• 在确定的工作场强下,频率越高,等离子体中正离子被加速的时间越短, 正离子从外电场吸收的能量就越少,轰击靶时的能量就越低,溅射速率 就会下降,因此为了维持较高的溅射速度,中频反应溅射电源的频率一 般为10~80HZ
第13页/共23页
三、磁控溅射镀膜技术发展
4、中频磁控溅射技术
中频磁控溅射常同时溅射两个靶,并排配置的两个靶的尺寸与外形完全相 同,通常称为孪生靶如图所示,在溅射过程中,两个靶周期性轮流作为阴极和 阳极,既抑制了靶面打火,而且消除普通直流反应溅射是阳极消失现象,使溅 射过程得以稳定进行。
• 打弧:当靶材表面化合物层电位足够高时,进而发生击穿,巨大的电流 流过击穿点,形成弧光放电,导致局部靶面瞬间被加热到很高的温度, 发生喷射出现“打弧”现象。
• 靶中毒和打弧导致了溅射沉积的不稳定,缩短了靶材的使用寿命! • 解决办法:最为有效解决直流反应溅射靶中毒和打弧问题的方式是改变
溅射电源,如采用射频,中频脉冲电源。
第3页/共23页
二、磁控溅射镀膜技术原理
2、磁控溅射技术
• 磁控溅射技术是为了提高成膜速率在直流二级溅射镀膜基础上发 展起来的,在靶材表面建立与电场正交的磁场,氩气电离率从 0.3%~0.5%提高到了5%~6%,解决了溅射镀膜沉积速率低的问题, 是目前工业上精密镀膜的主要方法之一。
• 磁控溅射阴极靶材的原料很广,几乎所有金属、合金以及陶瓷材料 都可以制备成靶材。磁控溅射镀膜在相互垂直的磁场和电场的双 重作用下,沉积速度快,膜层致密且与基片附着性好,非常适合于大 批量且高效率的工业化生产。
第9页/共23页
三、磁控溅射镀膜技术发展
3、反应磁控溅射技术
•随 着 表 面 工 程 技 术 的 发 展 , 越 来 越 多 地 用 到 各 种 化 合 物 薄 膜 材 料 。 可 以 直 接使用化合物材料制作的靶材通过溅射来制备化合物薄膜,也可在溅射金 属或合金靶材时, 通入一定的反应气体,通过发生化学反应制备化合物薄 膜,后者被称为反应磁控溅射。 •一 般 来 说 纯 金 属 作 为 靶 材 和 气 体 反 应 较 容 易 得 到 高 质 量 的 化 合 物 薄 膜 , 因 而大多数化合物薄膜是用纯金属为靶材的反应溅磁控射来制备的。 •在 沉 积 介 电 材 料 或 绝 缘 材 料 化 合 物 薄 膜 的 反 应 磁 控 溅 射 时 , 容 易 出 现 迟 滞 现象。