频率进行混合,产生出一个输出频率的高频电子组件。
混频器主要用于转换信号的频率和增强信号的强度,比如在雷达和无线电通信中,混频器
通常用于将信号从中频转换到基带。
3.射频放大器:射频放大器是一种将低功率信号转化为高功率信号的电子器件,主要
用于放大和传输高频信号。
射频放大器的工作原理是通过对输入信号进行放大使得输出信
号的功率增大,它可以是单通道或多通道的,通常由功率放大器、隔离器等组成。
4.发射机:发射机是将信号转换成无线电波并进行发送的高频电子设备。
发射机通常
包括调制器、调谐器、放大器、射频发生器、天线等组件。
它主要将信号转化成无线电波
传输到接收机,以便实现通信或雷达探测等功能。
以上就是对于高频电子线路的几个知识点简要介绍,高频电子线路在通信、雷达、卫
星通信、无线电等领域中轮廓巨大,其涉及到很多的基础理论和设计技术,需要深入钻
研。
高频电子线路教案一、教学目标1.理解高频电子线路的基本概念和特点。
2.掌握高频电子线路的设计和计算方法。
3.熟悉高频电子线路的常见应用。
4.培养学生的实际动手能力和创新思维能力。
二、教学内容1.高频电子线路的概述1.1高频电子线路的定义和基本特点1.2高频信号与低频信号的区别1.3高频电子线路的主要应用领域2.高频放大电路设计2.1高频放大电路的基本原理2.2高频放大电路的设计步骤和注意事项2.3高频放大电路中的常见问题及解决方法3.高频滤波电路设计3.1高频滤波电路的工作原理3.2高频滤波电路的设计方法和计算公式3.3高频滤波电路的常见应用场景4.高频混频电路设计4.1高频混频电路的基本原理4.2高频混频电路的设计方法和计算公式4.3高频混频电路的实际应用案例三、教学方法1.讲授法:通过教师的讲解,介绍高频电子线路的基本概念和设计方法。
2.实验法:设计实验让学生动手搭建高频电子线路并进行测试和仿真。
3.讨论法:引导学生以小组为单位进行讨论,在实践中交流和分享设计经验。
四、教学过程1.导入(10分钟)向学生介绍高频电子线路的基本概念和特点,以及其在通信、雷达、无线电等领域的重要作用。
2.理论讲解(30分钟)讲解高频放大电路、高频滤波电路和高频混频电路的基本原理、设计步骤和计算方法。
3.设计实践(60分钟)将学生分为小组,每个小组根据所学的理论知识设计一个高频电子线路,并在实验室中搭建并测试该电路。
4.讨论交流(20分钟)每个小组展示他们的设计成果,并对其他小组的设计进行评价和讨论。
5.展示总结(10分钟)教师总结本节课的教学内容,并对学生的表现和收获进行评价和总结。
五、教学评价1.学生设计的高频电子线路是否按照要求进行搭建和测试。
2.学生在讨论中是否能够深入思考和交流设计中的问题,并提出合理的解决方案。
3.学生在实践中动手能力和创新思维能力的表现。
六、教学反思本节课采用了理论讲解、设计实践和讨论交流等多种教学方法,使学生能够更加深入地理解和掌握高频电子线路的设计和计算方法。
高频电子线路(胡宴如耿苏燕主编)习题解答目录第2章小信号选频放大器 1第3章谐振功率放大器 4第4章正弦波振荡器10第5章振幅调制、振幅解调与混频电路22第6章角度调制与解调电路38第7章反馈控制电路49第2章小信号选频放大器2.1 已知并联谐振回路的求该并联回路的谐振频率、谐振电阻及通频带。
[解]2.2 并联谐振回路如图P2.2所示,已知:信号源内阻负载电阻求该回路的谐振频率、谐振电阻、通频带。
[解]2.3 已知并联谐振回路的求回路的L和Q以及时电压衰减倍数。
如将通频带加宽为300 kHz,应在回路两端并接一个多大的电阻?[解]当时而由于所以可得2.4 并联回路如图P2.4所示,已知:。
试求该并联回路考虑到影响后的通频带及等效谐振电阻。
[解]2.5 并联回路如图P2.5所示,试求并联回路2-3两端的谐振电阻。
已知:(a)、、,等效损耗电阻,;(b) 、,、。
[解]2.6 并联谐振回路如图P2.6所示。
已知:,,,,,匝比,,试求谐振回路有载谐振电阻、有载品质因数和回路通频带。
[解] 将图P2.6等效为图P2.6(s),图中2.7 单调谐放大器如图2.2.4(a)所示。
已知放大器的中心频率,回路线圈电感,,匝数匝,匝,匝,,晶体管的参数为:、、、。
试求该大器的谐振电压增益、通频带及回路外接电容C。
[解]2.8 单调谐放大器如图2.2.4(a)所示。
中心频率,晶体管工作点电流,回路电感,,匝比,,、,,试求该放大器的谐振电压增益及通频带。
[解]第3章谐振功率放大器3.1 谐振功率放大器电路如图3.1.1所示,晶体管的理想化转移特性如图P3.1所示。
已知:,,回路调谐在输入信号频率上,试在转移特性上画出输入电压和集电极电流波形,并求出电流导通角及、、的大小。
[解] 由可作出它的波形如图P3.1(2)所示。
根据及转移特性,在图P3.1中可作出的波形如(3)所示。
由于时,则。
因为,所以则得由于,,,则3.2 已知集电极电流余弦脉冲,试求通角,时集电极电流的直流分量和基波分量;若,求出两种情况下放大器的效率各为多少?[解] (1) ,,(2)?,,3.3 已知谐振功率放大器的,,,,试求该放大器的、、以及、、。
高频电子线路第五版课后习题答案高频电子线路第五版课后习题答案高频电子线路是电子工程中的一个重要分支,其研究的是高频电路的设计、分析和优化。
在学习高频电子线路的过程中,课后习题是巩固知识、提高技能的重要方式。
本文将为大家提供高频电子线路第五版课后习题的答案,希望对大家的学习有所帮助。
第一章:基础知识1. 什么是高频电子线路?高频电子线路是指工作频率在几十千赫兹(kHz)到几百千赫兹(MHz)之间的电子线路。
它主要应用于无线通信、雷达、卫星通信等领域。
2. 高频电子线路的特点有哪些?高频电子线路的特点包括信号失真小、传输损耗小、耦合效应显著、传输线效应显著、元器件参数变化大等。
3. 什么是S参数?S参数是描述高频电子线路中信号传输和反射特性的参数。
S参数包括S11、S12、S21和S22四个参数,分别表示输入端反射系数、传输系数、输出端反射系数和逆传输系数。
第二章:传输线1. 什么是传输线?传输线是一根用于传输高频信号的导线。
常见的传输线有平行线、同轴电缆和微带线等。
2. 传输线的特性阻抗有哪些?传输线的特性阻抗包括平行线的特性阻抗、同轴电缆的特性阻抗和微带线的特性阻抗等。
3. 传输线的特性阻抗如何计算?平行线的特性阻抗可以通过导线间距、导线半径和介质介电常数等参数计算得到。
同轴电缆的特性阻抗可以通过内外导体半径和介质介电常数等参数计算得到。
微带线的特性阻抗可以通过导线宽度、介质厚度和介质介电常数等参数计算得到。
第三章:射频二极管1. 什么是射频二极管?射频二极管是一种特殊的二极管,其工作频率在几十千赫兹(kHz)到几百千赫兹(MHz)之间。
射频二极管具有快速开关速度和低噪声等特点。
2. 射频二极管的工作原理是什么?射频二极管的工作原理是基于PN结的电子流动和载流子的注入与抽取。
当正向偏置时,电子从N区域流向P区域,形成电流;当反向偏置时,电子不能流动,形成电流截止。
3. 射频二极管的主要参数有哪些?射频二极管的主要参数包括最大工作频率、最大直流电流、最大反向电压、最大功率损耗和最大噪声系数等。
高频电子线路
高频电子线路是指用于处理高频信号的电子装置中的线路。
这些线路通常设计用于在无线通信、雷达、微波射频和其
他高频应用中传输和处理信号。
高频电子线路的设计和布
局需要特别考虑电磁干扰、传输损耗、反射和阻抗匹配等
因素。
高频电子线路常见的元件和结构包括微带线、高频扼流圈、电感器、变压器、滤波器、衰减器、射频开关、射频放大器、射频混频器、射频调谐器等。
在高频电子线路中,常见的设计技术包括匹配网络设计、
功率放大器设计、滤波器设计、混频器设计、调谐器设计等。
此外,高频线路设计还需要考虑布线布局、地线规划、吸收材料的选择以及射频屏蔽等。
高频电子线路的设计需要考虑一系列特定的技术要求和限制,以确保高频信号的可靠传输和处理。
对于高频电子线
路的设计和制造,需要使用高频电路仿真软件和高频测试仪器进行验证和验证。
高频电子线路教案一、教学目标1. 了解高频电子线路的基本概念、特点和应用领域。
2. 掌握高频信号的产生、传输和接收的基本原理。
3. 学习常用的高频元件及其性能、应用和测量方法。
4. 学会高频电子线路的分析和设计方法。
5. 培养动手能力和团队协作精神。
二、教学内容1. 高频电子线路的基本概念与特点高频电子线路的定义高频电子线路的频率范围高频电子线路的特点2. 高频信号的产生与传输高频信号的产生原理及装置高频信号的传输介质高频信号的调制与解调3. 高频电子线路的接收与处理高频接收电路的组成与原理调谐器、放大器、滤波器的作用与设计高频信号的处理方法4. 高频元件及其应用电阻、电容、电感在高频电路中的应用晶体管、集成电路在高频电路中的应用天线、馈线、变压器等高频元件的应用5. 高频电子线路的分析与设计方法高频电子线路的分析和设计流程高频电子线路的仿真与实验高频电子线路的优化与调试三、教学方法1. 采用课堂讲解、案例分析、实验操作相结合的方式进行教学。
2. 利用多媒体课件、实物展示、电路图等形式,直观地展示高频电子线路的相关知识。
3. 组织学生进行小组讨论、实验设计和动手实践,提高学生的实际操作能力。
四、教学资源1. 教材:高频电子线路教材。
2. 实验设备:高频信号产生器、调制器、解调器、放大器、滤波器、天线等。
3. 软件工具:Multisim、Cadence等电路仿真软件。
五、教学评价1. 课堂表现:学生参与度、提问回答、小组讨论等。
2. 实验报告:学生实验设计、实验操作、数据处理和分析能力。
3. 课程论文:学生对高频电子线路某一专题的研究和分析能力。
4. 期末考试:对学生全面掌握高频电子线路知识的评估。
六、教学安排1. 课时:共计32课时,包括16次课堂讲解和16次实验操作。
2. 课时的分配:课堂讲解:每次2课时,共计16课时。
实验操作:每次2课时,共计16课时。
七、教学进度计划1. 第一周:介绍高频电子线路的基本概念与特点。