时空对称性与守恒律
- 格式:docx
- 大小:91.97 KB
- 文档页数:6
量子力学中的对称性与守恒定律量子力学是现代物理学的一大支柱,它描述了微观世界的行为规律。
在量子力学中,对称性与守恒定律是两个非常重要的概念。
本文将深入探讨量子力学中的对称性与守恒定律,并分析它们在物理学中的应用。
首先,让我们来了解一下对称性在量子力学中的意义。
对称性是指某个系统在某种变换下保持不变的性质。
在量子力学中,对称性扮演着非常重要的角色,它不仅能够帮助我们理解物理现象,还能够简化问题的求解过程。
量子力学中常见的对称性包括平移对称性、旋转对称性和时间平移对称性等。
平移对称性是指系统在空间中的平移下保持不变。
在量子力学中,平移对称性导致了动量的守恒定律。
根据量子力学的基本原理,一个粒子的动量是与其波函数的相位相关的。
如果系统具有平移对称性,那么它的波函数在空间平移下不发生变化,从而导致动量守恒。
这一定律在许多物理现象中都得到了验证,如粒子在势场中的运动以及粒子的碰撞等。
旋转对称性是指系统在空间中的旋转下保持不变。
在量子力学中,旋转对称性导致了角动量的守恒定律。
角动量是描述物体旋转状态的物理量,它与系统的对称性密切相关。
如果系统具有旋转对称性,那么它的波函数在空间旋转下不发生变化,从而导致角动量守恒。
这一定律在原子物理学中得到了广泛应用,如电子在原子轨道中的运动以及原子核的自旋等。
时间平移对称性是指系统在时间平移下保持不变。
在量子力学中,时间平移对称性导致了能量的守恒定律。
能量是系统的重要属性,它与系统的稳定性和演化规律密切相关。
如果系统具有时间平移对称性,那么它的波函数在时间平移下不发生变化,从而导致能量守恒。
这一定律在许多物理过程中得到了验证,如粒子的衰变过程以及能量传递等。
除了上述常见的对称性与守恒定律外,量子力学中还存在一些特殊的对称性与守恒定律。
例如,粒子统计对称性与粒子数守恒定律是量子力学中的重要概念之一。
根据粒子的统计性质,量子力学将粒子分为玻色子和费米子两类。
玻色子遵循玻色-爱因斯坦统计,而费米子遵循费米-狄拉克统计。
理论物理中对称性与守恒定律的关系在理论物理中,对称性与守恒定律是两个核心概念。
对称性描述了系统在某些变换下保持不变的性质,而守恒定律则说明了系统在各种变化中某些物理量的不变性。
这两个概念之间存在着密切的关系,对称性的存在导致了守恒定律的存在,反之亦然。
本文将深入探讨对称性与守恒定律的关系。
首先,让我们来了解对称性的概念。
对称性可以简单地理解为某种变换下系统保持不变的性质。
在物理学中,常见的对称性有平移对称性、旋转对称性、时间平移对称性和粒子对称性等。
平移对称性指的是系统在空间中的平移下保持不变,旋转对称性指的是系统在空间中的旋转下保持不变,时间平移对称性指的是系统在时间上的平移下保持不变,而粒子对称性指的是系统在粒子交换下保持不变。
对称性在物理学中起着非常重要的作用。
与对称性相关联的是守恒定律。
守恒定律描述了系统在各种变化中某些物理量守恒的性质。
守恒定律可以用数学表达式表示为:某一物理量的变化率等于该物理量进入与离开系统的流量之差。
根据对称性的不同,我们可以得到不同的守恒定律。
首先,根据时间平移对称性,我们可以得到能量守恒定律。
能量守恒定律指的是系统的能量在时间上保持不变。
这是因为系统的物理规律在时间上的不变性导致的。
无论系统中发生了怎样的能量转化,总能量的变化率始终为零,能量守恒得到维持。
其次,根据空间平移对称性,我们可以得到动量守恒定律。
动量守恒定律指的是系统的动量在空间上保持不变。
这是因为系统的物理规律在空间上的不变性导致的。
无论系统中的物体如何运动,总动量的变化率始终为零,动量守恒得到维持。
此外,根据空间旋转对称性,我们可以得到角动量守恒定律。
角动量守恒定律指的是系统的角动量在空间上保持不变。
这是因为空间旋转对称性导致的。
无论系统中的物体如何旋转,总角动量的变化率始终为零,角动量守恒得到维持。
最后,根据粒子对称性,我们可以得到电荷守恒定律。
电荷守恒定律指的是系统中的总电荷量在粒子交换下保持不变。
对称性与守恒律物理规律是分层次的,有的只对某些具体事物适用,如胡克定律只适用于弹性体;有的在一定范畴内成立,如牛顿定律适用于一切低速运动的宏观物体;有的如能量、动量守恒等守恒律,则在所有领域的自然界起作用。
后者属于自然界更深层次、最为基本的规律。
而守恒律和对称性有紧密联系。
了解对称性的概念、规律及其分析方法,对于深入地认识自然有重要意义。
一、什么是对称性对称的概念日常生活中就有,如人体外部器官的左右对称,紫禁城建设布局的东西对称,不带任何标记的球的中心对称等。
对称性的定义如下。
若某个体系(研究对象)经某种操作(或称变换)后,其前后状态等价(相同),则称该体系对此操作具有对称性,相应的操作称为对称操作。
简言之,对称性就是某种变换下的不变性。
二、物理学中几种常见的(对称)变换1.空间变换1)平移:即对位矢作的变换,相应的对称性谓之平移对称性。
例如,一个不带任何标记的无限大平面,对沿平面的任意平移具有对称性,而当此平面上均匀布满方格时,则对沿平面的特定方位(如边长或对角线方位)平移某个长度的整数倍具有对称性。
2)转动:绕某定点或轴线的转动前述球的中心对称,就是指球对绕球心的任意旋转对称,通常就称之为球对称。
一圆柱体,对绕其中心轴旋转任一角度状态不变,即具有旋转轴对称……3)镜像反射(反演):俗称照镜子。
指对镜面作物像变换。
紫禁城建筑的东西对称,就是以天安门中轴面(南北竖直面)为镜面的镜像对称。
●物理矢量的镜面反射——极矢量和轴矢量按镜面反射时,矢量物像的方向之间的关系,物理矢量分两类。
一类,以位移为例,其镜像为,如图1(a)所示。
它们平行于镜面的分量方向相同,垂直于镜面的分量的方向相反,这类矢量叫极矢量。
,,等都是极矢量。
另一类矢量,如图1(b)中右侧所示一沿圆轨道运动的质点的角速度。
保持角速度方向与轨道旋向成右手关系的规定不变,则其镜像为左侧的。
和沿镜面的平行分量反向,而垂直分量方向相同。
这类矢量叫轴矢量,又称赝矢量。
量子力学中的对称性与守恒定律量子力学是描述微观世界的物理学理论,它主要研究微观粒子的行为和性质。
在量子力学中,对称性和守恒定律是十分重要的概念,它们不仅帮助我们理解微观世界的规律,还对于解释和预测自然现象都起到了关键作用。
本文将对量子力学中的对称性与守恒定律进行论述。
1. 对称性在量子力学中的作用对称性在物理学中具有重要的地位,它可以帮助我们理解自然界中的各种现象。
在量子力学中,对称性可以通过算符的变换来描述。
对称性的存在意味着系统在某些变换下保持不变,这些变换可以是平移、旋转、粒子交换等。
不同的对称性对应着不同的物理规律和守恒量。
2. 空间对称性与动量守恒定律空间平移对称性是量子力学中的重要对称性之一。
根据诺特定理,一个系统的平移不变性对应着动量的守恒,即动量守恒定律。
在量子力学中,动量被表示为动量算符,根据平移算符的性质,能量本征态同时也是动量本征态,从而推导出动量守恒的数学表达式。
3. 时间对称性与能量守恒定律时间平移对称性是量子力学中另一个重要的对称性。
根据诺特定理,一个系统的时间平移不变性对应着能量的守恒,即能量守恒定律。
在量子力学中,能量被表示为能量算符,根据时间平移算符的性质,能量本征态同时也是时间本征态,从而推导出能量守恒的数学表达式。
4. 粒子交换对称性与电荷守恒定律粒子交换对称性是量子力学中独特的对称性。
根据粒子交换的性质,不同种类的粒子在交换后会得到正负符号不同的波函数。
通过对称性的研究,我们可以得出守恒定律,例如电荷守恒定律。
在量子力学中,电荷被表示为电荷算符,根据粒子交换算符的性质,电荷守恒可以被推导出来。
5. 空间反演对称性与正负宇称守恒空间反演对称性是又一种重要的对称性。
根据空间反演的性质,物理过程在空间反演后会得到相反的结果。
通过对称性的研究,我们可以得出守恒定律,例如正负宇称守恒。
正负宇称守恒与粒子的手性和反粒子的存在有关,通过对称性的分析可以得到这一守恒定律的数学表达式。
物理学中的对称性原理物理学中的对称性原理是指在自然界中存在着各种对称性,并且这些对称性对于物理定律的描述和解释起着重要的作用。
对称性原理是物理学中的基本原理之一,它帮助我们理解和解释了许多重要的现象和规律。
一、空间对称性空间对称性是指物理系统在空间变换下保持不变。
在三维空间中,常见的空间对称性有平移对称性、旋转对称性和镜像对称性。
1. 平移对称性:物理系统在空间平移下保持不变。
例如,一个自由粒子在空间中运动时,其动能和势能在空间平移下保持不变。
2. 旋转对称性:物理系统在空间旋转下保持不变。
例如,一个均匀的圆盘在绕其对称轴旋转时,其物理性质保持不变。
3. 镜像对称性:物理系统在空间镜像变换下保持不变。
例如,一个球在经过镜像变换后,其形状和物理性质保持不变。
二、时间对称性时间对称性是指物理系统在时间反演下保持不变。
时间反演是指将时间t变为-t,即将物理系统的演化方向反转。
时间对称性原理表明,物理定律在时间反演下保持不变。
1. 动力学时间对称性:物理系统的演化方程在时间反演下保持不变。
例如,牛顿第二定律F=ma在时间反演下仍然成立。
2. 热力学时间对称性:热力学系统的热平衡状态在时间反演下保持不变。
例如,一个封闭的热力学系统在达到热平衡后,其热平衡状态在时间反演下保持不变。
三、粒子对称性粒子对称性是指物理系统在粒子变换下保持不变。
粒子变换是指将一个粒子变为另一个粒子,例如将一个电子变为一个中子。
粒子对称性原理表明,物理定律在粒子变换下保持不变。
1. 电荷守恒:电荷在粒子变换下保持守恒。
例如,一个粒子和其反粒子的电荷之和为零。
2. 弱力相互作用:弱力相互作用在粒子变换下保持不变。
例如,一个粒子在弱力相互作用下可以转变为另一种粒子。
四、规范对称性规范对称性是指物理系统在规范变换下保持不变。
规范变换是指改变物理系统的规范场,例如改变电磁场的规范。
规范对称性原理在量子场论中起着重要的作用。
1. 电磁规范对称性:电磁场的规范变换不改变物理系统的物理性质。
物理学中的对称性原理在物理学中,对称性原理是一项非常重要的基础理论,它在描述自然界中各种物理现象和规律时起着至关重要的作用。
对称性原理是指在物理学中,系统的性质在某种变换下保持不变的性质。
这种不变性可以帮助我们理解和预测自然界中发生的各种现象,从微观粒子到宏观宇宙,对称性原理都贯穿其中。
一、空间对称性空间对称性是指系统在空间平移、旋转或镜像变换下保持不变的性质。
在物理学中,空间对称性是非常重要的,因为它可以帮助我们理解空间中的各种物理规律。
例如,牛顿定律在空间平移下是不变的,这意味着物体的运动不受空间位置的影响。
另外,电磁场的麦克斯韦方程组也具有空间对称性,这表明电磁场的性质在空间变换下保持不变。
二、时间对称性时间对称性是指系统在时间平移下保持不变的性质。
在经典力学中,牛顿定律具有时间对称性,这意味着物体的运动不受时间的影响。
另外,热力学第二定律也具有时间对称性,这表明热力学系统在时间变换下保持不变。
三、粒子对称性粒子对称性是指系统在粒子变换下保持不变的性质。
在粒子物理学中,粒子对称性是非常重要的,因为它可以帮助我们理解粒子之间的相互作用。
例如,电荷守恒定律表明系统在电荷变换下保持不变,这意味着电荷是守恒的。
另外,弱相互作用的手性对称性也是粒子对称性的一个重要例子。
四、规范对称性规范对称性是指系统在规范变换下保持不变的性质。
在现代物理学中,规范对称性是描述基本相互作用的重要工具。
例如,电磁相互作用和强相互作用都可以通过规范对称性来描述。
规范对称性的破缺可以导致粒子获得质量,从而形成物质的结构。
五、对称性破缺在物理学中,对称性破缺是指系统在某些条件下失去对称性的现象。
对称性破缺可以导致一些新的物理现象的出现,例如超导现象和弱相互作用的手性破缺。
对称性破缺也是现代物理学中一个重要的研究课题,它可以帮助我们理解自然界中复杂的现象和规律。
总结起来,对称性原理在物理学中扮演着非常重要的角色,它帮助我们理解自然界中的各种现象和规律。
对称性与守恒定律在物理学中,对称性与守恒定律是两个重要的概念。
对称性指的是物理系统在某种变换下保持不变的性质,而守恒定律则是指物理量在时间或空间上的改变保持不变的规律。
这两个概念之间有着密切的联系,深入理解它们对于解释和预测自然界的现象至关重要。
一、对称性对称性在物理学中具有重要作用,它揭示了自然界普遍存在的规律和原则。
在物理学中,我们常常研究的是物理系统在某种变换下的行为。
如果系统在这种变换下保持不变,我们就说它具有对称性。
最常见的对称性是空间对称性,即物理系统在空间变换下保持不变。
例如,我们在研究一个孤立的粒子时,发现它在不同的空间位置上的行为是相同的。
这表明粒子具有平移对称性。
此外,还有旋转对称性。
许多自然现象在旋转变换下保持不变,这意味着它们具有旋转对称性。
例如,地球的自转使得我们一天之内所经历的自然现象没有明显差异,这是因为地球具有旋转对称性。
时间对称性是另一个重要的对称性概念。
物理系统在时间变换下保持不变,意味着它们具有时间对称性。
通常,我们假设自然界在时间上是均匀的,这意味着物理法则在时间上保持不变。
二、守恒定律守恒定律是物理学中的核心概念之一。
它指出,在某些条件下,特定的物理量在时间或空间上的改变保持不变。
最经典的守恒定律是能量守恒定律。
能量是宇宙中最基本的物理量之一,它在物理系统中的总量是不变的。
虽然能量可以在不同形式之间转化,但总能量的大小保持不变。
此外,动量守恒定律也是非常重要的。
动量是物体运动的属性,它在某些条件下保持不变。
例如,在一个封闭系统中,如果没有外力的作用,总动量保持不变。
其他重要的守恒定律包括角动量守恒定律、电荷守恒定律、线性动量守恒定律等。
每一个守恒定律都对应着自然界中某种物理量的守恒规律。
三、对称性与守恒定律的关系对称性与守恒定律之间存在着密切的联系。
根据诺特定理的基本思想,对称性给出了守恒定律的表达形式。
当物理系统具有某种对称性时,就会出现一个与该对称性相对应的守恒量。
对称性和守恒定律按照对称的定义来讲,对称就是指物体相对而又相称,或者说它们相仿,相等。
所谓对称性是指:某种变化下的不变性。
自然界中的事物的对称性表现在两方面。
第一:物体的形状或几何形体的对称性。
例如:五角星的旋转对称,正方体的中心对称性。
这是根据对称性的定义,我们使五角星和正方体都绕它们的中心旋转180°,在这样的变换下,变换后图形具有不变性。
第二:事物进程或物理规律的对称性。
所谓物理规律的对称性是指:物理规律在某种变换下的不变性。
例如:一个物体做平抛运动,水平初速度为V,抛出时离水平地面的高度为H,空气阻力忽略不计。
在其他外部条件都相同的情况下,在不同的地方使该物体做如上所述的运动,该物体的运动状况是否相同呢?我们知道,平抛运动可以看成两种运动的合成:水平方向上是匀速直线运动,竖直方向是自由落体运动。
在其他条件相同的情况下,水平方向上都是以速度V作匀速直线运动。
在竖直方向上,下落的时间可以由公式T=(g为重力加速度)求出,我们知道重力加速度在不同的地方是不相同的,也就是说上述例子中的物体在不同地方的下落时间是不相同的。
这就说明了自由落体运动在不同的地方并不具有不变性,但是,我们不可否认的是下落时间和高度以及加速度它们之间的相互关系是并不会因为地点的不同而不相同,所以它的物理规律始终是保持不变的。
对物质运动基本规律的探索中,对称性和守恒定律的研究占有重要的地位。
从历史发展过程来看,无论是经典物理学还是近代物理学,一些重要的守恒定律常常早于普遍的运动规律而被认识。
质量守恒、能量守恒、动量守恒、电荷守恒就是人们最早认识的一批守恒定律。
它们的出现也不是偶然的,而是因为物理规律具有多种对称性的必然结果。
这些守恒定律的确立为后来认识普遍运动规律提供了线索和启示。
物理学中关于对称性探索的一个重要进展是建立诺特定理,定理指出,如果运动定律在某一变换下具有不变性,必相应地存在一条守恒定律。
简单的说就是:物理定律的一种对称性,对应地存在一条守恒定律。
对称性与守恒律前面介绍的能量、动量和角动量守恒定律,都是在牛顿定律的基础上推导出来的。
但这些守恒定律比牛顿定律有更广泛的适用范围,这说明这些守恒定律有着更普遍更深刻的基础。
现代物理学已经确认这些守恒定律是客观物质世界对称性的反映。
对称性的概念最初来源于生活。
在大自然中对称性随处可见,植物的叶子几乎都是左右对称的,六角形的雪花也是对称的,几乎所有动物的形体、人体也都是对称的。
在艺术、建筑等领域中,也存在广泛的对称性。
在科学中对称性的概念是逐步发展的,至今它已具有十分广泛的含义。
下面简单介绍一下对称性的普遍定义。
我们把所讨论的对象,称为系统。
同一系统可以处于不同的状态,这不同的状态可能是等价的,也可能是不等价的。
例如,设想有一个圆球,这是几何学中理想的球,如果把球绕通过球心的任意轴转动一下,那么这个球就处于不同的状态,这些状态看上去没有任何区别,我们说这些状态都是等价的。
如果在球面上打一个点作为记号,再转动这个球,球上的点在空间的方位不同,这些状态就不同,因此对于包括这个记号的系统而言,不同的状态是不等价的。
把系统从一个状态变到另一个状态的过程称作变换,或者称给系统一个“操作”。
德国数学家魏尔在1951年提出了关于对称性的普遍定义:如果一个操作使系统从一个状态变到另一个与之等价的状态,或者说,状态在此操作下不变,我们就说该系统对这一操作是对称的,而这个操作就称为该系统的一个对称操作。
由于变换或操作方式的不同,可以有各种不同的对称性。
例如平移、转动、镜像反射、时空坐标的改变、尺度的放大缩小等都可视为操作。
将对称性概念应用于物理学中,研究对象不仅有图形,还有物理量和物理定律等。
例如质点的加速度是一个物理量,伽利略变换可看作一个对称操作,因为经伽利略变换后加速度保持不变,所以质点的加速度对伽利略变换的不变性也可称作加速度对伽利略变换具有对称性。
容易证明,牛顿第二定律经伽利略变换后保持不变,因而牛顿第二定律作为一条规律对伽利略变换具有对称性。
在现行的普通物理教材中,力学中的三大守恒定律,即动量守恒定律、动量矩守恒定律和机械能守恒定律。
现代物理学业已证明这些守恒定律是和时空对称性相联系的:动量守恒定律与空间平移对称性相联系;动量矩守恒定律与空间转动对称性相联系;能量守恒定律与时间平移对称性相联系。
由上述对称性可导出相应的守恒定律,进一步导出牛顿运动定律。
动量矩守恒定律,又称角动量守恒定律。
指的是根据动量矩定理推论,当合外力矩为0时,其动量矩保持不变。
表述动量矩守恒条件的定律。
质点不受力或作用力对某固定点(或轴)之矩始终等于零时,该质点对该点(或轴)的动量矩保持不变。
质点系所受外力对某固定点(或轴)之矩的和始终等于零时,该质点系对该点(或轴)的动量矩保持不变。
例如行星所受太阳引力始终指向太阳中心,故如不计其他星体的引力,行星对太阳中心的动量矩守恒
一个系统不受外力或所受外力之和为零,这个系统的总动量保持不变,这个结论叫做动量守恒定律。
1.动量守恒定律是自然界中最重要最普遍的守恒定律之一,是一个实验规律,也可用牛顿第三定律结合动量定理推导出来。
2.相互间有作用力的物体系称为系统,系统内的物体可以是两个、三个或者更多,解决实际问题时要根据需要和求解问题的方便程度,合理地选择系统。
物理学中的对称性原理在物理学中,对称性原理是一项重要的基本原理,用于描述自然界中的各种现象和规律。
对称性原理是物理学理论的基石之一,对于研究物质、空间和时间的运动和变化具有重要意义。
本文将从对称性的概念入手,详细介绍物理学中的对称性原理及其应用。
一、对称性的概念在物理学中,对称性是指对象在某种变换下保持不变或者变换后具有相似的性质。
常见的对称性包括平移对称性、旋转对称性和反射对称性。
物理学家将对称性理论发展为一种强大的工具,用以揭示自然界中的各种规律和定律。
二、空间对称性空间对称性是指物理系统在空间中的各个点上具有相同的性质或规律。
著名的空间对称性包括平移对称性、旋转对称性和镜像对称性。
平移对称性指物理系统在不同空间位置上具有相同的性质,旋转对称性指物理系统在旋转变换下保持不变,而镜像对称性则指物理系统具有对称的镜像关系。
空间对称性的研究揭示了物质的宏观和微观特性,例如晶体的周期性结构、亚原子粒子的自旋等。
三、时间对称性时间对称性是指物理系统在时间上正反演变换下保持不变或者变换后具有相似的性质。
基于时间对称性的物理规律可以描述物理过程在时间上的演变和对称性。
例如,质心分析与拉格朗日力学中的哈密顿力学形式就是基于时间对称性的。
时间对称性的研究对于理解宇宙的演化、热力学过程等方面有重要意义。
四、对称性的守恒定律在物理学中,对称性守恒定律是对称性原理的直接应用。
根据诺特定理,对应于连续对称性的物理量都具有相应的守恒定律。
例如,动量守恒定律是由空间平移对称性导出的,角动量守恒定律是由空间旋转对称性导出的,而能量守恒定律则是由时间平移对称性导出的。
对称性守恒定律使得我们可以根据系统的对称性来推断其中所包含的物理量的守恒性。
五、对称性破缺尽管对称性是自然界中重要的规律之一,但在一些情况下,对称性是被破缺的。
对称性破缺现象可以解释物体和现象的不完美性质。
例如,水滴的形状不是完全球对称的、晶体中原子的位置略有偏移等。
对称性和守恒定律对称性和守恒定律是物理学中两个基本的概念,它们在解释和描述自然现象中起着重要的作用。
本文将探讨对称性和守恒定律的定义、原理以及它们在不同领域中的应用。
一、对称性对称性是指系统在变换下具有不变性或不变性对称的性质。
在物理学中,对称性是研究自然规律的基础之一。
常见的对称性包括平移对称、旋转对称和镜像对称。
1. 平移对称性平移对称性是指系统在平移变换下保持不变。
例如,在空间中的物体在平移变换下,其性质和状态保持不变。
2. 旋转对称性旋转对称性是指系统在旋转变换下保持不变。
例如,地球在自转时保持不变的物理规律。
3. 镜像对称性镜像对称性是指系统在镜像变换下保持不变。
例如,物体的左右对称性。
对称性在物理学中有着广泛的应用。
它可以帮助我们预测和解释自然现象,并推导出物理方程与定律。
二、守恒定律守恒定律是指在某个系统中,某种物理量的总量在时间变化过程中保持不变。
这些物理量可以是能量、动量、角动量等。
1. 质量守恒定律质量守恒定律是指在一个系统中,质量的总量在任何变化过程中保持不变。
根据爱因斯坦的质能方程,质量可以转化为能量,反之亦然。
2. 动量守恒定律动量守恒定律是指在一个孤立系统中,动量的总量在相互作用下保持不变。
这是因为系统中的所有物体在相互作用过程中,它们的动量会相互转移,但总动量的和保持不变。
3. 能量守恒定律能量守恒定律是指在一个孤立系统中,能量的总量在各种能量转换过程中保持不变。
各种能量形式之间可以相互转化,但能量的总量始终保持定值。
守恒定律是自然界中最基本的定律之一。
它们提供了描述和解释自然现象的数学工具和规律,使得我们能够更好地理解和预测自然界的行为。
三、对称性与守恒定律的关系对称性与守恒定律密切相关。
根据诺特定理,对称性与守恒定律之间存在一一对应的关系。
对称性的存在意味着守恒定律的存在,而守恒定律的存在则反映了系统中的对称性。
通过对称性的研究,我们可以预测和发现新的守恒定律。
时空对称性与守恒律
信息系统与管理学院童绥圣 201005019008
摘要:对称性和守恒律是基本的自然法则,人们在长期的科学探索
中发现,自然界的各种对称性与守恒律之间具有相辅相存的密切联系。
关键字:对称性对称操作守恒律
引言
作为物理学的最原始、最基本的概念,对称和守恒各自有着深
刻的思想渊源。
人类对于对称和守恒的认识也是从表面深入到内部,而对称和守恒也经历了从分立走向综合的漫长发展历程。
特别是在
现代物理学中,对称性和守恒律对科学家来说始终具有非凡的吸引力,是一个非常有趣和深刻的话题。
在探索千变万化、纷繁复杂的
自然现象的普遍规律的过程中,守恒量与守恒定律是物理学家们长
期倾心关注的议题。
现代物理学研究表明,自然界中的守恒定律与
相应的对称性是密切相关的。
因此,认识现代物理学对称性的深刻
内涵,明确对称性与守恒律之间的密切联系,对于探究自然规律、
揭示宇宙奥秘是十分重要的。
对称和对称操作
德国数学家魏尔在1951年给对称性的普遍的严格定义:对一个
事物进行一次变动或操作,如果经过此操作后,该事物完全复原,
则称该事物对所经历的操作是对称的,而此操作就叫做对称作.由
于操作(变换)方式不同可以有若干种不同的对称性。
(1)空间反演操作与镜像对称。
空间反演操作类似于物体的平
面镜成像,具有对某一轴线或平面的对称性。
如物理学中的位置矢
量,经过空间反射后,与镜面垂直的分量反向,与镜面平行的分量
则不变。
(2)空间平移对称操作与平移对称.当某一物理规律经过坐标平
移后仍与原规律相同,则为平移对称。
例如,我们将进行物理实验
的全套仪器从北京运到上海,在两地会得到相同的物理定律,即物
理定律具有空间平移对称性。
(3)空间旋转对称操作与转动对称。
例如,太阳绕通过其中心的
任意轴旋转某一角度后,其现状与原状一样。
进行物理实验的仪器
转动某一角度后,所得到的物理规律不会因空间的转动而发生变化,即物理定律具有空间转动对称性。
(4)时间平移对称操作与时间对称。
我们所熟悉的24小时的昼夜
循环,在时间上就表现出具有周期性的平移对称;周期性变化的单
摆只对周期T及其整数倍的时间平移变换对称。
空间对称性和时间对
称性是最基本的、最常见的对称性,统称为时空对称性。
另外,量
子力学中全同粒子互换后,得到具有交换对称性的哈密顿算符,全
同粒子体系波函数的对称性不随时间的平移而改变。
对称性与守恒律
从现代物理学的高度来审视。
对称性和守恒律是基本的自然法则。
在经典力学中,牛顿运动三定律只适用于宏观物体,而动量、
角动量、能量三大守恒定律对宏观物体和微观领域都是普遍成立的。
自然界广泛存在的对称性在物理学中处于十分基本的地位。
上述三
大守恒定律又比牛顿运动定律具有更普遍更深刻的根基。
人们在长
期的科学探索中发现,自然界的各种对称性与守恒律之间具有相辅
相存的密切联系。
例如,下列每一种对称性(即变换不变性)都对应
着一个守恒定律:
空间平移不变性⇔动量守恒定律
空间转动不变性⇔角动量守恒定律
时间平移不变性⇔能量守恒定律
空间反演不变性⇔宇称守恒定律
整体规范不变性⇔电荷守恒定律
下面我们从保守力系的机械能出发,来讨论守恒律与对称操作的关系。
1.机械能对空间坐标平移的对称性与动量守恒
系统机械能函数对空间坐标平移的对称性,将导致系统的动量守恒。
我们讨论两个质点组成的质点系,且各质点只受保守力作用而运动,两质点的动量分别为1p 和2p ,相应的位矢为()1,1,11z y x r
和()2,2,22z y x r ,现令坐标平移r δ,相当与整个系统沿相反方向平移了,r δ这样质点的位矢变成了r r δ+1 和r r δ+2。
对机械能而言,包含了动能和势能,动能是速度的函数,显然不因坐标的平移而改变,因此机械能对平移操作的不变性即体现在体系的势能下不因空间坐标的平移而发生改变。
即可得
=∂∂+∂∂+∂∂+∂∂+
∂∂+∂∂=z z E z z E y y E y y E x x E x x E E p p p p P P P δδδδδδδ212121
0)(212121=⎪⎭⎫ ⎝
⎛∂∂+∂∂+⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+∂∂z E z E y y E y E x x E x E p p P p p P δδ 此处用变分δ而不用微分d ,是因为P E δ完全来自坐标平移,而不是
系统的真实运动,因而r δ可取任意值,且0≠r δ,有因为x,y,z 互相独立,故要满足上式即可得
.0;0;0212121=⎪⎭
⎫ ⎝⎛∂∂+∂∂=⎪⎭⎫ ⎝⎛∂∂+∂∂=⎪⎭⎫ ⎝⎛∂∂+∂∂z E z E y E y E x E x E p p p P P P
从保守力和势函数的关系不难得出:
x P Z P Y P Y p Y p X P
F z E F z E F y E F y E F x E F x E 212121212121212121,;,;,-=∂∂-=∂∂-=∂∂-=∂∂-=∂∂-=∂∂
所以可得:
0;0;0211221122112=+=+=+Z Z Y Y X X F F F F F F
从动量定理可得:
()()(),0;0;0212121=+=+=+dt
p p d dt p p d dt p p d z z y y x x 即 3
212211
21C p p C p p C p p z z y y x x =+=+=+
因而C p p =+21
这正是动量守恒定律的表达式,于是我们从机械能对空间坐标平移操作的对称性导出了动量守恒定律。
2.机械能对空间坐标系转动的对称性与角动量守恒
上述质点组的总机械能函数对空间坐标系旋动的对称性(即是空间各向同性),将导致角动量守恒。
令质点1位于坐标原点且保持静止,质点2的质量为m ,位于运动状态且不受其他力作用。
现对空间坐标系实施一无穷小角位移δθ-,实质上相当于系统沿相反方向转过无穷小角位移δθ(无穷小角位移为矢量)。
显然质点2的位置矢量r 与速度矢量v 均转过δθ,由此可得其相应的增量
,,v v r r ⨯=⨯=δθδδθδ机械能对坐标实施旋转操作的不变性意味着下式成立,即()().02/2=+⨯=+=+=P p P E v mv E v mv E mv E δδθδδδδδ 对第一项()()0=⨯=⨯=v v m v mv E K δθδθδ,因而要求第二项0=P E δ,即坐标系旋转而势能不变,这表明质点m 一定受到有心力的作用,势能仅为位矢r 的函数,即()r E E P P =式。
这样,便从机械能对坐标系旋转的对称性推出角动量守恒律。
3.机械能对时间平移的对称性与机械能守恒
上述质点组的总机械能对时间平移的对称性将导致机械能守恒。
令此质点组的总机械能P K E E E +=,为避免矢量性带来的麻烦,我们
令两质点只作x 方向的一维运动。
则
()()222
22112112/2/x E v m x E v m E p x P x +++=,又因为t δ恒为零, 所以用dt dE 来表示体系的机械能对时间的平移, 即dt dE dt dv v m dt dE dt dv v m dt dE P x x P x x 222211211+++= 因此体系为保守力系,则X P X P F dx dE F dx dE 212
21211,-=-=。
又从牛顿第二定律出发可得dt dv m F dt dv m F x X x X 22211112,==, 所以上式为0222122111211=-+-=dt dv v m dt dv v m dt dv v m dt dv v m dt dE x x x x x x x x , 则C E dt dE ==,0,即P K P K E E E E ''+=+,
这正是机械能守恒定律的表达式,所以体系的机械能若对时间的平移具有对称性,则其机械能守恒。
结束语
对称性在物理学中起着重要的作用,通过对系统所具有的对称性
的分析,可以得到系统相应的守恒量,这些守恒量的存在对于了解
系统的物理状态和性质就十分重要。
在微观世界中,特别是在粒子
物理学中,对称性就更为重要了。
从对称性看世界,看到的可能性
实在太多。
美国物理学家费曼说的好:“可能性实在太多了,它们
之中任何一个都可能是对的,也可能没有一个是对的,因此我们必
须去探索”。
参考文献:
1.物理通报 2011
2.赵凯华,罗蔚茵.力学【M】.北京:高等教育出版社,1995.
3.李承祖,杨丽佳 .大学物理学 .北京:科学出版社,2009 .。