泵与风机(总)
- 格式:ppt
- 大小:5.42 MB
- 文档页数:59
流体力学泵与风机方程式(Z+p/γ)=C 从物理学:Z项是单位重量液体质点相对于基准面的位置势能,p/γ项是单位重量液体质点的压力势能,Z+p/γ项是单位重量液体的总势能,(Z+p/γ)=C表明在静止液体中,各液体质点单位重量的总势能均相等。
从水力学:Z为该点的位置相对于基准面的高度,称位置水头,p/γ是该点在压强作用下沿测压管所能上升的高度,称压强水头,Z+p/γ称测压管水头,它表示测压管液面相对于基准面的高度,(Z+p/γ)=C表示同一容器的静止液体中,所有各点的测压管液头均相等。
——————————————等压面:①在连通的同种静止液体中,水平面必然是等压面②静止液体的自由液面是水平面,该自由液面上各点压强均为大气压钱,所以自由液面是等压面③两种不同液体的分界面是水平面,故该面也是等压面——————————————绝对压强=相对压强+真空压强——————————————压强的量度单位:①用单位面积上所受的压力来表示,单位N/m2,或Pa②用液柱的高度来表示,mH2O、mmHg、mmH2O,h=p/γ③用大气压的倍数来表示,单位为工程大气压和标准大气压,1atm=101.325kPa。
——————————————流线:同一时刻流场中一系列流体质点的流动方向线,即在流场中画出的一条曲线,在某一瞬时,该曲线上的任意一点的流速矢量总是在该点与曲线相切。
迹线:某一流体质点在连续时间内的运动轨迹。
——————————————能量方程式的意义(物理意义):z表示单位重量流体的位置势能,简称位能,简称位能,p/γ表示单位重量流体的压力势能,简称压能,av2/2g表示单位重量流体的平均势能,简称动能,hw表示克服阻力所引起的单位能量损失,简称能量损失,z+p/γ表示单位势能,z+p/γ+av2/2g表示单位总机械能。
(几何意义)方程式中各项的单位都是米,具有长度量纲[L]表示某种高度,可以用几何线段来表示,流体力学上称为水头,z称为位置水头,p/γ称为压强水头,av2/2g 称为流速水头,hw称为水头损失,z+p/γ称为测压管水头(Hp),z+p/γ+av2/2g称为总水头(H)——————————————沿程水头损失:在管路中单位水流的沿程能量损失。
绪论一、重点、难点提示1.重点(1)泵与风机在热力发电厂中的地位与作用(2)泵与风机的主要性能参数(3)叶片式泵与风机的分类2.难点(1)泵扬程的定义(2)风机全压的定义与组成3.考核目标(1)知道泵、风机的定义。
(2)能在“热力发电厂生产过程示意图”中正确标示出各主要泵与风机,知道其名称和所起的作用。
(3)熟知泵与风机的主要性能参数(流量、扬程、全压、功率、效率和转速)的定义、符号和常用单位。
(4)知道泵按产生压力大小的分类以及各类泵的压力范围。
(5)知道风机按产生全压大小的分类。
(6)能简述叶片式泵与风机的分类。
(7)能简述容积式泵与风机的分类。
泵与风机是将原动机的机械能转换为被输送流体能量的一种机械。
输送液体的称为泵;输送气体的称为风机。
泵与风机的工作介质是流体,所以它们属于流体机械类。
第一章泵与风机的基本理论重点、难点提示1.重点(1)速度三角形(2)基本方程式(3)泵扬程的计算(4)风机全压的计算(5)不同叶片型式的特点与应用2.难点(1)基本方程式计算(2)泵与风机扬程和全压的计算(3)不同叶片型式的特点分析3.考核目标(1)能简述离心式泵与风机的工作原理。
(2)理解离心式叶轮中流体的绝对运动是圆周运动和相对运动的合成,能正确表述这三种运动,以及相应速度(圆周速度、相对速度和绝对速度)的大小、方向与哪些因素有关,能熟练画出叶轮中某一处(特别是叶片进、出口处)流体速度三角形,并能对其进行正确标示,能熟练、正确地计算速度三角形中的各个参数,在计算中知道泵与风机的理论流量与实际流量的关系、理解排挤系数的含义。
(3)知道推导叶轮基本方程式的假设条件,熟记基本方程式的两种表达形式,并能根据题目的具体条件进行熟练计算,知道叶轮扬程(或全压)由静能头和动能头组成以及各组成的计算式,能利用基本方程式进行简单分析,知道提高叶轮扬程(或全压)的主要方法以及特点。
(4)大体知道叶轮进口预旋的产生原因,以及对叶轮工作的影响。
第一篇第一章泵与风机综述第一节泵与风机的分类和型号编制一、泵与风机的分类泵与风机是利用外加能旦输送流体的流体机械。
它们大量地应用于燃气及供热与通风专业。
根据泵与风机的工作原理,通常可以将它们分类如下:(一)容积式容积式泵与风机在运转时,机械内部的工作容积不断发生变化,从而吸入或排出流体。
按其结构不同,又可再分为;1.往复式这种机械借活塞在汽缸内的往复作用使缸内容积反复变化,以吸入和排出流体,如活塞泵(piston pump)等;2.回转式机壳内的转子或转动部件旋转时,转子与机壳之间的工作容积发生变化,借以吸入和排出流体,如齿轮泵(gear pump)、螺杆泵(screw pump)等。
(二)叶片式叶片式泵与风机的主要结构是可旋转的、带叶片的叶轮和固定的机壳。
通过叶轮的旋转对流体作功,从而使流体获得能量。
根据流体的流动情况,可将它们再分为下列数种:1.离心式泵与风机;2.轴流式泵与风机;3.混流式泵与风机,这种风机是前两种的混合体。
4.贯流式风机。
(三)其它类型的泵与风机如喷射泵(jet pump)、旋涡泵(scroll pump)、真空泵(vacuum pump)等。
本篇介绍和研讨制冷专业常用的泵与风机的理论、性能、运行、调节和选用方法等知识。
由于制冷专业常用泵是以不可压缩的流体为工作对象的。
而风机的增压程度不高(通常只有9807Pa或O以下),所以本篇内容都按不可压缩流体进行论述。
1000mmH2二、泵与风机的型号编制(一)、泵的型号编制1、离心泵的基本型号及其代号2、混流泵的基本型号及其代号3、轴流泵的基本型号及其代号除上述基本型号表示泵的名称外,还有一系列补充型号表示该泵的性能参数或结构特点。
根据泵的用途和要求不同,其型号的编制方法也不同,现以下列示例说明。
(二) 、风机的型号编制 1、 离心式风机的型号编制离心式风机的名称包括:名称、型号、机号、传动方式、旋转方向和风口位置等六部分。
(1)名称 包括用途、作用原理和在管网中的作用三部分,多数产品第三部分不作表示,在型号前冠以用途代号,如锅炉离心风机G ,锅炉离心引风机Y,冷冻用风机LD,空调用风机KT 等名称表示。