第六章 群智能算法II.ppt
- 格式:ppt
- 大小:467.50 KB
- 文档页数:44
《常用算法之智能计算(六)》:群智能计算群智能计算(Swarm Intelligence Computing),又称群体智能计算或群集智能计算,是指一类受昆虫、兽群、鸟群和鱼群等的群体行为启发而设计出来的具有分布式智能行为特征的一些智能算法。
群智能中的“群”指的是一组相互之间可以进行直接或间接通信的群体;“群智能”指的是无智能的群体通过合作表现出智能行为的特性。
智能计算作为一种新兴的计算技术,受到越来越多研究者的关注,并和人工生命、进化策略以及遗传算法等有着极为特殊的联系,已经得到广泛的应用。
群智能计算在没有集中控制并且不提供全局模型的前提下,为寻找复杂的分布式问题的解决方案提供了基础。
对一般群智能计算,通常要求满足以下五条基本原则:邻近原则:群内的个体具有对简单的空间或时间进行计算和评估的能力;恭喜!随机获得¥9.88元!广告品质原则:群内的个体具有对环境以及群内其他个体的品质作出响应的能力;多样性原则:群内的不同个体能够对环境中某些变化做出不同的多样反应;稳定性原则:群内个体的行为模式不会在每次环境发生变化时都发生改变;适应性原则:群内个体能够在所需代价不高的情况下,适当改变自身的行为模式。
展开剩余87%群智能计算现含蚁群算法、蜂群算法、鸡群算法、猫群算法、鱼群算法、象群算法、狼群算法、果蝇算法、飞蛾扑火算法、萤火虫算法、细菌觅食算法、混合蛙跳算法、粒子群算法等诸多智能算法。
下面对它们中间常用的一些重要算法进行一些简单介绍。
蚁群算法(Ant Colony Algorithm),受蚂蚁觅食过程及其通信机制的启发,对蚂蚁群落的食物采集过程进行模拟,可用来解决计算机算法中的经典“货郎担问题”,即求出需要对所有n个城市进行访问且只访问一次的最短路径及其距离。
在解决货郎担问题时,蚁群算法设计的虚拟“蚂蚁”将摸索不同路线,并留下会随时间逐渐消失的虚拟“信息素”。
虚拟的“信息素”会因挥发而减少;每只蚂蚁每次随机选择要走的路径,它们倾向于选择路径比较短的、信息素比较浓的路径。