高考数学 考前解题基本方法六 参数法
- 格式:doc
- 大小:530.52 KB
- 文档页数:5
高考数学六大解题方法数学考试答题技巧汇总高考数学六大解题方法数学考试答题技巧汇总1、剔除法利用题目给出的已知条件和选项提供的信息,从四个选项中挑选出三个错误答案,从而达到正确答案的目的。
在答案为定值的时候,这方法是比较常用的,或者利用数值范围,取特殊点代入验证答案。
2、特殊值检验法对于具有一般性的选择题,在答题过程中,可以将问题具体特殊化,利用问题在特殊情况下不真,则利用一般情况下不真这一原理,从而达到去伪存真的目的。
3、顺推解法利用数学公式、法则、题意、定理和定义,通过直接演算推理得出答案的方法。
4、极端性原则将所要解答的问题向极端状态进行分析,使因果关系变得更加明朗,以达到迅速解决问题的目的。
极端性多数应用在取值范围、解析几何和求极值上面,很多计算量大、计算步骤繁琐的题,采用极端性去分析,可以瞬间解决问题。
5、直接法直接法就是从题设条件出发,通过正确推理、判断或运算,直接得出结论,从而作出选择的一种方法。
用这种方法的学生往往数学基础比较扎实。
6、估算法就是把复杂的问题转化为简单的问题,估算出答案的近似值,或者把有关数值缩小或扩大,从而对运算结果作出一个估计或确定出一个范围,达到作出判断的效果。
高考数学答题技巧1.数列问题数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;2.立体几何问题立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2 ;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;3.导数导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;4.概率概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;5.换元法遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;6.二项分布注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;7.绝对值问题绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;8.平移与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;数列题解题方法注意等差、等比数列通项公式、前n项和公式;证明数列是等差或等比直接用定义法(后项减前项为常数/后项比前项为常数),求数列通项公式,如为等差或等比直接代公式即可。
六、参数法参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。
直线与二次曲线的参数方程都是用参数法解题的例证。
换元法也是引入参数的典型例子。
辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。
参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。
参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。
运用参数法解题已经比较普遍。
参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。
Ⅰ、再现性题组:1. 设2x=3y=5z>1,则2x、3y、5z从小到大排列是________________。
2. (理)直线x ty t=--=+⎧⎨⎪⎩⎪2232上与点A(-2,3)的距离等于2的点的坐标是________。
(文)若k<-1,则圆锥曲线x2-ky2=1的离心率是_________。
3. 点Z的虚轴上移动,则复数C=z2+1+2i在复平面上对应的轨迹图像为____________________。
4. 三棱锥的三个侧面互相垂直,它们的面积分别是6、4、3,则其体积为______。
5. 设函数f(x)对任意的x、y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,则f(x)的R上是______函数。
(填“增”或“减”)6. 椭圆x216+y24=1上的点到直线x+2y-2=0的最大距离是_____。
A. 3B. 11C. 10D. 22【简解】1小题:设2x=3y=5z=t,分别取2、3、5为底的对数,解出x、y、z,再用“比较法”比较2x、3y、5z,得出3y<2x<5z;2小题:(理)A(-2,3)为t=0时,所求点为t=±2时,即(-4,5)或(0,1);(文)已知曲线为椭圆,a=1,c=11+k,所以e=-1kk k2+;3小题:设z=bi,则C=1-b2+2i,所以图像为:从(1,2)出发平行于x轴向右的射线;4小题:设三条侧棱x、y、z,则12xy=6、12yz=4、12xz=3,所以xyz=24,体积为4。
高考数学万能解题技巧归纳高考数学万能解题技巧归纳总结高考像漫漫人生路上的一道坎,无论成败与否,其实并不那么重要,重要的是要总结高考的得与失,以下是小编准备的高考数学万能解题技巧归纳,欢迎借鉴参考。
高考数学答题技巧数学选择题目还是比较多的,占的分值也挺大的,因此,对于不同的数学选择题,就需要掌握不同的解题技巧,有些题型概念性比较强,那么这些试题传递出来的就是以数学学科规定和习惯为依据的,那么同学们就千万不能够擅自去改变它,而是应该对号入座。
数学选择题的解题方法也是多种多样的,最重要的还是审题,然后懂得挖掘隐藏条件,再就是要懂得选择解题方法同时控制好解题时间。
填空题“直扑结果”填空题和选择题都是属于客观性的题目,这类题目的特点就是不计较同学们的解题步骤,最在乎的是同学们的答案,只要答案对了,那么分数也就到手了,因此,在解答这些题目的时候,要正确,迅速,稳定,心态一定要好,不能够马虎,不能粗心。
解答题“步步为营”解答题是分值占的较大,难度也比较大的题目,因此,在做解答题的时候,就不能够像做填空题和选择题那样只需要一个结果就好了,做解答题需要将解答过程一个个的写出来,一步一步来,要知道,综合题目,阅卷老师都是看答题要点给分的。
所以,在做题的时候要知道多少就写出来多少,不要纠结于自己到底会不会做这道题。
高考数学压轴题解题技巧1. 复杂的问题简单化,就是把一个复杂的问题,分解为一系列简单的问题,把复杂的图形,分成几个基本图形,找相似,找直角,找特殊图形,慢慢求解,高考是分步得分的,这种思考方式尤为重要,能算的先算,能证的先证,踏上要点就能得分,就算结论出不来,中间还是有不少分能拿。
2. 运动的问题静止化,对于动态的图形,先把不变的线段,不变的角找到,有没有始终相等的线段,始终全等的图形,始终相似的图形,所有的运算都基于它们,在找到变化线段之间的联系,用代数式慢慢求解。
3. 一般的问题特殊化,有些一般的结论,找不到一般解法,先看特殊情况,比如动点问题,看看运动到中点怎样,运动到垂直又怎样,变成等腰三角形又会怎样,先找出结论,再慢慢求解。
成人高考数学六种解题方法
成人高考数学的解题方法其实没有那么单一,还是有挺多方法的,下面为大家介绍关于成人高考数学的六种解题方法,欢送大家阅读!
有些选择题是由计算题、应用题、证明题、判断题改编而成的。
这类题型可直接从题设的条件出发,利用条件、相关公式、公理、定理、法那么,通过准确的运算、严谨的推理、合理的验证得出正确的结论,从而确定选择支的方法。
数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的错误答案,找到符合题意的正确结论。
可通过筛除一些较易判定的的、不合题意的结论,以缩小选择的范围,再从其余的结论中求得正确的答案。
如筛去不合题意的以后,结论只有一个,那么为应选项。
有些选择题,用常规方法直接求解比拟困难,假设根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单。
通过对的观察、分析、确定,将各选择支逐个代入题干中,进行验证、或适中选取特殊值进行检验、或采取其他验证手段,以判断选择支正误的方法。
在解答选择题的过程中,可先根椐题意,作出草图,然后参照图形的作法、形状、位置、性质,综合图象的特征,得出结论。
对于综合性较强、选择对象比拟多的试题,要想条理清楚,可以根据题意建立一个几何模型、代数构造,然后通过试探法来选择,并注意灵活地运用上述多种方法。
【数学备考】高考数学六类解答题应试技巧下面,小编为大家整理了高考数学六类解答题应试技巧,一起来看看吧。
更多内容尽请关注学习方法网!【数学备考】高考数学六类解答题应试技巧一、三角函数题注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题1、证明线面位置关系,一般不需要去建系,更简单;2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2、搞清是什么概率模型,套用哪个公式;3、记准均值、方差、标准差公式;4、求概率时,正难则反(根据p1+p2+……+pn=1);5、注意计数时利用列举、树图等基本方法;6、注意放回抽样,不放回抽样;7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8、注意条件概率公式;9、注意平均分组、不完全平均分组问题。
五、圆锥曲线问题1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;3、战术上整体思路要保7分,争9分,想12分。
高考数学压轴题必用的6个技巧+5大思路解题技巧1、三角函数题注意归一公式、诱导公式的正确性{转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!}。
2、数列题1)证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2)最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
)利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3)证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
3、立体几何1)证明线面位置关系,一般不需要去建系,更简单;2)求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3)注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
4、概率问题1)搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2)搞清是什么概率模型,套用哪个公式;3)记准均值、方差、标准差公式;4)求概率时,正难则反(根据P1+P2+...+Pn=1);5)注意计数时利用列举、树图等基本方法;6)注意放回抽样,不放回抽样;7)注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8)注意条件概率公式;9)注意平均分组、不完全平均分组问题。
5、圆锥曲线问题1)注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;2)注意直线的设法(法1分有斜率,没斜率;法2设x=m y+b (斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;3)战术上整体思路要保7分,争9分,想12分。
高考数学解题六种方法
1.直接法:这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
2.特殊化法:当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以把题中变化的不定量用特殊值代替,即可以得到正确结果。
3.数形结合法:对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
4.等价转化法:通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。
5.图像法:借助图形的直观形,通过数形结合,迅速作出判断的方法称为图像法。
文氏图、三角函数线、函数的图像及方程的曲线等,都是常用的图形。
6.构造法:在解题时有时需要根据题目的具体情况,来设计
新的模式解题,这种设计工作,通常称之为构造模式解法,简称构造法。
高考数学选择题、填空题的六大解题方法和技巧方法一:直接法直接法就是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,得出正确结论,此法是解选择题和填空题最基本、最常用的方法.【典例1】(1)(2021·新高考Ⅱ卷)在复平面内,复数2-i 1-3i对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】选A.因为2-i1-3i =(2-i )(1+3i )(1-3i )(1+3i ) =5+5i 10 =12 +12 i ,所以复数2-i 1-3i 对应的点位于第一象限.(2)(2021·烟台二模)已知双曲线C :x 2a 2 -y 2b 2 =1(a>0,b>0)的左、右焦点分别为F 1,F 2,点A 在C 的右支上,AF 1与C 交于点B ,若2F A ·2F B =0,且|2F A |=|2F B |,则C 的离心率为( ) A . 2 B . 3 C . 6 D .7【解析】选B.由F 2A·F 2B =0且|2F A |=|2F B |知:△ABF 2为等腰直角三角形且 ∠AF 2B =π2 、∠BAF 2=π4 ,即|AB|= 2 |2F A |= 2 |2F B |, 因为⎩⎪⎨⎪⎧|F 1A|-|F 2A|=2a ,|F 2B|-|F 1B|=2a ,|AB|=|F 1A|-|F 1B|,所以|AB|=4a ,故|F 2A|=|F 2B|=2 2 a ,则|F 1A|=2( 2 +1)a ,而在△AF 1F 2中,|F 1F 2|2=|F 2A|2+|F 1A|2-2|F 2A||F 1A|cos ∠BAF 2, 所以4c 2=8a 2+4(3+2 2 )a 2-8( 2 +1)a 2,则c 2=3a 2,故e =ca = 3 . 【变式训练】1.(2021·北京高考)在复平面内,复数z 满足(1-i)z =2,则z =( ) A .1 B .i C .1-i D .1+i【解析】选D.方法一:z =21-i =2(1+i )(1-i )(1+i )=1+i.方法二:设z =a +bi ,则(a +b)+(b -a)i =2,联立⎩⎪⎨⎪⎧a +b =2,b -a =0, 解得a =b =1,所以z =1+i.2.(2021·郑州二模)已知梯形ABCD 中,以AB 中点O 为坐标原点建立如图所示的平面直角坐标系.|AB|=2|CD|,点E 在线段AC 上,且AE→ =23 EC → ,若以A ,B 为焦点的双曲线过C ,D ,E 三点,则该双曲线的离心率为( )A .10B .7C . 6D . 2【解析】选B.设双曲线方程为x 2a 2 -y 2b 2 =1,由题中的条件可知|CD|=c , 且CD 所在直线平行于x 轴, 设C ⎝ ⎛⎭⎪⎫c 2,y 0 ,A(-c ,0),E(x ,y),所以AE → =(x +c ,y),EC →=⎝ ⎛⎭⎪⎫c 2-x ,y 0-y ,c 24a 2 -y 20 b 2 =1,由AE → =23 EC →,可得⎩⎪⎨⎪⎧x =-25c y =25y 0,所以E ⎝ ⎛⎭⎪⎫-25c ,25y 0 ,因为点E 的坐标满足双曲线方程,所以4c 225a 2 -4y 2025b 2 =1, 即4c 225a 2 -425 ⎝ ⎛⎭⎪⎫c 24a 2-1 =1,即3c 225a 2 =2125 ,解得e =7 .方法二:特例法从题干出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或特殊图形或特殊位置,进行判断.特例法是“小题小做”的重要策略,要注意在怎样的情况下才可以使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊函数等.【典例2】(1)(2021·郑州三模)在矩形ABCD 中,其中AB =3,AD =1,AB 上的点E 满足AE +2BE =0,F 为AD 上任意一点,则EB ·BF =( ) A .1 B .3 C .-1 D .-3 【解析】选D.(直接法)如图,因为AE +2BE =0, 所以EB =13 AB , 设AF =λAD ,则BF =BA +λAD =-AB +λAD ,所以EB ·BF =13 AB ·(-AB +λAD )=-13 |AB |2+13 λAB ·AD =-3+0=-3.(特例法)该题中,“F为AD上任意一点”,且选项均为定值,不妨取点A为F. 因为AE+2BE=0,所以EB=13AB.故EB·BF=13AB·(-AB)=-132 AB=-13×32=-3.(2)(2021·成都三模)在△ABC中,内角A,B,C成等差数列,则sin2A+sin2C-sin A sin C=________.【解析】(方法一:直接法)由内角A,B,C成等差数列,知:2B=A+C,而A+B+C=π,所以B=π3,而由余弦定理知:b2=a2+c2-2ac cos B=a2+c2-ac,结合正弦定理得:sin2B=sin2A+sin2C-sin A sin C=3 4.(方法二:特例法)该题中只有“内角A,B,C成等差数列”的限制条件,故可取特殊的三角形——等边三角形代入求值.不妨取A=B=C=π3,则sin 2A+sin2C-sin A sin C=sin2π3+sin2π3-sinπ3sinπ3=34.(也可以取A=π6,B=π3,C=π2代入求值.)答案:34【变式训练】设四边形ABCD为平行四边形,|AB→|=6,|AD→|=4,若点M,N满足BM→=3MC→,DN→=2NC → ,则AM → ·NM → 等于( ) A .20 B .15 C .9 D .6【解析】选C.若四边形ABCD 为矩形,建系如图,由BM → =3MC → ,DN → =2NC→ ,知M(6,3),N(4,4),所以AM → =(6,3),NM → =(2,-1),所以AM → ·NM → =6×2+3×(-1)=9.方法三:数形结合法对于一些含有几何背景的问题,往往可以借助图形的直观性,迅速作出判断解决相应的问题.如Veen 图、三角函数线、函数图象以及方程的曲线等,都是常用的图形.【典例3】已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2C . 2D .22【解析】选C.如图,设OA→ =a ,OB → =b ,则|OA → |=|OB → |=1,OA → ⊥OB → ,设OC → =c ,则a-c =CA → ,b -c =CB → ,(a -c )·(b -c )=0,即CA → ·CB → =0.所以CA → ⊥CB → .点C 在以AB 为直径的圆上,圆的直径长是|AB→ |= 2 ,|c |=|OC → |,|OC → |的最大值是圆的直径,长为 2 .【变式训练】1.设直线l :3x +2y -6=0,P(m ,n)为直线l 上动点,则(m -1)2+n 2的最小值为( ) A .913 B .313 C .31313 D .1313【解析】选A.(m -1)2+n 2表示点P(m ,n)到点A(1,0)距离的平方,该距离的最小值为点A(1,0)到直线l 的距离,即|3-6|13 =313,则(m -1)2+n 2的最小值为913 .2.(2021·河南联考)已知函数f(x)=⎩⎪⎨⎪⎧x ln x -2x (x>0),x 2+1(x≤0), 若f(x)的图象上有且仅有2个不同的点关于直线y =-32 的对称点在直线kx -y -3=0上,则实数k 的取值是________. 【解析】直线kx -y -3=0关于直线y =-32 对称的直线l 的方程为kx +y =0,对应的函数为y =-kx ,其图象与函数y =f(x)的图象有2个交点.对于一次函数y =-kx ,当x =0时,y =0,由f(x)≠0知不符合题意. 当x≠0时,令-kx =f(x),可得-k =f (x )x ,此时, 令g(x)=f (x )x =⎩⎨⎧ln x -2(x>0),x +1x (x<0).当x>0时,g(x)为增函数,g(x)∈R ,当x<0时,g(x)为先增再减函数,g(x)∈(-∞,-2]. 结合图象,直线y =-k 与函数y =g(x)有2个交点, 因此,实数-k =-2,即k =2. 答案:2方法四:排除法排除法也叫筛选法、淘汰法,它是充分利用单选题有且只有一个正确的选项这一特征,通过分析、推理、计算、判断,排除不符合要求的选项,从而确定正确选项.【典例4】(1)(2021·郑州二模)函数f(x)=sin x ln π-xπ+x在(-π,π)的图象大致为()【解析】选A.根据题意,函数f(x)=sin x ln π-xπ+x,x∈(-π,π),f(-x)=sin (-x)ln π+xπ-x=sin x lnπ-xπ+x=f(x),则f(x)在区间(-π,π)上为偶函数,所以排除B,C,又由f ⎝ ⎛⎭⎪⎫π2 =sin π2 ln π23π2=ln 13 <0,所以排除D.(2)(2021·太原二模)已知函数y =f(x)部分图象的大致形状如图所示,则y =f(x)的解析式最可能是( )A .f(x)=cos x e x -e -xB .f(x)=sin x e x -e -xC .f(x)=cos x e x +e -xD .f(x)=sin x e x +e -x 【解析】选A.由图象可知,f(2)<0,f(-1)<0, 对于B ,f(2)=sin 2e 2-e -2>0,故B 不正确;对于C ,f(-1)=cos (-1)e -1+e=cos 1e -1+e>0,故C 不正确; 对于D ,f(2)=sin 2e 2+e -2 >0,故D 不正确.【变式训练】1.(2021·嘉兴二模)函数f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x 的图象可能是()【解析】选C.由f(-x)=⎝⎛⎭⎪⎫1-x -1+1-x +1 cos (-x) =-⎝ ⎛⎭⎪⎫1x -1+1x +1 cos x =-f(x)知, 函数f(x)为奇函数,故排除B.又f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x =2x x 2-1 cos x , 当x ∈(0,1)时,2xx 2-1 <0,cos x>0⇒f(x)<0.故排除A ,D.2.(2021·石家庄一模)甲、乙、丙三人从红、黄、蓝三种颜色的帽子中各选一顶戴在头上,每人帽子的颜色互不相同,乙比戴蓝帽的人个头高,丙和戴红帽的人身高不同,戴红帽的人比甲个头小,则甲、乙、丙所戴帽子的颜色分别为( ) A .红、黄、蓝 B .黄、红、蓝 C .蓝、红、黄 D .蓝、黄、红【解析】选B.丙和戴红帽的人身高不同,戴红帽的人比甲个头小,故戴红帽的人为乙,即乙比甲的个头小;乙比戴蓝帽的人个头高,故戴蓝帽的人是丙. 综上,甲、乙、丙所戴帽子的颜色分别为黄、红、蓝.方法五:构造法构造法实质上是转化与化归思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等模型转化为熟悉的问题求解.【典例5】(1)(2021·昆明三模)已知函数f(x)=e x -a -ln x x -1有两个不同的零点,则实数a 的取值范围是( )A .(e ,+∞)B .⎝ ⎛⎭⎪⎫e 2,+∞C .⎝ ⎛⎭⎪⎫12,+∞ D .(1,+∞)【解析】选D.方法一(切线构造):函数f(x)=e x -a -ln xx -1有两个不同的零点, 则e x -a -1=ln xx 有两个解, 令g(x)=e x -a -1,h(x)=ln xx (x>0),则g(x)与h(x)有2个交点,h′(x)=1-ln xx 2 (x>0), 当x>e 时h′(x)<0,h(x)单调递减, 当0<x<e 时h′(x)>0,h(x)单调递增, 由g′(x)=e x -a (x>0)得g(x)单调递增, 图象如下,当g(x)与h(x)相切时,设切点为⎝ ⎛⎭⎪⎫x 0,ln x 0x 0 , h′(x 0)=1-ln x 0x 2=g′(x 0)=0x ae -, 同时ln x 0x 0 =ex 0-a -1,得ln x 0x 0 +1=1-ln x 0x 2,即x0ln x0+x20=1-ln x0,(x0+1)ln x0=-(x0+1)(x0-1),又x0>0,ln x0=1-x0,所以x0=1,此时1=e1-a,所以a=1,当a>1时,可看作g(x)=e x-1-1的图象向右平移,此时g(x)与h(x)必有2个交点,当a<1时,图象向左平移二者必然无交点,综上a>1.方法二(分离参数):由题意,方程e x-a-ln xx-1=0有两个不同的解,即e-a=ln xx+1e x有两个不同的解,所以直线y=e-a与g(x)=ln xx+1e x的图象有两个交点.g′(x)=⎝⎛⎭⎪⎫ln xx+1′×e x-(e x)′×⎝⎛⎭⎪⎫ln xx+1(e x)2=-(x+1)(ln x+x-1)x2e x.记h(x)=ln x+x-1.显然该函数在(0,+∞)上单调递增,且h(1)=0,所以0<x<1时,h(x)<0,即g′(x)>0,函数单调递增;所以x>1时,h(x)>0,即g′(x)<0,函数单调递减.所以g(x)≤g(1)=ln 11+1e1=1e.又x→0时,g(x)→0;x→+∞时,g(x)→0.由直线y=e a与g(x)=ln xx+1e x的图象有两个交点,可得e -a <1e =e -1,即-a<-1,解得a>1.方法三:由题意,方程e x -a -ln x x -1=0有两个不同的解,即e x -a =ln x x +1,也就是1e a (xe x )=x +ln x =ln (xe x ).设t =xe x (x>0),则方程为1e a t =ln t ,所以1e a =ln t t .由题意,该方程有两个不同的解.设p(x)=xe x (x>0),则p′(x)=(x +1)e x (x>0),显然p′(x)>0,所以p(x)单调递增,所以t =p(x)>p(0)=0.记q(t)=ln t t (t>0),则q′(t)=1-ln t t 2 .当0<t<e 时,q′(t)>0,函数单调递增;当t>e 时,q′(t)<0,函数单调递减.所以q(t)≤q(e)=ln e e =1e .又t→0时,q(t)→0;t→+∞时,q(t)→0.由方程1e a =ln t t 有两个不同的解,可得0<1e a <1e ,解得a>1.(2)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P-ABC 为鳖臑,PA ⊥平面ABC ,PA =AB =2,AC =4,三棱锥P-ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π【解析】选C.将三棱锥P-ABC 放入长方体中,如图,三棱锥P-ABC 的外接球就是长方体的外接球.因为PA =AB =2,AC =4,△ABC 为直角三角形,所以BC =42-22 =2 3 .设外接球的半径为R ,依题意可得(2R)2=22+22+(2 3 )2=20,故R 2=5,则球O 的表面积为4πR 2=20π.【变式训练】1.已知2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),则( )A .a<b<cB .b<a<cC .c<b<aD .c<a<b【解析】选D.因为2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),化为:ln a a =ln 22 ,ln b b =ln 33 ,ln c c =ln 55 ,令f(x)=ln x x ,x ∈(0,e),f′(x)=1-ln x x 2 ,可得函数f(x)在(0,e)上单调递增,在(e ,+∞)上单调递减,f(c)-f(a)=ln 55 -ln 22 =2ln 5-5ln 210=ln 253210 <0,且a ,c ∈(0,e), 所以c<a ,同理可得a<b.所以c<a<b.2.(2021·汕头三模)已知定义在R 上的函数f(x)的导函数为f′(x),且满足f′(x)-f(x)>0,f(2 021)=e 2 021,则不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 的解集为( ) A .(e 2 021,+∞)B .(0,e 2 021)C .(e 2 021e ,+∞)D .(0,e 2 021e )【解析】选D.令t =1e ln x ,则x =e et ,所以不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 等价转化为不等式f(t)<e e et =e t ,即f (t )e t <1 构造函数g(t)=f (t )e t ,则g′(t)=f′(t )-f (t )e t, 由题意,g′(t)=f′(t )-f (t )e t>0, 所以g(t)为R 上的增函数,又f(2 021)=e 2 021,所以g(2 021)=f (2 021)e 2 021 =1,所以g(t)=f (t )e t <1=g(2 021),解得t<2 021,即1e ln x<2 021,所以0<x<e 2 021e .方法六:估算法估算法就是不需要计算出准确数值,可根据变量变化的趋势或极值的取值情况估算出大致取值范围,从而解决相应问题的方法.【典例6】(2019·全国Ⅰ卷)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12 (5-12 ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12 .若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A.165 cm B.175 cmC.185 cm D.190 cm【解析】选B.头顶至脖子下端的长度为26 cm,可得咽喉至肚脐的长度小于42 cm,肚脐至足底的长度小于110 cm,则该人的身高小于178 cm,又由肚脐至足底的长度大于105 cm,可得头顶至肚脐的长度大于65 cm,则该人的身高大于170 cm,所以该人的身高在170~178 cm之间.【变式训练】设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9 3 ,则三棱锥D-ABC体积的最大值为()A.12 3 B.18 3C.24 3 D.54 3【解析】选B.等边三角形ABC的面积为9 3 ,显然球心不是此三角形的中心,所以三棱锥的体积最大时,三棱锥的高h应满足h∈(4,8),所以13×9 3 ×4<V三棱锥D-ABC <13×9 3 ×8,即12 3 <V三棱锥D-ABC<24 3 .。
2019高考数学考试做题技巧
一、“六先六后”,因人因卷制宜。
考生可依自己的解题习惯和基本功,选择执行“六先六后”的战术原则。
1.先易后难。
2.先熟后生。
3.先同后异。
先做同科同类型的题目。
4.先小后大。
先做信息量少、运算量小的题目,为解决大题赢得时间。
5.先点后面。
高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审究竟,应走一步解决一步,步步为营,由点到面。
6.先高后低。
即在考试的后半段时间,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”。
二、一慢一快,相得益彰,规范书写,确保精确,力争对全。
审题要慢,解答要快。
在以快为上的前提下,要稳扎稳打,步步精确。
假如速度与精确不行兼得的话,就只好舍快求对了。
三、面对难题,以退求进,立足特别,发散一般,讲究策略,争取得分。
对于一个较一般的问题,若一时不能取得一般思路,可以实行化一般为特别,化抽象为详细。
对不能全面完成的题目有两种常用方法:
1.缺步解答。
将疑难的问题划分为一个个子问题或一系列的步骤,每进行一步就可得到一步的分数。
2.跳步解答。
若题目有两问,第一问做不上,可以第一问为“已知”,完成其次问。
四、执果索因,逆向思索,正难则反,回避结论的确定与否定。
对一个问题正面思索受阻时,就逆推,干脆证有困难就反证。
对探究性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一起先,就综合全部条件,进行严格的推理与探讨,则步骤所至,结论自明。
六、参数法参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。
直线与二次曲线的参数方程都是用参数法解题的例证。
换元法也是引入参数的典型例子。
辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。
参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。
参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。
运用参数法解题已经比较普遍。
参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。
Ⅰ、再现性题组:1. 设2x=3y=5z>1,则2x、3y、5z从小到大排列是________________。
2. (理)直线x ty t=--=+⎧⎨⎪⎩⎪2232上与点A(-2,3)的距离等于2的点的坐标是________。
(文)若k<-1,则圆锥曲线x2-ky2=1的离心率是_________。
3. 点Z的虚轴上移动,则复数C=z2+1+2i在复平面上对应的轨迹图像为____________________。
4. 三棱锥的三个侧面互相垂直,它们的面积分别是6、4、3,则其体积为______。
5. 设函数f(x)对任意的x、y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,则f(x)的R上是______函数。
(填“增”或“减”)6. 椭圆x216+y24=1上的点到直线x+2y-2=0的最大距离是_____。
A. 3B. 11C. 10D. 22【简解】1小题:设2x=3y=5z=t,分别取2、3、5为底的对数,解出x、y、z,再用“比较法”比较2x、3y、5z,得出3y<2x<5z;2小题:(理)A(-2,3)为t=0时,所求点为t=±2时,即(-4,5)或(0,1);(文)已知曲线为椭圆,a=1,c=11+k,所以e=-1kk k2+;3小题:设z=bi,则C=1-b2+2i,所以图像为:从(1,2)出发平行于x轴向右的射线;4小题:设三条侧棱x、y、z,则12xy=6、12yz=4、12xz=3,所以xyz=24,体积为4。
5小题:f(0)=0,f(0)=f(x)+f(-x),所以f(x)是奇函数,答案:减;6小题:设x=4sinα、y=2cosα,再求d=|sin cos|4425αα+-的最大值,选C。
Ⅱ、示范性题组:例1. 实数a、b、c满足a+b+c=1,求a2+b2+c2的最小值。
【分析】由a+b+c=1 想到“均值换元法”,于是引入了新的参数,即设a=13+t1,b=13+t2,c=13+t3,代入a2+b2+c2可求。
【解】由a+b+c=1,设a=13+t1,b=13+t2,c=13+t3,其中t1+t2+t3=0,∴ a2+b2+c2=(13+t1)2+(13+t2)2+(13+t3)2=13+23(t1+t2+t3)+t 12+t22+t32=13+t12+t22+t32≥13所以a2+b2+c2的最小值是13。
【注】由“均值换元法”引入了三个参数,却将代数式的研究进行了简化,是本题此种解法的一个技巧。
本题另一种解题思路是利用均值不等式和“配方法”进行求解,解法是:a2+b2+c2=(a+b+c)2-2(ab+bc+ac)≥1-2(a2+b2+c2),即a2+b2+c2≥13。
两种解法都要求代数变形的技巧性强,多次练习,可以提高我们的代数变形能力。
例2. 椭圆x216+y24=1上有两点P、Q,O为原点。
连OP、OQ,若kOP·kOQ=-14,①.求证:|OP|2+|OQ|2等于定值;②.求线段PQ中点M的轨迹方程。
【分析】由“换元法”引入新的参数,即设xy==⎧⎨⎩42cossinθθ(椭圆参数方程),参数θ1、θ2为P、Q两点,先计算kOP·kOQ得出一个结论,再计算|OP|2+|OQ|2,并运用“参数法”求中点M的坐标,消参而得。
【解】由x216+y24=1,设xy==⎧⎨⎩42cossinθθ,P(4cosθ1,2sinθ1),Q(4cosθ2,2sinθ2),则kOP ·kOQ=2411sincosθθ•2422sincosθθ=-14,整理得到:cosθ1 cosθ2+sinθ1sinθ2=0,即cos(θ1-θ2)=0。
∴ |OP|2+|OQ|2=16cos 2θ1+4sin 2θ1+16cos 2θ2+4sin 2θ2=8+12(cos 2θ1+cos 2θ2)=20+6(cos2θ1+cos2θ2)=20+12cos (θ1+θ2)cos (θ1-θ2)=20,即|OP|2+|OQ|2等于定值20。
由中点坐标公式得到线段PQ 的中点M 的坐标为x y M M=+=+⎧⎨⎩21212(cos cos )sin sin θθθθ,所以有(x 2)2+y 2=2+2(cos θ1 cos θ2+sin θ1 sin θ2)=2, 即所求线段PQ 的中点M 的轨迹方程为x 28+y 22=1。
【注】由椭圆方程,联想到a 2+b 2=1,于是进行“三角换元”,通过换元引入新的参数,转化成为三角问题进行研究。
本题还要求能够熟练使用三角公式和“平方法”,在由中点坐标公式求出M 点的坐标后,将所得方程组稍作变形,再平方相加,即(cos θ1+ cos θ2)2+(sin θ1+sin θ2)2,这是求点M 轨迹方程“消参法”的关键一步。
一般地,求动点的轨迹方程运用“参数法”时,我们可以将点的x 、y 坐标分别表示成为一个或几个参数的函数,再运用“消去法”消去所含的参数,即得到了所求的轨迹方程。
本题的第一问,另一种思路是设直线斜率k ,解出P 、Q 两点坐标再求:设直线OP 的斜率k ,则OQ 的斜率为-14k,由椭圆与直线OP 、OQ 相交于PQ 两点有: x y y kx 224160+-==⎧⎨⎩,消y 得(1+4k 2)x 2=16,即|x P |=4142+k ; x y y k x22416014+-==-⎧⎨⎪⎩⎪,消y 得(1+142k )x 2=16,即|x Q |=||8142k k +; 所以|OP|2+|OQ|2=(12+k •4142+k )2+(11162+k •||8142k k +)2=20801422++k k=20。
即|OP|2+|OQ|2等于定值20。
在此解法中,利用了直线上两点之间的距离公式|AB|=12+k AB •|x A -x B |求|OP|和|OQ|的长。
例 3.已知正四棱锥S —ABCD 的侧面与底面的夹角为β,相邻两侧面的夹角为α,求证:cos α=-cos 2β。
【分析】要证明cos α=-cos 2β,考虑求出α、β的余弦,则在α和β所在的三角形中利用有关定理求解。
【解】连AC 、BD 交于O ,连SO ;取B C 中点F ,连SF 、OF ;作BE ⊥SC 于E ,连DE 。
则∠SFO =β,∠DEB =α。
设BC =a (为参数), 则SF =OF cos β=a 2cos β,SC =SF FC 22+=(cos )()a a2222β+=a2cos β12+cos β 又 ∵BE =SF BC SC ·=a 22cos β⨯1212acos cos ββ+=a 12+cos β在△DEB 中,由余弦定理有:cos α=22222BE BD BE-=2122122222⨯+-⨯+a a a cos cos ββ=-cos 2β。
所以cos α=-cos 2β。
【注】 设参数a 而不求参数a ,只是利用其作为中间变量辅助计算,这也是在参数法中参数可以起的一个作用,即设参数辅助解决有关问题。
Ⅲ、巩固性题组:1. 已知复数z 满足|z|≤1,则复数z +2i在复平面上表示的点的轨迹是________________。
2. 函数y =x +2+142--x x 的值域是________________。
3. 抛物线y =x 2-10xc os θ+25+3sin θ-25sin 2θ与x 轴两个交点距离的最大值为_____A. 5B. 10C. 23D. 34. 过点M(0,1)作直线L ,使它与两已知直线L 1:x -3y +10=0及L 2:2x +y -8=0所截得的线段被点P 平分,求直线L 方程。
5. 求半径为R 的球的内接圆锥的最大体积。
SED CO FA B6. f(x)=(1-a 2cos 2x)sinx ,x ∈[0,2π),求使f(x)≤1的实数a 的取值范围。
7. 若关于x 的方程2x 2+xlg ()a a 23318-+lg 2(a a 212-)+lg 212a a -=0有模为1的虚根,求实数a 的值及方程的根。
8. 给定的抛物线y 2=2px (p>0),证明:在x 轴的正向上一定存在一点M ,使得对于抛物线的任意一条过点M 的弦PQ ,有12||MP +12||MQ 为定值。