光谱仪大致有红外光谱仪、荧光光谱近红外光谱仪、便携式光谱仪解析
- 格式:doc
- 大小:37.50 KB
- 文档页数:2
光谱分析仪器的组成部件光谱分析仪器光谱分析仪器是测量发光体的辐射光谱,常见的发射,吸收,荧光货散射的光谱分析,虽然仪器构造不同,但是组成的光谱仪大致相同的。
由五个部件组成:辐射源,单色器,试样的容器,检测器和信号处理器(读出装置)各类仪器的裣测器和信号处理器两个部分基本相同。
发射光谱法不需外加辐射源,因样品本身就是发射体,样品的容器就是电弧、火花或火焰。
吸收、荧光和散射光谱法都需辐射能源。
吸收光谱的光源辐射经波长选择器后通过样品,光源、样品和检测器都处于一条直线上;而对于荧光或敢射辑射,通常检测器的位置与光源具有一定的角度(90°)。
根据波长区域的不同,对各种部件的功能和性能总的要求大体类似,但是具体的要求又有所区别。
下面对这些部件分别进行介绍:一、辐射源光谱分析中,光源必须具有足够的功率并且要求稳定。
一般连续光源主要用于分子吸收法,线光源用于荧光、原子吸收和拉曼散射法。
1.紫外、可见和近红外辐射的连续光源(1)紫外连续光源。
紫外区的连续光源可在低气压下用电能激发氢或氘而获得,例如髙压氢灯,低压氢灯。
(2)可见连续光源。
例如钨灯,氙弧灯。
(3)红外连续光源。
例如Nemst灯,炽热的碳硅棒光源,白炽金属丝光源等。
2.线光原例如金属蒸气灯、空心阴极灯,激光器等。
二、单色器其主要作用是把多色辐射色散成只含限定波长区域的谱带。
紫外、可见和红外辐射用的单色器在机械结构方面相类似,都使用狭缝、透镜、反射镜、窗口和棱境(或光栅)。
但视所用波长区域的不同,用以制作这些部件的材料也有所区别。
在350nm以下通常采用石英棱镜,在350~2000nm范围内同样大小的玻璃棱镜的分辩本领比石英为优。
因为它的折射率随波长的改变值较大。
三、样品容器与单色器的光学元件一样,样品池必须用能透过所研究的光谱区域辐射的材料制成。
在紫外区(低于350nm)应采用石英或熔凝石英,这两种材料在可见区到大约3/xm 的红外区域也都是透明的。
光谱仪近红外指的是一类光谱仪器,用于检测和分析近红外波段的光谱信息。
近红外波段通常包括700纳米到2500纳米的范围。
近红外光谱仪通过测量物质在近红外光波段的吸收、散射或透射等特性,获取样品的光谱数据,并进一步分析和解释。
近红外光谱具有许多应用领域,包括但不限于以下几个方面:
1.化学分析:近红外光谱仪可以用于化学成分分析、质量控制、反应动力学等方面的研究。
通过检测样品在近红外波段的吸收特性,可以识别和定量分析化合物的种类和含量。
2.农业和食品领域:近红外光谱仪可用于农作物和食品品质的分析。
例如,可以通过近红外光谱技术判断水果的成熟度、检测农产品中的营养成分、预测食品的新鲜度等。
3.药物和生物医学研究:近红外光谱可用于医药领域的药物分析和生物医学研究。
例如,可以通过近红外光谱检测药物的纯度、质量等;同时,在生物医学研究中,近红外光谱被用作非侵入性的、实时的生物体监测工具。
4.环境监测:近红外光谱仪可以用于水质、空气质量、土壤污染等环境领域的监测和分析,帮助评估环境中的污染物含量和类型。
近红外光谱仪的使用使得对物质的分析更加简便、高效、准确,广泛应用于科学研究、工业生产、环境监测等领域。
通用测试仪器大全之光谱分析仪(特性,工作原理,使用方法,应用范围)什么是光谱分析仪?根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型光谱仪。
经典光谱仪器是建立在空间色散原理上的仪器:新型光谱仪器是建立在调制原理上的仪器。
经典光谱仪器都是狭缝光谱仪器。
调制光谱仪是非空间分光的,它采用圆孔进光根据色散组件的分光原理,光谱仪器可分为:棱镜光谱仪,衍射光栅光谱仪和干涉光谱仪。
光学多道OMA(OpTIcal MulTI-channel Analyzer)是近十几年出现的采用光子探测器(CCD)和计算机控制的新型光谱分析仪器,它集信息采集,处理,存储诸功能于一体。
由于OMA不再使用感光乳胶,避免和省去了暗室处理以及之后的一系列繁琐处理,测量工作,使传统的光谱技术发生了根本的改变,大大改善了工作条件,提高了工作效率:使用OMA分析光谱,测盆准确迅速,方便,且灵敏度高,响应时间快,光谱分辨率高,测量结果可立即从显示屏上读出或由打印机,绘图仪输出。
它己被广泛使用于几乎所有的光谱测量,分析及研究工作中,特别适应于对微弱信号,瞬变信号的检测。
光谱分析仪工作原理:光谱分析仪的分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中待测元素的基态原子所吸收,由发射光谱被减弱的程度,进而求得样品中待测元素的含量,它符合郎珀-比尔定律A= -lg I/I o= -LgT = KCL 式中I为透射光强度,I0为发射光强度,T为透射比,L为光通过原子化器光程由于L是不变值所以A=KC。
光谱分析仪的作用:红外光谱仪可用于研究分子的结构和化学键,也可以作为表征和鉴别化学物种的方法。
红外光谱具有高度特征性,可以采用与标准化合物的红外光谱对比的方法来做分析鉴定。
利用化学键的特征波数来鉴别化合物的类型,并可用于定量测定。
可用于不同种类高分子材料的鉴别研究等。
光谱分析仪的分类:根据现代光谱仪器的工作原理,光谱仪可以分为两大类:经典光谱仪和新型光谱仪。
实验室常用光谱仪及其它们各自的原理光谱仪,又称分光仪。
以光电倍增管等光探测器在不同波长位置,测量谱线强度的装置。
其构造由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。
以色散元件将辐射源的电磁辐射分离出所需要的波长或波长区域,并在选定的波长上(或扫描某一波段)进行强度测定。
分为单色仪和多色仪两种。
下面就介绍几种实验室常用的光谱仪的工作原理,它们分别是:荧光直读光谱仪、红外光谱仪、直读光谱仪、成像光谱仪。
荧光直读光谱仪的原理:当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为(10)-12-(10)-14s,然后自发地由能量高的状态跃迁到能量低的状态.这个过程称为发射过程.发射过程既可以是非辐射跃迁,也可以是辐射跃迁.当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子.它的能量是特征的,与入射辐射的能量无关.当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X 射线荧光,其能量等于两能级之间的能量差.因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系.K层电子被逐出后,其空穴可以被外层中任一电子所填充,ad4yjmk从而可产生一系列的谱线,称为K系谱线:由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线同样,L层电子被逐出可以产生L系辐射.如果入射的X 射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释放出来,且ΔE=EK-EL,这个能量是以X射线形式释放,产生的就是Kα 射线,同样还可以产生Kβ射线,L系射线等.莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下:λ=K(Z-s)-2 这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础.此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析.红外光谱仪的原理:红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。
一、实验目的1. 了解紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR)和荧光光谱仪的基本原理、主要用途和实际操作过程。
2. 掌握玻璃透光率、薄膜吸收光谱、固体粉末红外光谱和固体发光材料荧光光谱的测试方法。
3. 学习分析影响测试结果的主要因素。
二、实验原理1. 光谱分析是利用物质对不同波长光的吸收、发射和散射特性来研究物质的组成和结构的一种方法。
2. 紫光/可见光光度计:当光波与物质相互作用时,物质会吸收一部分光能,产生吸收光谱。
紫外和可见光的能量接近于电子能级之间的能量差,故紫外与可见光吸收光谱起源于价电子在电子能级之间的跃迁。
3. 傅里叶变换红外光谱仪(FTIR):当红外光照射到化合物上时,分子会吸收一部分光能转变为分子的震动能量或转动能量。
通过分析吸收光谱中的特征峰,可以推知被测物的结构。
4. 荧光光谱仪:当物质吸收光能后,由基态跃迁至激发态,激发态是不稳定的,寿命极短,激发态分子会迅速以向周围散热或再发射电磁波(荧光或磷光)的方式回到基态。
通过激发光谱和发射光谱,可以研究物质的性质。
三、实验仪器与试剂1. 仪器:紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR)、荧光光谱仪、样品池、光源、单色器、探测器等。
2. 试剂:玻璃样品、薄膜样品、固体粉末样品、固体发光材料样品、标准样品等。
四、实验步骤1. 紫光/可见光光度计实验(1)开启仪器,预热30分钟。
(2)选择合适的波长,设置合适的参比溶液。
(3)依次测量样品溶液的吸光度。
2. 傅里叶变换红外光谱仪(FTIR)实验(1)开启仪器,预热30分钟。
(2)将样品置于样品池中。
(3)设置合适的扫描参数,进行红外光谱扫描。
3. 荧光光谱仪实验(1)开启仪器,预热30分钟。
(2)将样品置于样品池中。
(3)设置合适的激发光波长和发射光波长。
(4)依次测量样品的荧光强度。
五、实验数据记录与处理1. 记录实验过程中测得的吸光度、红外光谱、荧光强度等数据。
红外光谱仪的组成部件及作用
红外光谱仪是一种用于测量红外光的仪器,广泛应用于化学、物理、生物、医药等领域。
它主要由以下几个部件组成:
1.光源系统:红外光谱仪的光源系统主要是用来提供红外光,以照射样品并产生光谱。
通常使用的光源有气体放电灯、激光等。
2.样品室:样品室是放置样品的区域,它需要保持干净、干燥,并且具有可重复使用的能力。
样品可以是固体、液体或气体,其大小和形状应适应样品室的大小和形状。
3.光谱仪:光谱仪是红外光谱仪的核心部分,它可以将光源发出的红外光照射到样品上,并将样品产生的光谱收集起来。
光谱仪通常由光栅、反射镜、狭缝等组成。
4.检测器:检测器是用来检测样品产生的光谱并将其转化为电信号的装置。
通常使用的检测器有光电倍增管、热电偶等。
5.数据处理系统:数据处理系统是用来处理检测器检测到的电信号并将其转化为光谱数据的系统。
它通常包括放大器、滤波器、ADC (模数转换器)等。
6.真空系统:真空系统是用来保持样品室内的真空度的系统。
在红外光谱仪中,为了避免样品受到空气的影响,通常需要将样品室抽成真空。
7.控制系统:控制系统是用来控制红外光谱仪各个部件的操作和工作的系统。
它通常包括计算机、控制器、执行器等。
8.计算机系统:计算机系统是用来控制红外光谱仪的工作和数据
处理的系统。
它通常包括计算机硬件、软件等。
以上是红外光谱仪的主要组成部件及其作用。
这些部件协同工作,使得红外光谱仪能够测量样品的红外光谱并进行分析。
光谱仪是一种用于测量光的波长和强度的仪器。
它可以分为不同的类型,每种类型都有其独特的原理和应用。
以下是一些常见的光谱仪分类及其原理:
1.棱镜光谱仪:棱镜光谱仪是一种古老的光谱仪,它利用棱镜的色
散作用将不同波长的光分开。
它的原理是基于不同波长的光在棱镜中的折射率不同,因此在通过棱镜时会被分散到不同的角度。
通过测量分散光线的角度,可以确定光的波长。
棱镜光谱仪通常用于定性分析,但精度和分辨率相对较低。
2.衍射光栅光谱仪:衍射光栅光谱仪利用衍射光栅的衍射作用将不
同波长的光分开。
它的原理是基于光的衍射现象,即当光通过光栅时,会被衍射到不同的角度,从而被分开。
衍射光栅光谱仪的分辨率和精度较高,适用于定量分析。
3.干涉光谱仪:干涉光谱仪利用干涉现象将不同波长的光分开。
它
的原理是基于光的干涉现象,即当两束相同频率的光束相遇时,会产生干涉现象,形成明暗相间的干涉条纹。
通过测量干涉条纹的位置和强度,可以确定光的波长和强度。
干涉光谱仪的分辨率和精度非常高,但通常需要使用激光源和高级检测设备。
4.傅里叶变换光谱仪:傅里叶变换光谱仪是一种新型的光谱仪,它
利用傅里叶变换算法将光谱信息从空间域转换到频率域。
它的原理是基于光的波动性,即光可以被看作是一种电磁波,具有频率和波长。
通过测量光的频率或波长,可以确定光的性质。
傅里叶变换光谱仪具有极高的分辨率和精度,适用于痕量分析和高精度
测量。
常见光谱仪的组成可以包括以下几个主要部分,每个部分都有不同的作用:
光源:光源是光谱仪的能量来源,用于产生光线。
常见的光源包括白炽灯、氘灯、汞灯、钠灯、激光等。
不同的光源可以提供不同波长范围的光线。
入射系统:入射系统将光源产生的光线引导到光谱仪中。
它通常包括准直器、进光口和透镜系统等,用于控制光线的入射角度和均匀性。
样品室:样品室是用于放置待测样品的空间。
它通常由一个透明的室内,可以通过样品室来控制样品与光之间的相互作用,如吸收、散射等。
分光系统:分光系统用于将入射的光线分解成不同波长的光谱。
它包括初始分光装置(如棱镜或光栅)、狭缝和光栅(或其他光学元件)等。
分光系统能够将光线按照波长进行分离,形成光谱图像。
探测器:探测器用于检测光谱分光仪中的光信号。
常见的探测器包括光电二极管(Photodiode)、光电倍增管(Photomultiplier Tube)、CCD(Charge-Coupled Device)等。
探测器将光信号转化为电信号,然后通过放大和处理等步骤进行分析。
信号处理和显示系统:光谱仪通常配备信号处理和显示系统,用于接收、放大、数字化和处理来自探测器的电信号。
它可以将电信号转化为可视化的光谱图形或数字结果,并提供数据分析和存储功能。
以上是常见光谱仪的一般组成部分,每个部分的作用各不相同,但共同协作来实现光的分析和测量。
具体的光谱仪型号和应用领域可能会有所不同,因此其组成和功能也可能会有所差异。
光谱仪的种类
光谱仪主要有以下几种种类:
1. 分光光度计:通过将入射光分解为不同波长的成分,并测量各个波长的光强,从而获得光谱信息。
2. 散射光谱仪:通过测量入射光在样品中发生散射后的光强,获得散射光谱信息。
3. 荧光光谱仪:通过测量样品在受激发后发出的荧光光谱,获得荧光光谱信息。
4. 紫外-可见光谱仪:可以测量紫外光到可见光范围内的光谱,并获得紫外-可见光谱信息。
5. 红外光谱仪:可以测量红外光谱范围内的光谱,并获得红外光谱信息。
6. 质谱仪:通过将样品中的分子或离子击碎并分离出来,通过对分离出的粒子质量进行测量,得到质谱信息。
7. 核磁共振光谱仪:利用核磁共振现象,测量样品中原子核的共振频率,获得核磁共振光谱信息。
光谱仪分类
光谱仪是一种测量光强度和它的颜色分布的仪器。
它可以用来分析某物体或某物混合物(例如矿石)的组成成分,也可以用来检测某物的纯度,以及它的光谱特性。
有许多不同类型的光谱仪,下面将会介绍几种主要分类。
一种常见的光谱仪分类是可见光谱仪。
这类仪器能够检测介于可见光400-780纳米范围、蓝到紫之间的光谱。
它们可以用来检测和分析各种类型的材料的可见光吸收能,包括液体、固体、气体等等。
另一种常见的光谱仪分类是激光光谱仪。
这类仪器可以以多种不同的激光颜色来测量发射出来的光谱。
它们通常用来检测和分析激光照射过的材料,分析材料的激光放射特性,同时测量反射、透射和吸收等光谱特性。
还有一种常见的光谱仪分类是紫外-可见光谱仪。
这类仪器可以检测介于紫外(200纳米以下)和可见光(400纳米)之间的所有光谱。
它们可以用来分析物体中的各种物质的吸收特性,以及两种颜色之间的差异。
它们还可以用来检测某物的化学性质和饱和度,以及它们与其他物质的相互作用特性。
另外,还有可以用于分析太阳光谱的X射线光谱仪。
这种仪器可以测量X射线和紫外线频率在某一时间的变化和谱线的强度,主要用来研究太阳的结构和活动。
此外,还有可以用于探测物质结构的X射线衍射仪。
它们可以用于测量物质的晶体结构,而且由于测试的范围比较小,因此可以更快
地获得结果。
以上就是光谱仪的几种分类,它们都可以用于分析不同物体的组成成分,检测某物的光谱特性,乃至探测太阳光谱等。
当测量特定物质时,应根据需要选择适宜的仪器,以便获得更准确的测量结果。
近红外光谱仪的分析方法近红外光谱仪(NIR)是一种非破坏性的分析仪器,它可用于分析物质的化学成分和品质特征,适用于食品、制药、化妆品、纺织品等多个领域。
本文将介绍近红外光谱仪的基本原理、分析方法以及仪器的使用注意事项。
基本原理红外光谱是指物质分子在受到一定波数范围内的红外辐射后,分子内部振动和分子间振动引起的特殊谱线。
近红外光谱仪利用一定波数范围内的红外辐射,通过样品对该辐射的吸收、透射和散射来分析样品。
与传统的红外光谱仪相比,近红外光谱仪是在红外光谱的高频段(波数约为4000-10000 cm-1)进行分析,适合于进行定性和定量分析。
分析方法定性分析近红外光谱仪可用于物质的定性分析,通过比较已知样品的光谱图和待测样品的光谱图来确定待测样品的成分。
这种方法适用于样品成分较为单一的物质,如各种单一化合物、药品等。
定量分析近红外光谱仪还可用于物质的定量分析,通过建立样品的定量分析模型,利用仪器测得的光谱图数据计算出待测样品的成分。
这种方法适用于复杂样品或者需要快速分析大量样品的情况,如食品、化妆品等行业的质量控制。
近红外光谱仪所建立的定量分析模型一般分为两种类型:一是基于化学计量学方法(如主成分分析、偏最小二乘法等)建立的模型,二是基于光谱匹配(spectral matching)建立的模型。
校正与验证在建立定量分析模型时,需要进行校正与验证。
校正是指利用部分已知样品数据来建立模型,验证则是指利用另外的已知样品数据来评估模型的可靠性。
建立模型时,一般将样品数据分为校正集和验证集,其中校正集用于训练模型,验证集用于评估模型的预测能力。
仪器使用注意事项样品制备近红外光谱仪的样品制备非常关键。
对于不同行业的样品,有不同的样品制备方法。
如在食品行业中,需要将食品样品研磨成粉末或浸泡在溶剂中;在药品行业中,需要将药品样品溶解后进行稀释。
无论是何种样品制备方法,需确保样品充分混合且无气泡,避免对光谱结果产生影响。
红外光谱测量方法介绍红外光谱是一种广泛应用于化学、生物、药物、材料科学、环境科学等领域的分析技术。
基于物质分子吸收红外辐射的原理,红外光谱能够提供关于分子的结构、键合状态、功能团以及其他化学性质的信息。
在本文中,我们将介绍几种常用的红外光谱测量方法。
一、傅里叶变换红外光谱仪(FT-IR)傅里叶变换红外光谱仪是目前最常用的红外光谱测量仪器。
它使用光源发射出一段宽频谱的红外辐射,经过样品后,红外辐射被光谱仪探测器收集,并经过傅里叶变换将信号转换为光谱图。
FT-IR光谱仪具有高分辨率、高灵敏度和快速测量的优点,可应用于液体、固体和气体样品的红外光谱分析。
二、近红外光谱仪(NIRS)近红外光谱(NIR)具有更高的穿透性,适用于非破坏性、快速的样品分析。
近红外光谱仪测量的波长范围一般介于700纳米到2500纳米之间。
NIRS仪器使用近红外光源照射样品,收集其反射光谱,并通过与参考样品进行比较,计算得出样品中不同成分的浓度。
近红外光谱在农产品、食品、医疗和制药等领域有广泛应用。
三、偏振红外光谱(IR-ATR)偏振红外光谱(IR-ATR)是一种通过测量样品边界表面产生的红外辐射来获取样品信息的方法。
它使用一块具有高折射率的晶体将光引导进样品表面,通过折射和全反射的过程,样品表面会产生强烈的吸收现象。
IR-ATR光谱不需要对样品进行任何处理,对液体和固体样品有着广泛的适用性。
四、拉曼光谱拉曼光谱是一种通过测量样品分子散射光谱来获取信息的技术。
拉曼光谱与红外光谱类似,也能提供关于分子的结构和化学性质的信息。
相比于红外光谱,拉曼光谱更适合于固体和液体样品的分析,对于有机化合物和无机材料的表征有着广泛的应用。
五、显微红外光谱显微红外光谱结合了显微镜和红外光谱的功能,可以在显微级别上分析样品。
这种方法对于微观颗粒、涂层、纤维和细胞等样品的红外光谱分析非常有用。
显微红外光谱可以进一步提供空间分辨率和化学信息的关联性,被广泛应用于材料科学、生物学和药物领域等。
光谱仪简介一、光谱仪光谱分析方法作为一种重要的分析手段,在科研、生产、质控等方面,都发挥着极大的作用。
无论是穿透吸收光谱,还是荧光光谱,拉曼光谱,如何获得单波长辐射是不可缺少的手段。
由于现代单色仪可具有很宽的光谱范围(UV- IR),高光谱分辨率(到0.001nm),自动波长扫描,完整的电脑控制功能极易与其他周边设备融合为高性能自动测试系统,使用电脑自动扫描多光栅单色仪已成为光谱研究的首选。
当一束复合光线进入单色仪的入射狭缝,首先由光学准直镜汇聚成平行光,再通过衍射光栅色散为分开的波长(颜色)。
利用每个波长离开光栅的角度不同,由聚焦反射镜再成像出射狭缝。
通过电脑控制可精确地改变出射波长。
光栅基础光栅作为重要的分光器件,它的选择与性能直接影响整个系统性能。
为更好协助各位使用者选择,在此做一简要介绍。
光栅分为刻划光栅、复制光栅、全息光栅等。
刻划光栅是用钻石刻刀在涂薄金属表面机械刻划而成;复制光栅是用母光栅复制而成。
典型刻划光栅和复制光栅的刻槽是三角形。
全息光栅是由激光干涉条纹光刻而成。
全息光栅通常包括正弦刻槽。
刻划光栅具有衍射效率高的特点,全息光栅光谱范围广,杂散光低,且可作到高光谱分辨率。
如何选择光栅选择光栅主要考虑如下因素:1、闪耀波长,闪耀波长为光栅最大衍射效率点,因此选择光栅时应尽量选择闪耀波长在实验需要波长附近。
如实验为可见光范围,可选择闪耀波长为500nm。
2、光栅刻线,光栅刻线多少直接关系到光谱分辨率,刻线多光谱分辨率高,刻线少光谱覆盖范围宽,两者要根据实验灵活选择。
3、光栅效率,光栅效率是衍射到给定级次的单色光与入射单色光的比值。
光栅效率愈高,信号损失愈小。
为提高此效率,除提高光栅制作工艺外,还采用特殊镀膜,提高反射效率。
光栅方程反射式衍射光栅是在衬底上周期地刻划很多微细的刻槽,一系列平行刻槽的间隔与波长相当,光栅表面涂上一层高反射率金属膜。
光栅沟槽表面反射的辐射相互作用产生衍射和干涉。
各种光谱仪的区别及应用ICP光谱仪,火花直读光谱仪,光电直读光谱仪,原子发射光谱仪,原子吸收光谱仪,手持式光谱仪,便携式光谱仪,能量色散光谱仪,真空直读光谱仪?随着ICP-AES的流行使很多实验室面临着再增购一台ICP-AE S,还是停留在原来使用AAS上的抉择。
现在一个新技术ICP-MS 又出现了,虽然价格较高,但ICP-MS具有ICP-AES的优点及比石墨炉原子吸收(GF-AAS)更低的检出限的优势。
因此,如何根据分析任务来判断其适用性呢?ICP-MS是一个以质谱仪作为检测器的等离子体,ICP-AES和ICP-MS的进样部分及等离子体是极其相似的。
ICP-AES测量的是光学光谱(120nm~800nm),ICP-MS测量的是离子质谱,提供在3~250amu范围内每一个原子质量单位(amu)的信息。
还可测量同位其溶液的检出限大部份素测定。
尤其是其检出限给人极深刻的印象,尤其是其检出限给人极深刻的印象,其溶液的检出限大部份为ppt级,石墨炉AAS的检出限为亚ppb级,ICP-AES大部份元素的检出限为1~10ppb,一些元素也可得到亚ppb级的检出限。
但由于ICP-MS的耐盐量较差,ICP-MS的检出限实际上会变差多达50倍,一些轻元素(如S、Ca、Fe、K、Se)在ICP-MS中有严重的干扰,其实际检出限也很差。
下面列出这几种方法的检出限的比较:这几种分析技术的分析性能可以从下面几个方面进行比较:这几种分析技术的分析性能可以从下面几个方面进行比较:★容易使用程度★★★★容易使用程度★★在日常工作中,从自动化来讲,ICP-AES是最成熟的,可由技术不熟练的人员来应用ICP-AES专家制定的方法进行工作。
ICP-MS 的操作直到现在仍较为复杂,尽管近年来在计算机控制和智能化软件方面有很大的进步,但在常规分析前仍需由技术人员进行精密调整,ICP-MS的方法研究也是很复杂及耗时的工作。
GF-AAS的常规工作虽然是比较容易的,但制定方法仍需要相当熟练的技术。
红外光谱分析仪基础知识前言 (2)第一章红外光谱法及相关仪器 (4)一. 红外光谱概述 (4)1. 红外光区的划分 (4)2. 红外光谱法的特点 (5)3. 产生红外吸收的条件 (5)二. 红外光谱仪 (6)1. 红外光谱仪的主要部件 (6)2. 红外光谱仪的分类 (9)3. 红外光谱仪各项指标的含义 (12)三.红外光谱仪的应用 (15)四.红外试样制备 (16)四.红外光谱仪的新进展 (17)前言分析仪器常使用的分析方法是光谱分析法,光谱分析法可分为吸收光谱分析法和发射光谱分析法,而吸收光谱分析法又是目前应用最广泛的一种光谱分析方法:它包括有核磁共振,X射线吸收光谱,紫外-可见吸收光谱,红外光谱,微波谱,原子吸收光谱等。
但最常用的则是原子吸收光谱、紫外-可见吸收光谱和红外光谱,这些方法的最基本原理是物质(这里说物质都是指物质中的分子或原子,下同)对电磁辐射的吸收。
还有拉曼光谱和荧光光谱,也是比较常用的手段,它们的原理是基于物质发射或散射电磁辐射。
其实物质与电磁辐射的作用还有偏振、干涉、衍射等,由此发展而成的是另外一系列的仪器,如椭偏仪、测糖仪、偏光显微镜、X射线衍射仪等等,这些仪器都不是基于光谱分析法,不是我们介绍的重点。
吸收光谱可分为原子吸收光谱和分子吸收光谱。
当电磁辐射与物质相互作用时,就会发生反射、散射、透射和吸收电磁辐射的现象,物质所以能够吸收光是由物质本身的能级状态所决定的。
例如原子吸收可见光和紫外光,可以使核外电子由基态跃迁到激发态,相应于不同能级之间的跃迁都需吸收一定波长的光。
因此,如有一波长连续的光照射单原子元素的蒸气(如汞蒸气、钠蒸气等),将会产生一系列的吸收谱线。
由于在一般情况下原子都处于基态,通常只有能量相当于从基态跃迁到激发态的所谓主系谱线出现在原子的吸收光谱中。
而分于吸收光谱则比较复杂。
它们不是分立的谱线而是许多吸收带。
因为每一个分子的能量包括三部分,即分子的电子能量、振动能量和转动能量。
光谱仪大致有红外光谱仪、荧光光谱近红外光谱仪、便携式光谱仪、原子吸收光谱仪、原子荧光光谱仪、等离子发射光谱仪等几类。
以下是其工作原理的简单介绍。
1. 傅里叶红外光谱仪
傅里叶红外光谱仪主要由迈克尔逊干涉仪和计算机两部分组成。
由光源发出的红外光经准直为平行红外光束进入干涉仪系统,经干涉仪调制后得到一束干涉光。
干涉光通过样品Sa,获得含有光谱信息的干涉光,到达探测器D上,由D将干涉光信号变为电信号。
此干涉信号为一时间函数,即由干涉信号会出的干涉图。
这种含有光谱信息的干涉图,难于进行光谱解析。
通过模/数转换器送入计算机,由计算机进行傅里叶变换的快速计算,即获得以波数为横坐标的红外光谱图,即频域光谱图。
并通过数/模转换器送入绘图仪绘出光谱图。
2.便携式光谱仪
便携式金属分析仪是采用了原子发射光谱学的分析原理。
通过激发电极发出的电弧或火花放电来激发样品,使其表面气化形成原子蒸气,该蒸气中的原子与离子被激发后产生发射光谱。
发射光谱通过光导纤维进入到光谱仪的分光室中,色散成各元素光谱谱线。
每个元素的最佳谱线可通过光电倍增管或CCD检测器检测出来。
<BR>每种元素的发射光谱谱线强度正比于样品中该元素的含量,通过内部预先存储的校正曲线可测定其含量,并直接以百分比浓度显示出来。
3.原子吸收光谱仪
原子吸收是指呈气态的原子对由同类原子辐射出的特征谱线所具有的吸收现象。
当辐射投射到原子蒸气上时,如果辐射波长相应的能量等于原子由基态跃迁到激发态所需要的能量时,则会引起原子对辐射的吸收,产生吸收光谱。
基态原子吸收了能量,最外层的电子产生跃迁,从低能态跃迁到激发态。
仪器从光源辐射出具有待测元素特征谱线的光,通过试样蒸气时被蒸气中待测元素基态原子所吸收,由辐射特征谱线光被减弱的程度来测定试样中待测元素的含量。
4.原子荧光光谱仪
气态自由原子吸收光源的特征辐射后,原子的外层电子跃迁到较高能级,然后又跃迁返回基态或较低能级,同时发射出与原激发波长相同或不同的发射即为原子荧光。
原子荧光是光致发光,也是二次发光。
当激发光源停止照射之后,再发射过程立即停止。
由此产生了原子荧光光谱。
原子荧光光谱仪结构上和原子吸收光谱仪差不多,只不过光路系统,发射光谱中光源样品检测器是在同一条直线上面,原子荧光为了不使激发光源影响检测,激发光源样品和检测
器不在同一条直线上。
5.等离子发射光谱仪
等离子发射光谱仪是由高频发生装置(几十兆赫兹)、单色器、光电接收装置、数据处理系统等组成。
高频发生装置输出的电感耦合管状体里(高温体)注入样品、氩气、氮气等混合气体(一定比例)。
使样品原子化显现光谱,用单色器等光学器件来处理光谱,再由光电接收装置测量它的光谱强度,然后计算机等数据处理系统,根据标准样品作标准曲线(数学模型),这样可以根据标准曲线算出被测样品含量。