专题12 一次函数的图像和性质(强化-基础)-解析版
- 格式:docx
- 大小:533.00 KB
- 文档页数:20
一次函数的图象与性质(基础)【学习目标】1. 理解一次函数的概念,理解一次函数的图象与正比例函数的图象之间的关系;2. 能正确画出一次函数的图象.掌握一次函数的性质.利用函数的图象解决与一次函数有关的问题,还能运用所学的函数知识解决简单的实际问题.3. 对分段函数有初步认识,能运用所学的函数知识解决实际问题.【要点梳理】要点一、一次函数的定义一般地,形如(,是常数,≠0)的函数,叫做一次函数.要点诠释:当=0时,即,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数,的要求,一次函数也被称为线性函数.要点二、一次函数的图象与性质1.函数(、为常数,且≠0)的图象是一条直线 ;当>0时,直线是由直线向上平移个单位长度得到的; 当<0时,直线是由直线向下平移||个单位长度得到的.2.一次函数(、为常数,且≠0)的图象与性质:y kx b =+y kx =y kx b =+y kx b =+k b k b y kx b =+y kx =k b y kx b =+k b k b y kx b =+y kx =b b y kx b =+y kx =b y kx b =+k b k3. 、对一次函数的图象和性质的影响:决定直线从左向右的趋势,决定它与轴交点的位置,、一起决定直线经过的象限.4. 两条直线:和:的位置关系可由其系数确定:(1)与相交; (2),且与平行;要点三、待定系数法求一次函数解析式一次函数(,是常数,≠0)中有两个待定系数,,需要两个独立条件确定两个关于,的方程,这两个条件通常为两个点或两对,的值.要点诠释:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数中有和两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以和为未知数),解方程组后就能具体写出一次函数的解析式.要点四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的k b y kx b =+k y kx b =+b y k b y kx b =+1l 11y k x b =+2l 22y k x b =+12k k ≠⇔1l 2l 12k k =12b b ≠⇔1l 2l y kx b =+k b k k b k b x y y kx b =+k b k b解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点诠释:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.【典型例题】类型一、待定系数法求函数的解析式1、根据函数的图象,求函数的解析式.【思路点拨】由于此函数的图象过(0,2),因此=2,可以设函数的解析式为,再利用过点(1.5,0),求出相应的值.【答案与解析】利用待定系数法求函数的解析式.解:设函数的解析式为.它的图象过点(1.5,0),(0,2)∴该函数的解析式为. 【总结升华】用待定系数法时需要根据两个条件列二元一次方程组(以和为未知数),解方程组后就能具体写出一次函数的解析式.举一反三:【变式1】已知一次函数的图象与正比例函数的图象平行且经过(2,1)点,则一次函数的解析式为________.【答案】 ;提示:设一次函数的解析式为,它的图象与的图象平行,则,又因为一次函数的图象经过(2,1)点,代入得1=2×2+.解得. ∴ 一次函数解析式为.b 2y kx =+k y kx b =+41.50322k b k b b ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩∴∴423y x =-+k b 2y x =23y x =-y kx b =+2y x =2k =b 3b =-23y x =-【变式2】已知函数y1=2x﹣3,y2=﹣x+3.(1)在同一坐标系中画出这两个函数的图象.(2)求出函数图象与x轴围成三角形的面积.【答案】解:(1)函数y1=2x﹣3与x轴和y轴的交点是(1.5,0)和(0,﹣3),y2=﹣x+3与x轴和y轴的交点是(3,0)和(0,3),其图象如图:(2)设y1=2x﹣3,y2=﹣x+3的交点为点A,可得:,可得:,S△ABC=BC•1=×(3﹣1.5)×1=.类型二、一次函数图象的应用2、电力公司为鼓励市民节约用电,采取按月用电量分段收费的办法,已知某户居民每月应缴电费y(元)与用电量x(度)的函数图象是一条折线(如图所示),根据图象解答下列问题.(1)分别写出当0≤x≤100和x>100时,y与x之间的函数关系式;(2)若该用户某月用电80度,则应缴费多少元?若该用户某月缴费105元,则该用户该月用了多少度电?【思路点拨】(1)对0≤x≤100段,列出正比例函数y=kx,对x≥100段,列出一次函数y=kx+b;将坐标点代入即可求出.(2)根据(1)的函数解析式以及图标即可解答即可.【答案与解析】解:(1)当0≤x≤100时,设y=kx,则有65=100k,解得k=0.65.∴y=0.65x .当x >100时,设y=ax +b ,则有,解得∴y=0.8x ﹣15.(2)当用户用电80度时,该月应缴电费0.65×80=52(元).当用户缴费105元时,由105=0.8x ﹣15,解得x=150.∴该用户该月用电150度.【总结升华】本题主要考查一次函数的应用,关键考查从一次函数的图象上获取信息的能力. 举一反三:【变式】小高从家骑自行车去学校上学,先走上坡路到达点A ,再走下坡路到达点B ,最后走平路到达学校C ,所用的时间与路程的关系如图所示.放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是( )A.14分钟B.17分钟C.18分钟D.20分钟【答案】D ;提示:由图象可知,上坡速度为80米/分;下坡速度为200米/分;走平路速度为100米/分.原路返回,走平路需要8分钟,上坡路需要10分钟,下坡路需要2分钟,一共20分钟.类型三、一次函数的性质3、已知一次函数.(1)当、是什么数时,随的增大而增大;(2)当、是什么数时,函数图象经过原点;(3)若图象经过一、二、三象限,求、的取值范围.【答案与解析】解:(1),即>-2,为任何实数时,随的增大而增大;()()243y m x n =++-m n y x m n m n 240m +>m n y x(2)当、是满足即时,函数图象经过原点; (3)若图象经过一、二、三象限,则,即. 【总结升华】一次函数的图象有四种情况:①当>0,>0时,函数的图象经过第一、二、三象限,的值随的值增大而增大;②当>0,<0时,函数的图象经过第一、三、四象限,的值随的值增大而增大;③当<0,>0时,函数的图象经过第一、二、四象限,的值随的值增大而减小;④当<0,<0时,函数的图象经过第二、三、四象限,的值随的值增大而减小.4、已知点A (4,0)及在第一象限的动点P (x ,y ),且x+y=5,0为坐标原点,设△OPA 的面积为S .(1)求S 关于x 的函数解析式;(2)求x 的取值范围;(3)当S=4时,求P 点的坐标.【思路点拨】(1)根据题意画出图形,由x+y=5可知y=5﹣x ,再由三角形的面积公式即可得出结论;(2)由点P (x ,y )在第一象限,且x+y=5得出x 的取值范围即可;(3)把S=4代入(1)中的关系式求出x 的值,进而可得出y 的值.【答案与解析】解:(1)如图所示,∵x+y=5,∴y=5﹣x ,∴S=×4×(5﹣x )=10﹣2x ;(2)∵点P (x ,y )在第一象限,且x+y=5,∴0<x <5;(3)∵由(1)知,S=10﹣2x ,∴10﹣2x=4,解得x=3,∴y=2,∴P(3,2).m n 24030m n +≠⎧⎨-=⎩23m n ≠-⎧⎨=⎩24030m n +>⎧⎨->⎩23m n >-⎧⎨<⎩y kx b =+k b y kx b =+y x k b y kx b =+y x k b y kx b =+y x k b y kx b =+y x【总结升华】本题考查的是一次函数的性质,根据题意画出图形,利用数形结合求解是解答此题的关键.举一反三:【变式】函数在直角坐标系中的图象可能是( ).【答案】B ;提示:不论为正还是为负,都大于0,图象应该交于轴上方,故选B.【巩固练习】一.选择题1. 已知一次函数的图象如图所示,那么的取值范围是( )A .B .C .D .2.关于一次函数y=﹣2x+3,下列结论正确的是( )A .图象过点(1,﹣1)B .图象经过一、二、三象限C .y 随x 的增大而增大D .当x >时,y <03. 已知一次函数的图象经过第一、二、三象限,则的取值范围是( )A. B. C. D. 4.点P (x ,y )在第一象限内,且x+y=6,点A 的坐标为(4,0).设△OPA 的面积为S ,则下列图象中,能正确反映面积S 与x 之间的函数关系式的图象是( )(0)y kx k k =+≠k k x (1)y a x b =-+a 1a >1a <0a >0a<k x k y +-=)21(k 0>k 0<k 210<<k 21<kA .B .C .D .5.已知直线和直线相交于点(2,),则、的值分别为( ). A .2,3 B .3,2 C .,2 D .,3 6. 如图弹簧的长度与所挂物体的质量关系为一次函数,则不挂物体时,弹簧长度为( ).A .7B .8C .9D .10二.填空题7. 如果直线经过第一、二、三象限,那么 0.8.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x +1图象上的两点,则a 与b 的大小关系是 .9. 已知一次函数的图象与直线平行, 则= .10. 一次函数的图象与轴的交点坐标是_____,与轴的交点坐标是______. 11.已知一次函数y=kx+b (k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则此一次函数的解析式为 .12.一次函数与两坐标轴围成三角形的面积为4,则=________.三.解答题13.已知直线y=kx+3经过点A (﹣4,0),且与y 轴交于点B ,点O 为坐标原点.(1)求k 的值;(2)求点O 直线AB 的距离;(3)过点C (0,1)的直线把△AOB 的面积分成相等的两部分,求这条直线的函数关系式.14.已知与成正比例,且当=1时,= 5y x =12y x b =-+c b c 12-12-cm cm cmcm y ax b =+ab 2y kx =-34y x =+k 113y x =-+x y 2y x b =+b 1-y 1+x x y(1)求与之间的函数关系式;(2)若图象与轴交于A 点,与交于B 点,求△AOB 的面积.15.某风景区集体门票的收费标准是:20人以内(含20人),每人25元;超过20人,超过部分每人10元.(1)写出应收门票费(元)与游览人数(人)之间的函数关系式;(2)利用(1)中的函数关系计算:某班54名学生去该风景区游览时,为购门票共花了多少元?【答案与解析】一.填空题1. 【答案】A ;【解析】由题意知.2. 【答案】D ;【解析】解:A 、当x=1时,y=1.所以图象不过(1,﹣1),故错误;B 、∵﹣2<0,3>0,∴图象过一、二、四象限,故错误;C 、∵﹣2<0,∴y 随x 的增大而减小,故错误;D 、画出草图.∵当x >时,图象在x 轴下方,∴y <0,故正确.故选D .3. 【答案】C ;【解析】由题意知,且>0,解得4. 【答案】C ;【解析】∵点P (x ,y )在第一象限内,且x+y=6,∵y=6﹣x (0<x <6,0<y <6). ∵点A 的坐标为(4,0),∵S=×4×(6﹣x )=12﹣2x (0<x <6).5. 【答案】B ;【解析】点(2,)在直线上,故=2.点(2,2)在直线上,故,解得=3.6. 【答案】D ;【解析】5+=12.5,20+=20,解得=0.5,=10.二.填空题7. 【答案】>【解析】画出草图如图所示,由图象知随的增大而增大,可知>0;图象与轴的交点在轴上方,知>0,故>0.y x x y y x 10,1a a ->>∴120k ->k 210<<k c y x =c 12y x b =-+12b -+=b k b k b k b y x a y x b ab8. 【答案】a >b ;【解析】∵一次函数y=﹣2x +1中k=﹣2,∴该函数中y 随着x 的增大而减小,∵1<2,∴a >b .故答案为:a >b .9. 【答案】3;【解析】互相平行的直线相同.10.【答案】,【解析】令=0,解得=1;令=0,解得=3.11.【答案】y=x+2或y=﹣x+2.【解析】解:∵一次函数y=kx+b (k≠0)图象过点(0,2),∴b=2,设一次函数与x 轴的交点是(a ,0),则×2×|a|=2,解得:a=2或﹣2.把(2,0)代入y=kx+2,解得:k=﹣1,则函数的解析式是y=﹣x+2; 把(﹣2,0)代入y=kx+2,得k=1,则函数的解析式是y=x+2. 故答案是:y=x+2或y=﹣x+2.12.【答案】;【解析】一次函数与轴交点为,与轴交点为(0,),所以,解得=±4.三.解答题13. 【解析】解:(1)依题意得:﹣4k+3=0,解得k=;(2)由(1)得y=x+3,当x=0时,y=3,即点B 的坐标为(0,3).如图,过点O 作OP ⊥AB 于P ,则线段OP 的长即为点O 直线AB 的距离. ∵S △AOB =AB•OP=OA•OB,∴OP===;k ()3,0()0,1x y y x 4±x ,02b ⎛⎫-⎪⎝⎭y b 1||||422b b -=b(3)设所求过点C(0,1)的直线解析式为y=mx+1.S△AOB=OA•OB=×4×3=6.分两种情况讨论:①当直线y=mx+1与OA相交时,设交点为D,则S△COD=OC•OD=×1×OD=3,解得OD=6.∵OD>OA,∴OD=6不合题意舍去;②当直线y=mx+1与AB相交时,设交点为E,则S△BCE=BC•|x E|=×2×|x E|=3,解得|x E |=3,则x E =﹣3,当x=﹣3时,y=x+3=,即E 点坐标为(﹣3,).将E (﹣3,)代入y=mx+1,得﹣3m+1=,解得m=.故这条直线的函数关系式为y=x+1.14.【解析】解:(1)∵与成正比例,∴当=1时,=5解得=2∴(2)A(),B(0,3) =. 15.【解析】解:(1)由题意,得1-y 1+x ()11y k x -=+x y k 23y x =+3,02-12AOB S OA OB ∆=⨯1393224⨯⨯=25(020,)252010(20)(20,x x x y x x x <≤⎧=⎨⨯+->⎩且为整数且为整数)化简得: (2)把=54代入=10+300,=10×54+300=840(元). 所以某班54名学生去该风景区游览时,为购门票共花了840元.甲由B 地到A 地所用时间是:20÷=20分钟, 设甲由B 地到A 地的函数解析式是:,∵点(24,20)与(44,0)在此函数图象上,∴,解得:,∴甲由B 地到A 地函数解析式是:,(2)乙由A 地到B 地的函数解析式是:,即; 根据题意得:, 解得:, 则经过分钟相遇.25(020,)10300(20,x x x y x x x <≤⎧=⎨+>⎩且为整数且为整数)x y x y 1111212⎛⎫+ ⎪⎝⎭y kx b =+2420440k b k b +=⎧⎨+=⎩144k b =-⎧⎨=⎩44y x =-+711212y x ⎛⎫=- ⎪⎝⎭12y x =4412y x y x =-+⎧⎪⎨=⎪⎩883x =883。
初中数学.精品文档如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯专题:一次函数的图像及性质重难点考点一一次函数的图像及性质1.一次函数y=kx+b与y=kx的图像关系(1)平移变换:y=kx------------------------→y=kx+b;(2)作图:通常采用“两点定线”法作图,一般取直线:与y轴的交点(0,b) ,与x轴的交点(-bk,0) ;注意:平移前后两直线,平行直线的系数k ;2.一次函数y=kx+b的图像与性质k b示意图象限增减性k>0 b>0y随x增大而.b<0k<0 b>0y随x增大而.b<0注意:①系数k叫直线的斜率,反映直线的倾斜程度,与直线的增减性有关,即:k>0时直线递增,k<0时直线递减;②常数b叫直线的截距,反映直线与y轴的交点位置,即:b>0时直线交于y正半轴,b<0时直线交于y负半轴.【例1】1.对于y=-2x+4的图象,下列说法正确的是(D) A.经过第一、二、三象限B.y随x的增大而增大C.图象必过点(-2,0) D.与y=-2x+1的图象平行2.若ab<0且a>b,则函数y=ax+b的图象可能是(A) 3.将函数y=-0.5x 的图象向上平移3个单位,得到的函数与x轴、y轴分别交于点A,B,则△AOB 的面积是9 .4.已知一次函数y=kx+2k+3(k≠0)的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为-1 .5.已知一次函数y=(2m-1)x-m+3,分别求下列m的范围:(1)过一、二、三象限;(2)不过第二象限;(3) y随x增大减小.(4)与y正半轴相交.解:(1) 12<m<3;(2) m≥3;(3) m<12;(4) m<3且m≠12.变式训练1:1.点A(x1,y1),B(x2,y2)是一次函数y=kx+2(k<0)图象上不同的两点,若t=(x2-x1)(y2-y1),则( A )A.t<0 B.t=0 C.t>0 D.t≤0 2.如图,在同一坐标系中,一次函数y=mx+n与正比例函数y=mnx (m,n为常数,且mn≠0)的图象可能是( A )3.将直线y=3个单位得到直线y=-3x-n,则实数m= - 3 ,n= -2 .4.已知函数y=abx+a-b的图像经过一、二、四象限,则函数y=ax+b的图像经过一三四象限.5.已知直线l:y=kx+b与直线y=-3x+4平行,且与直线y=-2x-2交y轴于上同一点.(1)直线l:y=kx+b的关系式为y=-3x-2 ;(2)当-3≤x<1时,求直线l的函数值y的取值范围.解:(2)-5<y≤7考点二一次函数关系式的确定1.求一次函数表达式的方法称为:待定系数法.【例2】1.已知y是x的一次函数,下表列出了y与x的部分x …-101…y …1m -5…A.-2.一次函数的图象经过点A(-2,-1),且与直线y=2x+1平行,则此函数的表达式为(B)A.y=x+1 B.y=2x+3 C.y=2x-1 D.y=-2x-5 3.若y-2与x成正比例,且当x=1时,y=6,则y关于x的函数表达式是y=4x+2 .4.已知一次函数图像经过两点A(2,7)、B(m,-5),且与直线y=-2x+1相交于y轴一点C,则m的值是-2 .5.已知某产品的成本是5元/件,每月的销售量y(件)与销售价格x(元/件)成一次函数关系,调查发现,当售价定位30元/件时,每月可售出360件产品,若降价10元,每月可多售出80件.(1)求销售量y与销售价格x的函数关系式;(2)若某月可售出480件产品,求该月的利润.解:(1) y=-8x+600;(2)当y=480,x=15,利润=4800元.变式训练2:1.如图1,两摞相同规格的碗整齐地叠放,根据图信息,则饭碗的高度y(cm)与饭碗数x (个)之间关系式是y=1.5x+4.5 ;图1 图22.如图2,已知直线l1与直线l2相较于点A,点A的横坐标为-1,直线l2与x轴交于点B(-3,0),若△ABO的面积为3,则l1的函数关系式是y=-2x ;l2的函数关系式是y=x+3 .3.已知函数y=kx+b,当自变量x满足-3≤x≤2时,函数值y的取值范围是0≤y≤5,求该函数关系式.解:当k>0时y=x+3;当k<0时y=-x+2;考点三一次函数与方程、不等式【例3】1.如图3,函数y1=2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式2x>ax+3的解集是(A)A.x>1 B.x<1C.x>2 D.x<22.如图是直线y=kx+b的图象,图3初中数学.精品文档根据图上信息填空:(1)方程kx +b =0的解是 x =1 ; 方程kx +b =2的解是 x =0 ;(2)不等式kx +b >0的解集为 x <1 , 不等式kx +b <0的解集为 x >1 ; (3)当自变量x >0 时,函数值y <2, 当自变量x <0 时,函数值y >2;(4)不等式0<kx +b ≤2的解集为 0≤kx +b <1 ; 变式训练3:1.一元一次方程ax -b =0的解为x =-3,则函数y =ax -b 的图象与x 轴的交点坐标是( B ) A .(3,0) B .(-3,0) C .(0,3) D .(0,-3) 2.如图,函数y =ax +b 和y =kx 的交于点P ,根据图象解答:(1)方程ax +b -kx =0的解是 x =-4 ; (2)方程组⎩⎨⎧y =ax +b ,y =kx的解是 ;(3)不等式ax +b<kx 的解集是_ x >-4__;(4)不等式组 的解集为 -4<x <0 .考点四 两个一次函数相交综合应用【例4】如图,直线l 1的解析表达式为y =-3x +3,且l 1与x 轴交于点D ,直线l 2经过点A B ,,直线l 1,l 2交于点C . (1)求点D 的坐标和直线l 2的解析表达式; (2)求△ADC 的面积;(3)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请直接..写出点P 的坐标. 解:(1) D (1,0)和直线l 2:y =32x -6;(2) C (2,-3)和△ADC 的面积4.5; (3)点P 的坐标(6,3).※课后练习1.平面直角坐标系中,将y =3x 的图象向上平移6个单位,则平移后的图象与x 轴的交点坐标为( B ) A .(2,0) B .(-2,0) C .(6,0) D .(-6,0) 2.直线y =kx +b 经过第一、三、四象限,则直线y =bx -k 的图象可能是( C )3.直线y =3(x -1)在y 轴上的截距是-3 ,其图像不过第 二 象限且由直线y = 3x -1 向下平移2单位得到.4.已知直线y =kx +m 与直线y =-2x 平行且经过点P (-2,3),则直线y =kx +m 与坐标轴围成的三角形的面积是 14 .5.若y =ax +2与y =bx +3的交于x 轴上一点,则a b = 23 .6.已知函数y =2x -3,当自变量x 的取值范围是-1<x ≤0, 则函数值y 的取值范围是 -5<y ≤-3 .7.如图1,正比例函数y 1的图象与一次函数y 2的图象交于点A (1,2),两直线与y 轴围成的△AOC 的面积为2,则这正比例函数的解析式为y 1= 2x ,一次函数y 2= -2x +4 . 8.如图2,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得不等式组的解集 x <-3 .图1 图29.某商店购进一批单价为16元/件的电子宠物,销售一段时间后,为了获取更多利润,商店决定提高售价.经试销发现:当按20元/件的价格销售时,每月能卖出360件;当按25元/件的价格销售时,每月能卖出210件.若每月的销售数量y (件)是售价x (元/件)的一次函数,则按28元/件的价格销售时,这个月可卖出____120____件,这个月的利润是___1440___元.10.如图,直线l 1:y=x+1与直线l 2:y=mx+n 相交于点P (1,b ). (1)根据图中信息填空: ①b =2 ; ②方程组的解为;③不等式x+1≤mx+n 的解集为 x ≤1 ;(2)判断直线l 3:y=nx+m 是否也经过点P ? 请说明理由.解:(2)直线l 3:y=nx+m 经过点P . 理由:因为y=mx+n 经过点P (1,2),所以m+n=2,所以直线y=nx+m 也经过点P .11.如图,直线l 1:y 1=2x +1与坐标轴交于A ,C 两点,直线l 2:y 2=-x -2与坐标轴交于B ,D 两点,两直线的交点为点P . (1)求△APB 的面积;(2)利用图象直接写出下列不等式的解集: ①y 1<y 2; ②y 1<y 2≤0. 解:(1)联立l 1,l 2的表达式, 得⎩⎨⎧ y =2x +1,y =-x -2,解得⎩⎨⎧x =-1,y =-1, ∴点P 的坐标为(-1,-1).又∵A (0,1),B (0,-2),∴S △APB =3×12=32.(2)由图可知,①当x <-1时,y 1<y 2. ②-2≤x <-1时,0<y 2≤y 1.12.“十一”期间,小明一家计划租用新能源汽车自驾游.当前,有甲乙两家租车公司,设租车时间为x h ,租用甲公司的车所需要的费用为y 1元,租用乙公司的车所需要的费用为y 2元,他们的租车的情况如图所示.根据图中信息: (1)直接写出y 1与y 2的函数关系式;{02<-<+kx b ax初中数学.精品文档(2)通过计算说明选择哪家公司更划算. 解:(1)y 1=15x +80(x ≥0), y 2=30x (x ≥0).(2)当y 1=y 2时,x =163,选甲乙一样合算;当y 1<y 2时,x >163,选甲公司合算;当y 1>y 2时,x <163,选乙公司合算.。
专题12 一次函数的图像和性质(强化-提高)一、单选题(共40分)1.(本题4分)(2021·河南郑州市·八年级期末)下列问题中,两个变量之间是正比例函数关系的是( )A .汽车以80km/h 的速度匀速行驶,行驶路程(km)y 与行驶时间(h)x 之间的关系B .圆的面积()2cm y 与它的半径(cm)x 之间的关系C .某水池有水315m ,现打开进水管进水,进水速度35m /h ,h x 后水池有水3m yD .有一个边长为x 的正方体,则它的表面积S 与边长x 之间的函数关系【答案】A【分析】根据正比例函数的定义逐个判断即可求解【详解】选项A: y=80x,属于正比例函数,两个变量之间成正比例函数关系,符合题意; 选项B:2y x π=属于二次函数,两个变量之间不是成正比例函数关系,不合题意; 选项C: y=15+5x , 属于一次函数,两个变量之间不是成正比例函数关系,不合题意; 选项D: S=6x 2,属于二次函数,两个变量之间不是成正比例函数关系,不合题意; 故选: A【点睛】本题考查正比例函数的定义,正确理解正比例函数的定义是关键2.(本题4分)(2020·四川成都市·八年级期末)若函数y =(k ﹣3)x+k 2﹣9是正比例函数,则( )A .k≠3B .k =±3C .k =3D .k =﹣3【答案】D【分析】形如(0)y kx k =≠的函数是正比例函数,根据定义解答.【详解】解:∵y =(k ﹣3)x+k 2﹣9是正比例函数,∵k 2﹣9=0,且k ﹣3≠0,解得:k =﹣3,故选:D.【点睛】此题考查正比例函数的定义:形如(0)y kx k =≠的函数是正比例函数,熟记定义是解题的关键.3.(本题4分)(2021·浙江台州市·九年级一模)路程s ,速度v ,时间t 三者之间的关系式为s vt =,当其中一个量是常量时,另外两个变量的函数图象不可能...是( ) A .B .C .D .【答案】D【分析】分s ,v ,t 是常量,确定函数的属性,根据属性判断图像即可【详解】当v 是常量时,s 是t 的正比例函数,A 是可能的,不符合题意;当t 是常量时,s 是v 的正比例函数,B 是可能的,不符合题意;当t 是常量时,v 是s 的正比例函数,D 是不可能的,符合题意;故选D .【点睛】本题考查了反比例函数的图像,正比例函数的图像,熟练掌握各类函数的根本属性是解题的关键.4.(本题4分)(2021·陕西九年级其他模拟)已知点A (a ,m )和点B (﹣a ﹣2,n )都在正比例函数y =﹣3x 的图象上,则m +n 的值为( )A .3B .﹣3C .﹣6D .6【答案】D【分析】 把点A (a ,m )和点B (﹣a ﹣2,n )分别代入y =﹣3x 中,得到m =-3a ,n =3a +6,两式相加求解即可.【详解】∵点A (a ,m )和点B (﹣a ﹣2,n )都在正比例函数y =﹣3x 的图象上,∵m =-3a ,n =3a +6,∵m +n =-3a +3a +6=6,故选D .【点睛】本题考查了正比例函数的图像,熟练掌握图像过点则点的坐标满足函数的解析式是解题的关键.5.(本题4分)(2021·福建三明市·九年级一模)平面直角坐标系中,抛物线23y ax ax c =-+(0a ≠)与直线21y x =+上有三个不同的点()1,A x m ,()2,B x m ,()3,C x m ,如果123n x x x =++,那么m 和n 的关系是( )A .23m n =-B .23m n =-C .25m n =-D .25m n =- 【答案】C【分析】假设A 、B 两点在二次函数图像上,C 点在直线上,然后根据题意及根与系数的关系得到33n x =+,即33x n =-,进而代入直线解析式求解即可.【详解】解:假设A 、B 两点在二次函数图像上,C 点在直线上,∴由根系关系,1233a x x a-+=-=, 33n x ∴=+,33x n ∴=-,∵()3,C x m 在直线21y x =+上,321m x ∴=+,()23125m n n ∴=-+=-.故选C .【点睛】本题主要考查二次函数与一次函数的综合问题,掌握二次函数与一次函数的性质,求出3x 的关系式是解题的关键.6.(本题4分)(2020·陕西西安市·高新一中八年级月考)下列描述一次函数25y x =-+的图象与性质错误的是( )A .点()2.5,0和()1,3都在此图象上B .直线与x 轴的交点坐标是()0,5C .与正比例函数2y x =-的图象平行D .直线经过一、二、四象限【答案】B【分析】把 2.5x =,1x =分别代入一次函数的解析式可判断A 的正误;令0y =可求得直线与x 轴的交点坐标即可判断B 的正误;由于两直线的k 值都等于2-,则两直线平行,可知C 正确;再由k <0,b >0,则直线经过第一、二、四象限,故D 正确.【详解】A 、因为当 2.5x =时,2 2.550y =-⨯+=,当1x =时,2153y =-⨯+=,所以点(2.5,0)、(1,3)在此图象上,所以A 选项的说法正确;B 、令0y =,则 2.5x =,知直线与x 轴的交点坐标为(2.5,0),所以B 选项的说法错误;C 、由于两直线的k 值都等于2-,则两直线平行,所以C 选项的说法正确;D 、因为k <0,b >0,直线经过第一、二、四象限,所以D 选项的说法正确.故选:B .【点睛】本题考查了一次函数的性质,熟知一次函数y=kx+b (k 、b 为常数,k≠0)是一条直线,当k >0,图象经过第一、三象限;当k <0,图象经过第二、四象限;图象与y 轴的交点坐标为(0,b );若两条直线是平行的关系,那么他们的自变量系数相同,即k 值相同,是解答此题的关键.7.(本题4分)(2021·陕西西安市·高新一中九年级二模)将一次函数y =2x +4的图象向右平移后所得直线与坐标轴围成的三角形面积是9,则平移距离是( )A .4B .5C .6D .7【答案】B【分析】直接利用一次函数的图象平移规律得出平移后的解析式,进而根据三角形面积公式得出答案【详解】设平移的距离为k (k >0),则将一次函数y =2x +4向右平移后所得直线解析式为:y =2(x -k )+4=2x -2k +4.易求得新直线与坐标轴的交点为(k -2,0)、(0,-2k +4) 所以,新直线与坐标轴所围成的三角形的面积为:2?2429k k --+÷=,变形得229k -=(), 解得k =5或k =-1(舍去).故选:B .【点睛】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键. 8.(本题4分)(2020·陕西九年级一模)如果函数y =kx ﹣6和y =﹣2x +a 的图象的交点在第三象限,那么k ,a 的取值范围是( )A .k >0,a >﹣6B .k >0,a <﹣6C .k >0,a >6D .k <0,a >6【答案】B【分析】根据各个选项选出草图进行判断是否符合题便可得出最终结论..【详解】解:A .∵k >0,a >﹣6,∵函数y =kx ﹣6和y =﹣2x +a 的图象如图1所示:两直线不交于第三象限,不符合题意,此选项错误;B..∵k>0,a<﹣6,∵函数y=kx﹣6和y=﹣2x+a的图象如图2所示:两直线交于第三象限,符合题意,此选项正确;C.∵k>0,a>6∵函数y=kx﹣6和y=﹣2x+a的图象如图3所示:两直线不交于第三象限,不符合题意,此选项错误;D.∵k<0,a>6,∵函数y=kx﹣6和y=﹣2x+a的图象如图4所示:两直线不交于第三象限,不符合题意,此选项错误;故选:B.【点睛】本题考查了一次函数图象与系数的关系,大致画出函数图象,利用数形结合解决问题是解题的关键.9.(本题4分)(2021·西安市铁一中学九年级其他模拟)把直线y=﹣x+4向下移n个单位长度后,与直线y=﹣12x+3的交点在第二象限,则n的取值范围是()A.1<n<112B.1<n<10C.n>1D.n<7【答案】C直线y =﹣x +4向下平移n 个单位后可得:y =﹣x +4-n ,求出直线y =﹣x +4-n 与直线y =﹣12x +3的交点,再由此点在第二象限可得出n 的取值范围.【详解】解:直线y =﹣x +4向下移n 个单位后可得:y =﹣x +4-n ,联立两直线解析式得: 4132y x n y x =-+-⎧⎪⎨=-+⎪⎩, 解得:222x n y n =-⎧⎨=+⎩, 即交点坐标为(2-2n ,n +2),∵交点在第二象限,∵22020n n -⎧⎨+⎩<>, 解得:n >1.故选:C .【点睛】本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第二象限的点的横坐标小于0、纵坐标大于0.10.(本题4分)(2021·北京九年级专题练习)已知点(1,1)A ,(3,5)B ,在x 轴上的点C ,使得AC BC +最小,则点C 的横坐标为( )A .43B .53C .2D .73【答案】A【分析】作点A 关于x 轴的对称点A ',连接A 'B ,与x 轴的交点即为点C ,连接AC ,则AC +BC 的最小值等于A 'B 的长,利用待定系数法求得直线A 'B 的解析式,即可得到点C 的坐标.解:如图所示,作点A 关于x 轴的对称点A ',连接A B ',与x 轴的交点即为点C , 连接AC ,则AC BC +的最小值等于A B '的长,(1,1)A ,(1,1)A '∴-,设直线A B '的解析式为(0)y kx b k =+≠,把1()1,A '-,(3,5)B 代入得,153k b k b-=+⎧⎨=+⎩, 解得34k b =⎧⎨=-⎩, 34y x ∴=-,当0y =时,43x =, ∴点C 的横坐标为43, 故选:A .【点睛】本题主要考查了待定系数法,轴对称的性质,一次函数图象与坐标轴的交点,以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.二、填空题(共20分)11.(本题5分)(2021·广东茂名市·八年级期末)已知一次函数y kx b =+是正比例函数,且经过一次函数31y x 和24y x =--的交点,则k b +=__________. 【答案】2【分析】先求31y x 和24y x =--的交点坐标,再代入正比例函数y kx =求出k ,结合b=0,可求k b +.【详解】解:∵一次函数y kx b =+是正比例函数,∵0k ≠,0b =由3124y x y x =+⎧⎨=--⎩, 解得12x y =-⎧⎨=-⎩, 一次函数31y x 和24y x =--的交点坐标为:(-1,-2),把(-1,-2)代入y kx =得,2k -=-,解得2k =,∵202k b +=+=,故答案为:2.【点睛】本题考查了两个一次函数图象交点坐标,求正比例函数解析式和正比例函数经过原点,解题关键是求出交点坐标,依据正比例函数的特征求k 和b .12.(本题5分)(2021·四川九年级一模)从0,1,2,3,4这五个数中,随机抽取一个数,作为函数2(5)y m x =-和关于x 的不等式组5210x x m -≥-⎧⎨->⎩中m 的值,恰好使所得函数的图象经过第二、四象限,且不等式组无解的概率为____. 【答案】25 【分析】根据一次函数的图象和性质,不等式组的解集确定m 的取值,进而得出答案.【详解】解:在0,1,2,3,4这五个数中,使函数y =(5-m 2)x 的图象经过第二、四象限,即5-m 2<0的m 的值为3或4,不等式组中5-2x ≥-1的解集为x ≤3,不等式x -m >0的解集为x >m ,要使不等式组无解,此时m ≥3,因此m 的值可以为3或4,所以0,1,2,3,4这五个数中,符合要求的有两个, 因此,相应的概率为25, 故答案为:25. 【点睛】本题考查一次函数的图象和性质,不等式组的解集以及概率的计算,理解概率的意义,掌握一次函数的性质和不等式组的解集是得出正确答案的前提.13.(本题5分)(2020·浙江八年级期末)如图,直线2y x a =-,3y x b =-(a ,b 是整数)分别交x 轴于点A ,B .若线段AB 上只有三个点的横坐标是整数(分别为4,5,6),则有序数对(,)a b 一共有__________对.【答案】12【分析】分A 在B 左边时和A 在B 右边时,两种情况分别列出不等式组,解之,再合并即可.【详解】解:令y=2x -a=0,则2x=a ,x=2a , ∵A (2a ,0), 令y=3x -6=0,则3x=b ,x=3b , ∵B (3b ,0), ∵AB 线段上只有3个点横坐标都是整数,为4,5,6,∵A 在B 左边时, 则34273a b b ⎧<≤⎪⎪⎨⎪≤<⎪⎩,解得:681821a b <≤⎧⎨≤<⎩,∵a ,b 为整数,∵a=7或8,b=18或19或20,∵(a ,b )有2×3=6种可能;A 在B 右边时, 则72343a b b ⎧≤<⎪⎪⎨⎪<≤⎪⎩,解得:1214912a b ≤<⎧⎨<≤⎩, ∵a ,b 为整数,∵a=12或13,b=10或11或12,∵(a ,b )有2×3=6种可能,综上:共有12种可能,故答案为:12.【点睛】本题考查了一次函数的性质,解题的关键是分类讨论,根据坐标为整数得到不等式组. 14.(本题5分)(2020·内蒙古包头市·八年级期中)在同一直角坐标系中,对于以下四个函数①y x 1=-+;①y x 1=+;①()y x 1=-+;①()y 2x 1=-+的图象,下列说法正确的个数是 ___________.(1)①①①三个函数的图象中 ,当12x x >时,12y y >;(2)在x 轴上交点相同的是①和①;(3)①中的点到x 轴的距离比到y 轴的距离都要大1;(4)函数①和①的图象和x 轴围成的图形面积为2.【答案】1【分析】根据一次函数的图象与性质分别对各项进行分析判断即可得到答案.【详解】解:如图,(1)∵∵∵三个函数的图象中 ,当12x x >时,12y y >有0个,故(1)错误;(2)在x 轴上交点相同的是∵∵∵,故(2)错误;(3)由y=x+1可得y -x=1,所以∵中的点到x 轴的距离比到y 轴的距离都要大1,故(3)正确;(4)函数∵和∵的图象和x 轴围成的图形面积为1(11)112⨯+⨯=,故(4)错误; 所以,正确的结论有1个,故答案为:1【点睛】本题主要考查了一次函数的性质与图象:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.由于y=kx+b 与y 轴交于(0,b ),当b >0时,(0,b )在y 轴的正半轴上,直线与y 轴交于正半轴;当b <0时,(0,b )在y 轴的负半轴,直线与y 轴交于负半轴.三、解答题(共90分)15.(本题8分)(2021·重庆南开中学八年级月考)小融同学根据学习函数的经验,对函数|1|y m x x n =-++的图象与性质进行了探究.下表是小融探究过程中的部分信息:请按要求完成下列各小题:(1)该函数的解析式为 ,a 的值为 ;(2)在如图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象;(3)结合函数的图象,解决下列问题:①写出该函数的一条性质: ;①如图,在同一坐标系中是一次函数1y x =-的图象,根据图象回答,当|1|1m x x n x -++<-时,自变量x 的取值范围为 .【答案】(1)213y x x =-+-,1a =(2)详见解析;(3)∵当x >1时,y 随x 的增大而增大(答案不唯一);∵x 的取值范围:0<x <2. 【分析】(1)将x=-3,y=2,x=-2,y=1代入函数|1|y m x x n =-++求出m 、n 的值即可求得函数的解析式,将x=2代入所求函数解析式即可求得a ;(2)先描出各点,再顺次连接各点即可;(3)∵根据图象即可求解(答案不唯一);∵根据图象可知|1|1m x x n x -++<-时即为函数213y x x =-+-的图象在函数y=x -1图象下方部分x 的取值范围.【详解】(1)将x=-3,y=2,x=-2,y=1代入函数|1|y m x x n =-++可得:2=3131212m n m n⎧---+⎪⎨=---+⎪⎩, 整理得:5=433m n m n +⎧⎨=+⎩, 解得:=23m n ⎧⎨=-⎩ ∵函数的解析式为:213y x x =-+-将x=2代入213y x x =-+-可得:221231y =⨯-+-=,即1a =;(2)该函数的图象如图所示:(3)∵由函数图象可知:当x >1时,y 随x 的增大而增大,故答案为:当x >1时,y 随x 的增大而增大(答案不唯一)∵由(2可知:|1|1m x x n x -++<-时,即为函数213y x x =-+-的图象在函数y=x -1图象下方部分∵自变量x 的取值范围为:0<x <2.【点睛】本题考查一次函数图象图象及其性质,一次函数图象上点的坐标特征,利用数形结合的思想,正确画出函数图象是解题的关键.16.(本题8分)(2021·上海九年级二模)在平面直角坐标系xOy 中(如图),已知直线y=﹣12x+2分别与x轴、y轴交于点A、B,一个正比例函数的图象与这直线交于点C,点C的横坐标是1.(1)求正比例函数的解析式;(2)将正比例函数的图象向上或向下平移,交直线y=﹣12x+2于点D,设平移后函数图象的截距为b,如果交点D始终落在线段AB上,求b的取值范围.【答案】(1)32y x;(2)﹣6≤b≤2【分析】(1)先求得C的坐标,然后根据待定系数法即可求得;(2)求得A、B的坐标,把A的坐标代入平移后的直线解析式,求得b的值,根据图象即可求得符合题意的b的取值.【详解】解:(1)把x=1代入y=﹣12x+2得,y=32,∵C(1,32),设正比例函数解析式为y=kx,把C的坐标代入得k=32,∵正比例函数的解析式为y=32 x;(2)直线y=﹣12x+2中,令y=0,则x=4,∵A(4,0),B(0,2),设平移后的直线解析式为y=32x+b,把A(4,0)代入得,32×4+b=0,解得b=﹣6,把B(0,2)代入得,b=2,∵符合题意的b的取值范围是﹣6≤b≤2.【点睛】本题考查了一次函数与正比例函数的交点,一次函数的平移,熟练掌握待定系数法,一次函数平移的规律是解题的关键.17.(本题8分)(2019·广东汕头市·八年级月考)已知:一次函数y=﹣23x+2的图象分别与x轴、y轴交于点A、B.(1)请直接写出A,B两点坐标:A、B(2)在直角坐标系中画出函数图象;(3)若平面内有一点C(5,3),请连接AC、BC,则①ABC是三角形.【答案】(1)(3,0);(0,2).(2)详见解析;(3)等腰直角.【解析】【分析】(1)利用一次函数解析式求得点A、B的坐标;(2)由两点确定一条直线作出图形;(3)根据两点间的距离公式和勾股定理的逆定理解答.【详解】(1)令y=0,则x=3,即A(3,0).令x=0,则y=2,即B(0,2).故答案是:(3,0);(0,2).(2)如图,(3)因为A(3,0)、B(0,2)、C(5,3),∵AB2=32+22=13,BC2=52+12=26,AC2=22+32=13,∵BC2=AB2+AC2,且AB=AC,∵∵CAB=90°,∵∵ABC是等腰直角三角形.故答案是:等腰直角.【点睛】考查了一次函数图象上点的坐标特征,一次函数的图象.解答(3)题时,注意∵ABC是等腰直角三角形,不要只写直角三角形.18.(本题8分)(2021·全国八年级期末)如图,一次函数y=(m﹣3)x﹣m+1图象分别与x轴正半轴、y轴负半轴相交于点A、B.(1)求m的取值范围;(2)若该一次函数的图象向上平移4个单位长度后可得某正比例函数的图象,试求这个正比例函数的解析式.【答案】(1)m>3;(2)y=2x【分析】(1)根据一次函数的图象经过的象限可得m的取值范围;(2)根据图象平移规则“左加右减,上加下减”求得平移后的解析式,然后根据正比例函数的特征求得m值即可解答.【详解】解:(1)如图,一次函数y=(m﹣3)x﹣m+1图象经过第一、三、四象限,∵m﹣3>0,且﹣m+1<0,解得:m>3,即m的取值范围为m>3;(2)将该一次函数的图象向上平移4个单位长度后可得y=(m﹣3)x﹣m+5,由题意得:﹣m+5=0,解得:m=5,∵这个正比例函数的解析式为y=2x.【点睛】本题考查一次函数的图象与系数的关系、一次函数的图象与几何变换,熟练掌握一次函数的图象与性质是解答的关键.19.(本题10分)(2021·安徽合肥市·八年级期末)在平面直角坐标系中,已知直线经过()3,7A -,()2,3B -两点.(1)画出该一次函数的图象,求经过A ,B 两点的直线的解析式;(2)观察图象直接写出0y ≤时x 的取值范围;(3)求这个一次函数的图象与坐标轴所围成的三角形的面积.【答案】(1)y =−2x +1,图像见详解;(2)x≥12;(3)14【分析】 (1)建立平面直角坐标系,描出A (−3,7)、B (2,−3)两点,画直线AB 即可,可设一次函数的表达式为y =kx +b ,进而利用方程组求得k 、b 的值,即可得到函数解析式; (2)由直线在x 轴下方部分所对应的y≤0,进而即可求解;(3)求出直线与x ,y 轴的交点坐标,结合三角形的面积公式,即可求解.【详解】(1)一次函数图像如图所示:设一次函数的表达式为y =kx +b ,由题意,得:3723k b k b -+⎧⎨+-⎩==,解得:21k b ==-⎧⎨⎩, ∵一次函数的表达式为y =−2x +1;(2)令y=0,代入y =−2x +1得:x=12, ∵直线与x 轴的交点坐标为(12,0), ∵直线在x 轴下方部分所对应的y≤0,∵当0y ≤时x 的取值范围:x≥12; (3)令x=0,则y=1,∵直线与y 轴的交点坐标为(0,1),∵一次函数的图象与坐标轴所围成的三角形的面积=1111224⨯⨯=. 【点睛】本题主要考查一次函数的图像和性质以及待定系数法,画出函数图像,理解函数图像上的点的坐标特征,是解题的关键.20.(本题10分)(2019·全国九年级)已知抛物线212y x x c =++与x 轴没有交点。
专题12 一次函数【专题目录】技巧1:一次函数常见的四类易错题技巧2:一次函数的两种常见应用技巧3:一次函数与二元一次方程(组)的四种常见应用【题型】一、正比例函数的定义【题型】二、正比例函数的图像与性质【题型】三、一次函数的定义求参数【题型】四、一次函数的图像【题型】五、一次函数的性质【题型】六、求一次函数解析式【题型】七、一次函数与一元一次方程【题型】八、一次函数与一元一次不等式【题型】九、一次函数与二元一次方程(组)【题型】十、一次函数的实际应用【考纲要求】1、理解一次函数的概念,会画一次函数的图象,掌握一次函数的基本性质.2、会求一次函数解析式,并能用一次函数解决实际问题.【考点总结】一、一次函数和正比例函数的定义【考点总结】二、一次函数的图象与性质【注意】1、确定一次函数表达式用待定系数法求一次函数表达式的一般步骤:(1)由题意设出函数的关系式;(2)根据图象所过的已知点或函数满足的自变量与因变量的对应值列出关于待定系数的方程组;(3)解关于待定系数的方程或方程组,求出待定系数的值;(4)将求出的待定系数代回到原来设的函数关系式中即可求出.2、y=kx+b与kx+b=0直线y=kx+b与x轴交点的横坐标是方程kx+b=0的解,方程kx+b=0的解是直线y=kx+b与x 轴交点的横坐标.3、y=kx+b与不等式kx+b>0从函数值的角度看,不等式kx+b>0的解集为使函数值大于零(即kx+b>0)的x的取值范围;从图象的角度看,由于一次函数的图象在x轴上方时,y>0,因此kx+b>0的解集为一次函数在x 轴上方的图象所对应的x的取值范围.4、一次函数与方程组两个一次函数图象的交点坐标就是它们的解析式所组成的二元一次方程组的解;以二元一次方程组的解为坐标的点是两个二元一次方程所对应的一次函数图象的交点. 【技巧归纳】技巧1:一次函数常见的四类易错题【类型】一、忽视函数定义中的隐含条件而致错1.已知关于x 的函数y =(m +3)x |m +2|是正比例函数,求m 的值. 2.已知关于x 的函数y =kx-2k +3-x +5是一次函数,求k 的值.【类型】二、忽视分类或分类不全而致错3.已知一次函数y =kx +4的图像与两坐标轴围成的三角形的面积为16,求这个一次函数的表达式. 4.一次函数y =kx +b ,当-3≤x≤1时,对应的函数值的取值范围为1≤y≤9,求k +b 的值. 5.在平面直角坐标系中,点P(2,a)到x 轴的距离为4,且点P 在直线y =-x +m 上,求m 的值. 【类型】三、忽视自变量的取值范围而致错6.若等腰三角形的周长是80 cm ,则能反映这个等腰三角形的腰长y(cm )与底边长x(cm )的函数关系的图像是( )7.若函数y =⎩⎪⎨⎪⎧x 2+6(x≤3),5x (x>3),则当y =20时,自变量x 的值是( )A .±14B .4C .±14或4D .4或-148.现有450本图书供给学生阅读,每人9本,求余下的图书本数y(本)与学生人数x(人)之间的函数表达式,并求自变量x 的取值范围. 【类型】四、忽视一次函数的性质而致错9.若正比例函数y =(2-m)x 的函数值y 随x 的增大而减小,则m 的取值范围是( )A .m<0B .m>0C .m<2D .m>210.下列各图中,表示一次函数y =mx +n 与正比例函数y =mnx(m ,n 是常数,且mn≠0)的大致图像的是( )11.若一次函数y =kx +b 的图像不经过第三象限,则k ,b 的取值范围分别为k________0,b________0. 参考答案1.解:因为关于x 的函数y =(m +3)x |m +2|是正比例函数,所以m +3≠0且|m +2|=1, 解得m =-1.2.解:若关于x 的函数y =kx-2k +3-x +5是一次函数,则有以下三种情况:①-2k +3=1,解得k =1, 当k =1时,函数y =kx -2k +3-x +5可化简为y =5,不是一次函数.②x-2k +3的系数为0,即k =0,则原函数化简为y =-x +5,是一次函数,所以k =0.③-2k +3=0,解得k =32,原函数化简为y =-x +132,是一次函数,所以k =32.综上可知,k 的值为0或32.3.解:设函数y =kx +4的图像与x 轴、y 轴的交点分别为A ,B ,坐标原点为O.当x =0时,y =4,所以点B 的坐标为(0,4).所以OB =4.因为S △AOB =12OA·OB =16,所以OA =8.所以点A 的坐标为(8,0)或(-8,0).把(8,0)代入y =kx +4,得0=8k +4,解得k =-12.把(-8,0)代入y =kx +4,得0=-8k +4,解得k =12.所以这个一次函数的表达式为y =-12x +4或y =12x +4.4.解:①若k>0,则y 随x 的增大而增大,则当x =1时y =9,即k +b =9. ②若k<0,则y 随x 的增大而减小, 则当x =1时y =1,即k +b =1. 综上可知,k +b 的值为9或1. 5.解:因为点P 到x 轴的距离为4,所以|a|=4,所以a =±4,当a =4时,P(2,4), 此时4=-2+m ,解得m =6. 当a =-4时,同理可得m =-2. 综上可知,m 的值为-2或6.6.D 7.D8.解:余下的图书本数y(本)与学生人数x(人)之间的函数表达式为y =450-9x ,自变量x 的取值范围是0≤x≤50,且x 为整数. 9.D 10.A 11.<;≥技巧2:一次函数的两种常见应用 【类型】一、利用一次函数解决实际问题 题型1:行程问题1.甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距离y(km )与甲车行驶的时间t(h )之间的函数关系如图所示,则下列结论:①A ,B 两城相距300 km ;②乙车比甲车晚出发1 h ,却早到1 h ; ③乙车出发后2.5 h 追上甲车;④当甲、乙两车相距50 km 时,t =54或154.其中正确的结论有( )A .1个B .2个C .3个D .4个2.甲、乙两地相距300 km ,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA 表示货车离甲地的距离y(km )与时间x(h )之间的函数关系,折线BCDE 表示轿车离甲地的距离y(km )与时间x(h )之间的函数关系,根据图像,解答下列问题:(1)线段CD 表示轿车在途中停留了________h ; (2)求线段DE 对应的函数表达式;(3)求轿车从甲地出发后经过多长时间追上货车.题型2:工程问题3.甲、乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(h )之间的函数图像如图所示.(1)求甲组加工零件的数量y与时间x之间的函数表达式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?题型3:实际问题中的分段函数4.某种铂金饰品在甲、乙两个商场销售.甲标价为477元/g,按标价出售,不优惠;乙标价为530元/g,但若买的铂金饰品质量超过3 g,则超出部分可打八折.(1)分别写出到甲、乙两个商场购买该种铂金饰品所需费用y(元)和质量x(g)之间的函数表达式;(2)李阿姨要买一个质量不少于4 g且不超过10 g的此种铂金饰品,到哪个商场购买合算?5.我国是世界上严重缺水的国家之一.为了增强居民的节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一个月用水10 t以内(包括10 t)的用户,每吨收水费a元;一个月用水超过10 t的用户,10 t水仍按每吨a元收费,超过10 t的部分,按每吨b(b>a)元收费.设一户居民月用水x t,应交水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8 t,应交水费多少元?(2)求b的值,并写出当x>10时,y与x之间的函数表达式.【类型】二、利用一次函数解决几何问题题型4:利用图像解几何问题6.如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C→D 运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图像如图②所示,请回答下列问题:(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,△APD的面积S的最大值为________cm2;(2)求出点P 在CD 上运动时S 与t 之间的函数表达式; (3)当t 为何值时,△APD 的面积为10 cm 2?题型5:利用分段函数解几何问题(分类讨论思想、数形结合思想)7.在长方形ABCD 中,AB =3,BC =4,动点P 从点A 开始按A→B→C→D 的方向运动到点D.如图,设动点P 所经过的路程为x ,△APD 的面积为y.(当点P 与点A 或D 重合时,y =0)(1)写出y 与x 之间的函数表达式; (2)画出此函数的图像.参考答案 1.B 2.解:(1)0.5(2)设线段DE 对应的函数表达式为y =kx +b(2.5≤x≤4.5).将D(2.5,80),E(4.5,300)的坐标分别代入y =kx +b 可得⎩⎪⎨⎪⎧80=2.5k +b ,300=4.5k +b.解得⎩⎪⎨⎪⎧k =110,b =-195.所以y =110x -195(2.5≤x≤4.5).(3)设线段OA 对应的函数表达式为y =k 1x(0≤x≤5). 将A(5,300)的坐标代入y =k 1x 可得300=5k 1, 解得k 1=60.所以y =60x(0≤x≤5). 令60x =110x -195,解得x =3.9.故轿车从甲地出发后经过3.9-1=2.9(h )追上货车.3.解:(1)设甲组加工零件的数量y 与时间x 之间的函数表达式为y =kx ,因为当x =6时,y =360,所以k =60,即甲组加工零件的数量y 与时间x 之间的函数表达式为y =60x(0≤x≤6). (2)a =100+100÷2×2×(4.8-2.8)=300.(3)当工作2.8 h 时共加工零件100+60×2.8=268(件), 所以装满第1箱的时刻在2.8 h 后. 设经过x 1 h 恰好装满第1箱.则60x 1+100÷2×2(x 1-2.8)+100=300,解得x 1=3.从x =3到x =4.8这一时间段内,甲、乙两组共加工零件(4.8-3)×(100+60)=288(件), 所以x>4.8时,才能装满第2箱,此时只有甲组继续加工. 设装满第1箱后再经过x 2 h 装满第2箱. 则60x 2+(4.8-3)×100÷2×2=300,解得x 2=2.故经过3 h 恰好装满第1箱,再经过2 h 恰好装满第2箱. 4.解:(1)y 甲=477x ,y 乙=⎩⎪⎨⎪⎧530x (0≤x≤3),424x +318(x >3).(2)当477x =424x +318时, 解得x =6,即当x =6时,到甲、乙两个商场购买所需费用相同; 当477x<424x +318时,解得x<6,又x≥4,于是当4≤x <6时,到甲商场购买合算; 当477x>424x +318时,解得x>6,又x≤10,于是当6<x≤10时,到乙商场购买合算.5.解:(1)当x≤10时,由题意知y =ax.将x =10,y =15代入,得15=10a ,所以a =1.5.故当x≤10时,y =1.5x.当x =8时,y =1.5×8=12. 故应交水费12元.(2)当x >10时,由题意知y =b(x -10)+15.将x =20,y =35代入,得35=10b +15,所以b =2.故当x >10时,y 与x 之间的函数表达式为y =2x -5.点拨:本题解题的关键是从图像中找出有用的信息,用待定系数法求出表达式,再解决问题. 6.解:(1)6;2;18(2)PD =6-2(t -12)=30-2t ,S =12AD·PD =12×6×(30-2t)=90-6t ,即点P 在CD 上运动时S 与t 之间的函数表达式为S =90-6t(12≤t≤15).(3)当0≤t≤6时易求得S =3t ,将S =10代入,得3t =10,解得t =103;当12≤t≤15时,S =90-6t ,将S =10代入,得90-6t =10,解得t =403.所以当t 为103或403时,△APD 的面积为10 cm 2.7.解:(1)点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数表达式不相同,故应分段求出相应的函数表达式.①当点P 在边AB 上运动,即0≤x <3时, y =12×4x =2x ; ②当点P 在边BC 上运动,即3≤x <7时, y =12×4×3=6; ③当点P 在边CD 上运动,即7≤x≤10时, y =12×4(10-x)=-2x +20. 所以y 与x 之间的函数表达式为 y =⎩⎪⎨⎪⎧2x (0≤x <3),6 (3≤x <7),-2x +20 (7≤x≤10). (2)函数图像如图所示.点拨:本题考查了分段函数在动态几何中的运用,体现了数学中的分类讨论思想和数形结合思想.根据点P 在边AB ,BC ,CD 上运动时所对应的y 与x 之间的函数表达式不相同,分段求出相应的函数表达式,再画出相应的函数图像.技巧3:一次函数与二元一次方程(组)的四种常见应用 【类型】一、利用两直线的交点坐标确定方程组的解1.已知直线y =-x +4与y =x +2如图所示,则方程组⎩⎪⎨⎪⎧y =-x +4,y =x +2的解为( )A .⎩⎪⎨⎪⎧x =3y =1B .⎩⎪⎨⎪⎧x =1y =3C .⎩⎪⎨⎪⎧x =0y =4D .⎩⎪⎨⎪⎧x =4y =02.已知直线y =2x 与y =-x +b 的交点坐标为(1,a),试确定方程组⎩⎪⎨⎪⎧2x -y =0,x +y -b =0的解和a ,b 的值.3.在平面直角坐标系中,一次函数y =-x +4的图像如图所示.(1)在同一坐标系中,作出一次函数y =2x -5的图像;(2)用作图像的方法解方程组⎩⎪⎨⎪⎧x +y =4,2x -y =5;(3)求一次函数y =-x +4与y =2x -5的图像与x 轴所围成的三角形的面积.【类型】二、利用方程(组)的解求两直线的交点坐标4.已知方程组⎩⎪⎨⎪⎧-mx +y =n ,ex +y =f 的解为⎩⎪⎨⎪⎧x =4,y =6,则直线y =mx +n 与y =-ex +f 的交点坐标为( ) A .(4,6) B .(-4,6) C .(4,-6) D .(-4,-6)5.已知⎩⎪⎨⎪⎧x =3,y =-2和⎩⎪⎨⎪⎧x =2,y =1是二元一次方程ax +by =-3的两组解,则一次函数y =a x +b 的图像与y轴的交点坐标是( )A .(0,-7)B .(0,4)C .⎝⎛⎭⎫0,-37D .⎝⎛⎭⎫-37,0 【类型】三、方程组的解与两个一次函数图像位置的关系6.若方程组⎩⎪⎨⎪⎧x +y =2,2x +2y =3没有解,则一次函数y =2-x 与y =32-x 的图像必定( )A .重合B .平行C .相交D .无法确定7.直线y =-a 1x +b 1与直线y =a 2x +b 2有唯一交点,则二元一次方程组⎩⎪⎨⎪⎧a 1x +y =b 1,a 2x -y =-b 2的解的情况是( )A .无解B .有唯一解C .有两个解D .有无数解 【类型】四、利用二元一次方程组求一次函数的表达式8.已知一次函数y =kx +b 的图像经过点A(1,-1)和B(-1,3),求这个一次函数的表达式. 9.已知一次函数y =kx +b 的图像经过点A(3,-3),且与直线y =4x -3的交点B 在x 轴上.(1)求直线AB 对应的函数表达式;(2)求直线AB 与坐标轴所围成的△BOC(O 为坐标原点,C 为直线AB 与y 轴的交点)的面积.参考答案 1.B2.解:将(1,a)代入y =2x ,得a =2.所以直线y =2x 与y =-x +b 的交点坐标为(1,2),所以方程组⎩⎪⎨⎪⎧2x -y =0,x +y -b =0的解是⎩⎪⎨⎪⎧x =1,y =2.将(1,2)代入y =-x +b ,得2=-1+b ,解得b =3. 3.解:(1)画函数y =2x -5的图像如图所示.(2)由图像看出两直线的交点坐标为(3,1),所以方程组的解为⎩⎪⎨⎪⎧x =3,y =1.(3)直线y =-x +4与x 轴的交点坐标为(4,0),直线y =2x -5与x 轴的交点坐标为⎝⎛⎭⎫52,0,又由(2)知,两直线的交点坐标为(3,1),所以三角形的面积为12×⎝⎛⎭⎫4-52×1=34. 4.A5.C6.B7.B8.解:依题意将A(1,-1)与B(-1,3)的坐标分别代入y =kx +b 中,得⎩⎪⎨⎪⎧k +b =-1,-k +b =3,解得⎩⎪⎨⎪⎧k =-2,b =1.所以这个一次函数的表达式为y =-2x +1.9.解:(1)因为一次函数y =kx +b 的图像与直线y =4x -3的交点B 在x 轴上,所以将y =0代入y =4x -3中,得x =34,所以B ⎝⎛⎭⎫34,0, 把A(3,-3),B ⎝⎛⎭⎫34,0的坐标分别代入y =kx +b 中,得⎩⎪⎨⎪⎧3k +b =-3,34k +b =0,解得⎩⎪⎨⎪⎧k =-43,b =1. 则直线AB 对应的函数表达式为y =-43x +1.(2)由(1)知直线AB 对应的函数表达式为y =-43x +1,所以直线AB 与y 轴的交点C 的坐标为(0,1), 所以OC =1,又B ⎝⎛⎭⎫34,0,所以OB =34.所以S △BOC =12OB·OC =12×34×1=38.即直线AB 与坐标轴所围成的△BOC 的面积为38.【题型讲解】【题型】一、正比例函数的定义例1、若一次函数y=(m ﹣3)x+m 2﹣9是正比例函数,则m 的值为_______. 【答案】m=﹣3 【解析】∵y=(m ﹣3)x+m 2﹣9是正比例函数, ∵29030m m -⎧⎨-≠⎩=解得m=-3. 故答案是:-3.【题型】二、正比例函数的图像与性质 例2、若正比例函数12y x =经过两点(1,1y )和(2,2y ),则1y 和2y 的大小关系为( ) A .12y y < B .12y y >C .12y y =D .无法确定【答案】A【分析】分别把点(1,1y ),点(2,2y )代入函数12y x =,求出点1y ,2y 的值,并比较出其大小即可.【详解】∵点(1,1y ),点(2,2y )是函数12y x =图象上的点, ∵112y =,21y =, ∵112<, ∵12y y <. 故选:A .【题型】三、一次函数的定义求参数例3、已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( ) A .()1,2-B .()1,2-C .()2,3D .()3,4【答案】B【分析】先根据一次函数的增减性判断出k 的符号,再将各项坐标代入解析式进行逐一判断即可. 【详解】∵一次函数3y kx =+的函数值y 随x 的增大而减小, ∵k ﹤0,A .当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C .当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意, 故选:B .【题型】四、一次函数的图像例4、若m <﹣2,则一次函数()11y m x m =++-的图象可能是( )A .B .C .D .【答案】D【分析】由m <﹣2得出m +1<0,1﹣m >0,进而利用一次函数的性质解答即可. 【详解】解:∵m <﹣2, ∵m +1<0,1﹣m >0,所以一次函数()11y m x m =++-的图象经过一,二,四象限, 故选:D .【题型】五、一次函数的性质例5、设k 0<,关于x 的一次函数2y kx =+,当12x ≤≤时的最大值是( ) A .2k + B .22k +C .22k -D .2k -【答案】A【分析】利用一次函数的性质可得当x=1时,y 最大,然后可得答案. 【详解】∵一次函数2y kx =+中0k <, ∵y 随x 的增大而减小, ∵12x ≤≤,∵当1x =时,122y k k =⨯+=+最大, 故选:A .【题型】六、求一次函数解析式例6、直线y kx b =+在平面直角坐标系中的位置如图所示,则不等式2kx b +≤的解集是( )A .2x -≤B .4x ≤-C .2x ≥-D .4x ≥-【答案】C【分析】先根据图像求出直线解析式,然后根据图像可得出解集. 【详解】解:根据图像得出直线y kx b =+经过(0,1),(2,0)两点,将这两点代入y kx b =+得120b k b =⎧⎨+=⎩,解得112b k =⎧⎪⎨=-⎪⎩,∵直线解析式为:112y x =-+, 将y=2代入得1212x =-+,解得x=-2,∵不等式2kx b +≤的解集是2x ≥-, 故选:C .【题型】七、一次函数与一元一次方程例7、一次函数3y kx =+(k 为常数且0k ≠)的图像经过点(-2,0),则关于x 的方程()530k x -+=的解为( ) A .5x =- B .3x =-C .3x =D .5x =【答案】C【分析】根据一次函数图象的平移即可得到答案.【详解】解:∵()53y k x =-+是由3y kx =+的图像向右平移5个单位得到的,∵将一次函数3y kx =+的图像上的点(-2,0)向右平移5个单位得到的点的坐标为(3,0) ∵当y=0时,方程()530k x -+=的解为x=3, 故选:C .【题型】八、一次函数与一元一次不等式例8、如图,直线(0)y kx b k =+<经过点(1,1)P ,当kx b x +≥时,则x 的取值范围为( )A .1x ≤B .1≥xC .1x <D .1x >【答案】A【分析】将(1,1)P 代入(0)y kx b k =+<,可得1k b -=-,再将kx b x +≥变形整理,得0bx b -+≥,求解即可.【详解】解:由题意将(1,1)P 代入(0)y kx b k =+<,可得1k b +=,即1k b -=-, 整理kx b x +≥得,()10k x b -+≥, ∵0bx b -+≥, 由图像可知0b >, ∵10x -≤, ∵1x ≤, 故选:A .【题型】九、一次函数与二元一次方程(组)例9、在平面直角坐标系中,O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B ,则∵AOB 的面积为( ) A .2 B .3C .4D .6【答案】B 【分析】根据方程或方程组得到A(﹣3,0),B(﹣1,2),根据三角形的面积公式即可得到结论.【详解】解:在y=x+3中,令y=0,得x=﹣3,解32y xy x=+⎧⎨=-⎩得,12xy=-⎧⎨=⎩,∵A(﹣3,0),B(﹣1,2),∵∵AOB的面积=12⨯3×2=3,故选:B.【题型】十、一次函数的实际应用例10、A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?【答案】(1)y=80x﹣128(1.6≤x≤3.1);(2)货车乙返回B地的车速至少为75千米/小时【分析】(1)先设出函数关系式y=kx+b(k≠0),观察图象,经过两点(1.6,0),(2.6,80),代入求解即可得到函数关系式;(2)先求出货车甲正常到达B地的时间,再求出货车乙出发回B地时距离货车甲比正常到达B地晚1个小时的时间以及故障地点距B地的距离,然后设货车乙返回B地的车速为v千米/小时,最后列出不等式并求解即可.【详解】解:(1)设函数表达式为y=kx+b(k≠0),把(1.6,0),(2.6,80)代入y =kx+b ,得 0 1.680 2.6k bk b =+⎧⎨=+⎩,解得: 80128k b =⎧⎨=-⎩,∵y 关于x 的函数表达式为y =80x ﹣128(1.6≤x≤3.1); (2)根据图象可知:货车甲的速度是80÷1.6=50(km/h ) ∵货车甲正常到达B 地的时间为200÷50=4(小时), 18÷60=0.3(小时),4+1=5(小时), 当y =200﹣80=120 时, 120=80x ﹣128, 解得x =3.1,5﹣3.1﹣0.3=1.6(小时),设货车乙返回B 地的车速为v 千米/小时, ∵1.6v≥120, 解得v≥75.答:货车乙返回B 地的车速至少为75千米/小时.一次函数(达标训练)一、单选题1.已知一次函数4y kx =+经过()11,y ,()22,y ,且12y y <,它的图象可能是( )A .B .C .D .【答案】B【分析】根据一次函数的增减性,可知它的图象可能为B 、C 选项,结合一次函数y=kx +4的图象经过点(0,4),即可得到答案.【详解】∵一次函数y=kx +4经过(1,y 1),(2,y 2)且y 1<y 2, ∵y 随x 的增大而增大,又∵一次函数y =kx +4的图象经过点(0,4), ∵它的图象可能是B 选项, 故选B .【点睛】本题主要考查一次函数的系数与函数图象之间的关系,掌握一次函数系数的几何意义,是解题的关键.2.已知一次函数1y kx =-经过()11,A y -,()22,B y 两点,且12y y >,则k 的取值范围是( ) A .0k > B .0k = C .0k < D .不能确定【答案】C【分析】根据一次函数的增减性可得出结论. 【详解】∵1212,y y -<>, ∵函数y 随x 的增大而减小. ∵k <0, 故选:C .【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数的性质是解答此题的关键. 3.一次函数2y x m =-+的图象经过第一、二、四象限,则m 可能的取值为( ) A.-1 B .34C .0D .1【答案】B【分析】根据一次函数的图象和性质,即可求解.【详解】解:∵一次函数2y x m =-+的图象经过第一、二、四象限, ∵0m >,∵m 可能的取值为34.故选:B【点睛】本题主要考查了一次函数的图象,熟练掌握一次函数()0y kx b k =+≠,当0,0k b >>时,一次函数图象经过第一、二、三象限;当0,0k b ><时,一次函数图象经过第一、三、四象限;当0,0k b <>时,一次函数图象经过第一、二、四象限;当0,0k b <<时,一次函数图象经过第二、三、四象限是解题的关键.4.一次函数31y x =-+的图象经过( )A .一、二、四象限B .一、三、四象限C .一、二、三象限D .二、三、四象限【答案】A【分析】根据一次函数关系中系数符号k <0,b >0解答即可. 【详解】解:∵31y x =-+中0k <, ∵一次函数图象经过第二、四象, ∵ 0b >,∵ 一次函数图象经过一、二、四象限. 故选:A .【点睛】此题考查了一次函数的图象,根据k 和b 的符号进行判断是解题的关键. 5.若23y x b =+-,y 是x 的正比例函数,则b 的值是( ) A .0 B .23-C .23D .32【答案】C【分析】根据y 是x 的正比例函数,可知23=0b -,即可求得b 值. 【详解】解:∵y 是x 的正比例函数, ∵23=0b -, 解得:23b =, 故选:C .【点睛】本题主要考查的是正比例函数的定义,掌握其定义是解题的关键.二、填空题6.请写出一个图象经过点()2,0A 的函数的解析式:______. 【答案】24y x =-(答案不唯一)【分析】写出一个经过点(2,0)的一次函数即可.【详解】解:经过点()2,0A 的函数的解析式可以为24y x =-, 故答案为:24y x =-(答案不唯一).【点睛】本题主要考查了函数图象上点的坐标特征,熟知函数图象上的点一定满足其函数解析式是解题的关键.7.将直线y =2x -1向下平移3个单位后得到的直线表达式为________. 【答案】24y x =-【分析】根据一次函数平移的规律解答.【详解】解:直线y =2x -1向下平移3个单位后得到的直线表达式为y =2x -1-3=2x -4, 即y =2x -4, 故答案为y =2x -4.【点睛】此题考查了一次函数平移的规律:左加右减,上加下减,熟记平移的规律是解题的关键.三、解答题8.某中学积极响应“双减”政策,为了丰富学生的课外活动,激发学生参加体育活动的兴趣,准备购买一批新的羽毛球拍.已知甲、乙两商店销售同一种羽毛球拍,但两个商店的原价和销售方式均不同.在甲商店,无论一次性购买多少支羽毛球拍,一律按原价出售;在乙商店,一次性购买羽毛球拍的数量不超过20支,按原价销售,若一次性购买球拍数量超过20支,超出的部分打八折.设该学校购买了x 支羽毛球拍,在甲商店购买所需的费用为1y 元,在乙商店购买所需的费用为2y 元,1y ,2y 关于x 的函数图像如图所示.(1)分别求出1y ,2y 关于x 的函数解析式. (2)请求出m 的值,并说明m 的实际意义.(3)若该学校一次性购买羽毛球拍的数量超过80支,但不超过120支,到哪家商店购买更优惠? 【答案】(1)142y x =;()()2500204020020x x y x x ⎧≤≤⎪=⎨+>⎪⎩(2)m =100,m 的实际意义是当一次性购买羽毛球球拍的数量100支时,甲、乙商店所需费用相同,都为4200元(3)当80<x <100时,选择甲商店更合算;当x =100时,两家商店所需费用相同;当100<x ≤120时,选择乙商店更合算【分析】(1)根据函数图像设出表达式,利用待定系数法解得即可;(2)根据图像交点,当x >20时,令12y y =,解得x ,y 的值即可;(3)由m 的意义,结合图像,谁的图像靠下谁更合算.(1)由题意,甲商店设11y k x =, ∵184020k =, ∵142k =, ∵1142y x =;乙商店:当0<x≤20时,设22y k x =, ∵2100020k =, ∵250k =, ∵250y x =,当x >20时,()2100020500.84020y x x =+-⨯⨯=+, ∵()()2500204020020x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)当x>20时,令12y y =,即4020042x x +=, ∵x =100,y =4200, ∵m =100,∵m 的实际意义是当一次购买羽毛球球拍的数量100支时,甲、乙商店所需费用相同,都为4200元; (3)由m 的意义,结合图像可知,谁的图像在下谁更合算,当80<x <100时,选择甲商店更合算;当x =100时,两家商店所需费用相同;当100<x ≤120时,选择乙商店更合算.【点睛】本题考查了一次函数的实际应用,解题的关键是掌握一次函数图像的性质.一次函数(提升测评)一、单选题1.一次函数()32y k x k =++-的图象如图所示,()01k -有意义的k 的值可能为( )A .-3B .-1C .-2D .2【答案】B【分析】通过一次函数图象可以得出:3020k k +>⎧⎨->⎩,解得:32k -<<()01k -有意义的条件为:1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且0k ≠.将两个关于k 的解集综合,得到k 的范围是:12k -≤<且0k ≠.根据所求范围即可得出答案选B .【详解】解:由图象得:3020k k +>⎧⎨->⎩,解得:32k -<<()01k -有意义,则1010k k +≥⎧⎨-≠⎩,解得:1k ≥-且1k ≠∴综上所述,k 的取值范围是:12k -≤<且0k ≠.A 、-3不在k 的取值范围内,不符合题意;B 、-1在k 的取值范围内,符合题意;C 、-2不在k 的取值范围内,不符合题意;D 、2不在k 的取值范围内,不符合题意. 故选B .【点睛】本题主要考查知识点为,一次函数图象与一次函数系数的关系、使二次根式有意义的条件,零指数幂中底数的范围.熟练掌握以上知识点,是解决此题的关键.2.已知直线1:24l y x =+与x 轴、y 轴分别交于A ,B 两点,若将直线1l 向右平移m (m >0)个单位得到直线2l ,直线2l 与x 轴交于C 点,若∵ABC 的面积为6,则m 的值为( ) A .1 B .2C .3D .4【答案】C【分析】先求出点B (0,4),可得OB =4,再根据平移的性质,可得AC =m ,再根据∵ABC 的面积为6,即可求解.【详解】解:∵直线1:24l y x =+与x 轴、y 轴分别交于A ,B 两点, 当x =0时,y =4, ∵点B (0,4), ∵OB =4,∵将直线1l 向右平移m (m >0)个单位得到直线2l ,直线2l 与x 轴交于C 点, ∵AC =m ,∵∵ABC 的面积为6, ∵1462m , 解得:m =3. 故选:C .【点睛】本题主要考查了一次函数的性质,一次函数的平移问题,熟练掌握一次函数的图象和性质是解题的关键.3.已知一次函数y =-kx +k ,y 随x 的增大而减小,则在直角坐标系内大致图象是( )A .B .C .D .【答案】C【分析】由于一次函数y =-kx +k (k ≠0),y 随x 的增大而减小,可得-k <0,然后,判断一次函数y =-kx +k 的图象经过的象限即可.【详解】解:∵一次函数y =-kx +k (k ≠0),y 随x 的增大而减小, ∵-k <0,即k >0,∵一次函数y =-kx +k 的图象经过一、二、四象限. 故选:C .【点睛】本题主要考查了一次函数的图象,掌握一次函数y =kx +b 的图象性质: ∵当k >0,b >0时,图象过一、二、三象限; ∵当k >0,b <0时,图象过一、三、四象限; ∵当k <0,b >0时,图象过一、二、四象限; ∵当k <0,b <0时,图象过二、三、四象限.4.在平而直角坐标系中,一次函数32y x m =-+的图像关于直线1y =对称后经过坐标原点,则m 的值为( ) A .1 B .2C .1-D .2-【答案】A【分析】由题意一次函数32y x m =-+与y 轴的交点为(0,2m ),根据点(0,2m )与原点关于直线1y =对称,即可求出答案.【详解】解:根据题意,在一次函数32y x m =-+中, 令0x =,则2y m =,∵一次函数32y x m =-+与y 轴的交点为(0,2m ), ∵点(0,2m )与原点关于直线1y =对称, ∵22m =, ∵1m =; 故选:A .【点睛】本题考查了一次函数的性质,轴对称的性质,解题的关键是掌握一次函数的性质进行解题. 5.甲、乙两自行车运动爱好者从A 地出发前往B 地,匀速骑行.甲、乙两人离A 地的距离y (单位:km )与乙骑行时间x (单位:h )之间的关系如图所示.下列说法正确的是( )A .乙骑行1h 时两人相遇B .甲的速度比乙的速度慢C .3h 时,甲、乙两人相距15kmD .2h 时,甲离A 地的距离为40km 【答案】C【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题. 【详解】解:由图象可知,甲乙骑行1.5h 时两人相遇,故选项A 不合题意; 甲的速度比乙的速度快,故选项B 不合题意;甲的速度为:30÷(1.5-1)=30(km/h ),乙的速度为:30÷1.5=20(km/h ), 3h 时,甲、乙两人相距:30×(3-0.5)-20×3=15(km ),故选项C 符合题意;。
一次函数的性质和图像目录一、函数的定义(一)、一次函数的定义函数。
(二)、正比例函数的定义二、函数的性质(一)、一次函数的性质(二)、正比例函数的性质三、函数的图像(一)、一次函数和正比例函数图像在坐标上的位置(二)、一次函数的图像1、一次函数图像的形状2、一次函数图像的画法(三)、正比例函数的图像1、正比例函数图像的形状2、正比例函数图像的画法3、举例说明正比例函数图像的画法四、k、b两个字母对图像位置的影响K、b两个字母的具体分工是:(一次项系数)k决定图象的倾斜度。
(常数项)b决定图象与y轴交点位置。
五、解析式的确定(一)一个点坐标决定正比,两个点坐标决定一次(二)用待定系数法确定解析式六、两条函数直线的四种位置关系两直线平行,k1= k2,b1≠b2两直线重合,k1= k2,b1=b2两直线相交,k1≠k2两直线垂直,k1×k2=-1(一)两条函数直线的平行(二)两条函数直线的相交(三)两条函数直线的垂直一次函数、反比例函数中自变量x前面的字母k称为比例系数这一节我们要学习正比例函数和一次函数。
一次函数的解析式是y=kx+b,如果当这个式子中的b=0时,式子就变成了正比例函数y=kx。
因此,正比例函数是一次函数当b=0时的特殊情况。
正是因为正比例函数实际上就是一次函数,所以把正比例函数和一次函数结合在一起来学习。
在正比例函数y=kx和反比例函数y=k/x中,由于函数y与自变量x之间有比例关系,就要在自变量x前面用字母系数k表示它们之间的比例关系,因而字母k就取名为比例系数。
确定了比例系数k就可以直接确定正比例函数或反比例函数的解析式。
但是,在一次函数y=kx+b和二次函数y=ax2+bx+c中,我们从观察解析式就可以看出,函数y与自变量x之间没有相直接对应的比例关系,因此这两种函数自变量x前面的k,就不能叫比例系数,只能叫常数。
若欲确定一次函数或二次函数的解析式时,题意仅已知常数k还不行,还需要其他常数如b、c等常数的协助。
最全一次函数图像专题(带解析)完整版.doc最全一次函数图像专题(带解析)完整版一次函数也称为一次方程或线性方程,是数学中的重要概念。
在本专题中,我们将详细讨论一次函数的图像及相关概念和性质。
一、一次函数的定义与性质一次函数是指形如y = kx + b的函数,其中k和b为常数,k 称为斜率,b称为截距。
一次函数的图像是一条直线,其斜率决定了直线的倾斜程度,截距决定了直线与y轴的交点位置。
二、一次函数的图像特征1. 斜率k的正负决定了直线的倾斜方向。
当k为正数时,直线向右上方倾斜;当k为负数时,直线向右下方倾斜。
2. 斜率k的绝对值决定了直线的倾斜程度。
绝对值越大,倾斜程度越大。
3. 当k为0时,直线为水平线;当k不存在时,直线为竖直线。
三、一次函数图像的基本形状1. 当k>0时,直线从左下方向右上方倾斜。
2. 当k=1时,直线为45°斜线。
3. 当k=-1时,直线为水平斜线。
4. 当k=0时,直线为水平线。
5. 当k不存在时,直线为竖直线。
四、一次函数的图像平移1. 沿x轴平移的结果:将y = kx + b中的b替换为b',则得到的函数为y = kx + b'。
平移后的直线与原直线平行,斜率不变,但截距发生了变化。
2. 沿y轴平移的结果:将y = kx + b中的k替换为k',则得到的函数为y = k'x + b。
平移后的直线与原直线平行,截距不变,但斜率发生了变化。
五、一次函数的图像伸缩1. 垂直伸缩的结果:将y = kx + b中的k替换为ak,其中a 为正数。
当a>1时,直线变得更陡峭;当0<a<1时,直线变得更平缓。
2. 水平伸缩的结果:将y = kx + b中的x替换为x/a,其中a为正数。
当a>1时,直线变得更平缓;当0<a<1时,直线变得更陡峭。
六、一次函数的解析法与图像的关系1. 斜率k的正负决定了图像的倾斜方向。
专题12 一次函数的图像和性质(强化-基础)一、单选题(共32分)1.(本题4分)(2021·全国九年级专题练习)如果一个正比例函数y =kx 的图象经过不同象限的两点(m ,1)、(2,n ),那么一定有( )A .m >0,n >0B .m <0,n <0C .m >0,n <0D .m <0,n >0 【答案】B【分析】利用正比例函数的性质可知正比例函数y =kx 的图象经过第一、三象限或第二、四象限,结合点(m ,1)和(2,n )在不同象限,即可得出点(m ,1)在第二象限、点(2,n )在第四象限,进而可得出m <0,n <0.【详解】解:正比例函数y =kx 的图象经过第一、三象限或第二、四象限.∵点(m ,1)和(2,n )在不同象限,∵点(m ,1)在第二象限,点(2,n )在第四象限,∵m <0,n <0.故选:B .【点睛】本题主要考查了正比例函数的性质,熟悉掌握正比例函数的图象特点是解题的关键. 2.(本题4分)(2021·西安市浐灞第一中学八年级期末)已知正比例函数y ax =的图象经过点()3,6-,则下列四个点中在这个函数图象上的是( )A .()1,3-B .()2,4-C .()4,7-D .()5,8-【答案】B【分析】将点(3,-6)代入正比例函数的解析式y=kx ,求得k 值,然后再判断点是否在函数图象上.【详解】解:∵正比例函数y=kx 经过点(3,-6),∵-6=3k ,解得k=-2;∵正比例函数的解析式是y=-2x;A、∵当x=1时,y=-2,∵点(1,-3)不在该函数图象上;故A不符合题意;B、∵当x=2时,y=-4,∵点(2,-4)在该函数图象上;故B符合题意;C、∵当x=4时,y=-8,∵点(4,-7)不在该函数图象上;故C不符合题意;D、∵当x=5时,y=-10,∵点(5,-8)不在该函数图象上;故D不符合题意.故选:B.【点睛】本题主要考查了正比例函数图象上的点的坐标特征.点在函数的图象上,则点的坐标满足函数的解析式.3.(本题4分)(2021·西安市铁一中学九年级三模)在平面直角坐标系中,已知点A(3,0),点B(0,4),正比例函数y=kx(k≠0)的图象恰好经过线段AB的中点.若点C(2,p)在该正比例函数的图象上,则p的值为()A.34B.32C.43D.83【答案】D【分析】由题意易得线段AB的中点坐标,然后代入正比例函数y=kx的解析式进行求解,进而问题可求解.【详解】解:∵点A(3,0),点B(0,4),∵线段AB的中点坐标为3,22⎛⎫ ⎪⎝⎭,把点3,22⎛⎫⎪⎝⎭代入正比例函数y=kx的解析式得:322k=,解得:43k=,∵正比例函数的解析式为43y x =,∵点C(2,p)在该正比例函数的图象上,∵48233 p=⨯=;故选D.【点睛】本题主要考查正比例函数的性质,熟练掌握正比例函数的性质是解题的关键.4.(本题4分)(2021·西安市·陕西师大附中九年级二模)若点()1,2M 关于y 轴的对称点在一次函数()32y k x k =++的图象上,则k 的值为( )A .2-B .0C .1-D .37- 【答案】A【分析】依题意,点(1,2)M 关于y 轴的对称点为12()1,M -,然后将点1M 带入一次函数解析式即可;【详解】由题知,点关于y 轴的对称点坐标的规律---横坐标变为相反数,纵坐标不变,可得:对称点12()1,M -将点12()1,M -代入一次函数(32)y k x k =++,即为2(32)(1)k k =+⨯-+,可得:2k =-; 故选:A【点睛】本题主要考查点的对称、一次函数解析式的性质,难点在熟悉二者的衔接;5.(本题4分)(2021·江苏苏州市·九年级专题练习)对于一次函数(y kx b k =+,b 为常数),如表中给出几组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是( )A .1-B .2C .5D .7【答案】B【分析】经过观察4组自变量和相应的函数值(1,7)-,(0,5),(3,1)-符合解析式25y x =-+,(1,2)不符合,即可判定.【详解】解:(1,7)-,(0,5),(3,1)-符合解析式25y x =-+,当1x =时,312y =≠∴这个计算有误的函数值是2,故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,图象上点的坐标符合解析式是解决本题的关键.6.(本题4分)(2018·福建福州市·八年级期中)已知 2,()1P m m +是平面直角坐标系的点,则点P 的纵坐标随横坐标变化的函数解析式可以是 ( )A .21y x =-B .112y x =-C .112y x =+D .21y x =+ 【答案】C【分析】令2m=x ,m+1=y ,利用代入消元法,消去m ,即可得到答案.【详解】令2m=x ,m+1=y , ∵m=12x ,m=y -1, ∵12x= y -1,即:112y x =+, 点P 的纵坐标随横坐标变化的函数解析式可以是:112y x =+. 故选C .【点睛】本题主要考查一次函数图象上点的坐标特征,掌握代入消元法,是解题的关键. 7.(本题4分)(2020·浙江杭州市·八年级期末)一次函数y kx b =+中,若0kb <,且y 随着x 的增大而增大,则其图象可能是( )A .B .C .D .【答案】B【分析】由y 随着x 的增大而增大,利用一次函数的性质可得出k >0,结合kb <0可得出b <0,再利用一次函数图象与系数的关系即可得出一次函数y =kx +b 的图象经过第一、三、四象限.【详解】解:∵y 随着x 的增大而增大,∵k >0,又∵kb <0,∵b <0,∵一次函数y =kx +b 的图象经过第一、三、四象限.故选:B .【点睛】本题考查了一次函数的性质以及一次函数图象与系数的关系,牢记“k >0,b <0∵y =kx +b 的图象在一、三、四象限”是解题的关键.8.(本题4分)(2021·全国八年级课时练习)一次函数片1y ax b 与2y cx d =+的图象如图所示,下列说法:①ab <0;①函数y =ax +d 不经过第一象限;①函数y =cx +b 中,y 随x 的增大而增大;①3a +b =3c +d ,其中正确的个数有( )A .4个B .3个C .2个D .1个【答案】A仔细观察图象:∵a 的正负看函数y 1=ax +b 图象从左向右成何趋势,b 的正负看函数y 1=ax +b 图象与y 轴交点即可;∵观察函数图象可以直接得到答案;∵观察函数图象可以直接得到答案;∵根据两直线交点可以得到答案.【详解】由图象可得:a <0,b >0,c >0,d <0,∵ab <0,故∵正确;函数y =ax +d 的图象经过第二,三,四象限,即不经过第一象限,故∵正确;函数y =cx +b 中,y 随x 的增大而增大,故∵正确;∵一次函数y 1=ax +b 与y 2=cx +d 的图象的交点的横坐标为3,∵3a +b =3c +d ,故∵正确.综上所述,正确的结论有4个.故选:A .【点睛】本题主要考查了一次函数的图象与性质,利用数形结合是解题的关键.二、填空题(共30分)9.(本题5分)(2020·盐城市初级中学八年级月考)在2(1)1y k x k =-+-中,若y 是x 的正比例函数,则k 值为____________.【答案】-1【分析】根据正比例函数的定义得到k -1≠0且k 2−1=0即可求出k 值.∵函数y=(k-1)x+k2−1是正比例函数,∵k-1≠0且k2−1=0,解得k=-1;故填:-1.【点睛】此题考查正比例函数的定义,熟记定义是解题的关键,主要是定义的理解,比较容易.10.(本题5分)(2021·全国八年级)下列函数关系式:①y=kx+1;①y=2x;①y=x2+1;①y=22﹣x.其中是一次函数的有_____个.【答案】1【分析】根据一次函数的定义解答即可.【详解】解:∵当k=0时,y=kx+1不是一次函数;∵y=2x的右边不是整式,不是一次函数;∵y=x2+1的自变量的次数是2,不是一次函数;∵y=22﹣x是一次函数.故答案为:1.【点睛】本题考查了一次函数的定义,一般地,形如y=kx+b,(k为常数,k≠0)的函数叫做一次函数.11.(本题5分)(2021·江苏泰州市·九年级一模)直线y=﹣12x+2分别交x轴、y轴于A、B两点,点O为坐标原点,则S①AOB=_____.【答案】4【分析】求出OA、OB的值,根据三角形面积公式求出即可.【详解】解:把x=0代入y=﹣12x+2得:y=2,把y =0代入y =﹣12x +2得:x =4, 即OA =4,OB =2,AOB S =12OA ×OB =12×4×2=4, 故答案为:4.【点睛】本题考查了一次函数图象上点的坐标特征的应用,关键是求出OA 、OB 的值.12.(本题5分)(2021·江苏苏州市·九年级专题练习)在平面直角坐标系中,直线y =12x ﹣4与x 轴的交点坐标为_____.【答案】(8,0)【分析】令y =0求出x 的值,从而可得出直线与x 轴的交点坐标.【详解】解:令y =0,则12x ﹣4=0, 解得:x =8,∵直线12x ﹣4与x 轴的交点坐标是(8,0). 故答案为:(8,0).【点睛】本题主要考查一次函数与坐标轴的交点,准确的计算是解题的关键.13.(本题5分)(2021·天津九年级一模)将直线10y x =向上平移3个单位长度,平移后直线的解析式为_________.【答案】103y x =+【分析】根据上加下减的平移规律确定解析式即可【详解】将直线10y x =向上平移3个单位长度,平移后直线的解析式为y =10x +3,故答案为:y =10x +3.【点睛】本题考查了直线的平移规律,熟练掌握平移中上加下减是解题的关键.14.(本题5分)(2021·四川达州市·八年级期末)关于函数3y kx k k =++(为常数),给出下列结论:①此函数是一次函数;①无论k 取什么值,函数图象必经过点()1,3-;①若0k >时,函数图象经过第一、二、三象限;①若0k <时,函数图象与x 轴的交点始终在负半轴上.其中正确的是___________(填序号)【答案】∵∵【分析】∵根据一次函数的定义即可判断;∵将1x =-代入解析式即可判断;∵先确定30k +>即可判断;∵先确定3k +的正负再判断.【详解】解:∵当0k ≠时函数时一次函数,当0k =时,函数为常数函数;此说法错误; ∵当1x =-时,33y k k =-++=∴无论k 取什么值,函数图象必经过点()1,3-;此说法正确;∵若0k >时,30k +>∴函数图象经过第一、二、三象限;此说法正确;∵若0k <时,30k +>时函数图象与x 轴的交点在正半轴上;若0k <时,30k +<时函数图象与x 轴的交点始终在负半轴上,此说法错误; 故答案为:∵∵.【点睛】本题根据交点坐标确定解析式字母系数的取值及分类讨论思想的运用,一般地,先求出交点坐标,再把坐标满足的条件转化成相应的方程或不等式进而解决问题.三、解答题(共90分)15.(本题8分)(2021·全国八年级期末)如图,在平面直角坐标系xOy 中,已知(5,2),(1,6)A B -,直线AB 与直线:2l y x =+交于点C ,直线l 与x 轴交于点D .(1)求直线AB 的解析式:(2)求点C 的坐标;(3)求ACD △的面积.【答案】(1)y =-2x +8;(2)(2,4);(3)18【分析】(1)利用待定系数法求解即可;(2)联立y =-2x +8和y =x +2,求出x ,代入其中一个解析式求出y 值,即可得到点C ; (3)求出点D 和点E 坐标,利用∵ACD 的面积=∵CDE 的面积+∵ADE 的面积求出结果.【详解】解:(1)设直线AB 的解析式为:y =kx +b ,将A (5,-2),B (1,6)代入,得:256k b k b -=+⎧⎨=+⎩,解得:28k b =-⎧⎨=⎩, ∵直线AB 的解析式为:y =-2x +8;(2)∵直线AB 与直线y =x +2交于点C ,则令-2x +8=x +2,解得:x =2,代入y =x +2,得y =4,∵C (2,4);(3)∵直线l 与x 轴交于点D ,∵在y =x +2中,令y =0,则x =-2,∵D (-2,0),设E 为直线AB 与x 轴交点,在y =-2x +8中,令y =0,则x =4,∵E (4,0),∵∵ACD的面积=∵CDE的面积+∵ADE的面积=11646222⨯⨯+⨯⨯=18.【点睛】本题考查了待定系数法求直线的解析式,一次函数与坐标轴的交点问题,能正确求出函数解析式,从而得到相应点的坐标是解题的关键.16.(本题8分)(2020·甘州中学八年级月考)已知y﹣2与x成正比例,且x=2时,y=﹣6.求:(1)y与x的函数关系式;(2)当y=14时,x的值.【答案】(1)y=﹣4x+2;(2)x=﹣3.【分析】(1)设y﹣2=kx(k≠0),把x=2,y=﹣6代入即可求解;(2)把y=14代入函数关系式即可求解.【详解】解:(1)设y﹣2=kx(k≠0),则﹣6﹣2=2k,∵k=﹣4,∵y与x的函数关系式是:y=﹣4x+2;(2)当y=14时,14=﹣4x+2,解得x=﹣3.【点睛】此题主要考查正比例函数的解析式求解,解题的关键是熟知待定系数法的应用.17.(本题8分)(2020·上海八年级期中)已知正比例函数的图像经过点3)-,(1)求正比例函数解析式:(2)若,4)A a-在此正比例函数图像上,求a的值.【答案】(1)y=;(2)1a=【分析】(1)设正比例函数的解析式为y kx =,然后把点)3-代入求解即可;(2)由(1)及题意可直接进行求解. 【详解】解:(1)设正比例函数的解析式为y kx =,则有:3-=,解得:k =∵正比例函数的解析式为y =;(2)由(1)得:y =,把),4Aa -代入解析式得:4a -=,解得:1a =. 【点睛】本题主要考查正比例函数,熟练掌握正比例函数的解析式及性质是解题的关键.18.(本题8分)(2020·全国八年级课时练习)已知正比例函数(1)y m x =-的图象上有两点()11,,A x y ()22,B x y ,当12x x <时,有12y y >.(1)求m 的取值范围;(2)当m 取最大整数时,画出该函数图象.【答案】(1)m 的取值范围是1m <;(2)该正比例函数为y x =-,图象见解析.【分析】(1)根据正比例的性质可得出m -1<0,从而得出m 的取值范围; (2)由(1)得出m 的值,再代入得出解析式,画出图象即可. 【详解】 解:(1)正比例函数(1)y m x =-的图象上有两点()11,,A x y ()22,B x y ,当12x x <时,有12y y >.10,m ∴-< 1,m ∴<m ∴的取值范围是1m <.(2)1,m <m ∴取最大整数0,∴该正比例函数为y x =-,图象如图所示:【点睛】本题考查了正比例函数的图象和性质,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.19.(本题10分)(2020·辽宁锦州市·八年级期中)已知直线y kx b =+经过点()2,0A -,且平行于直线2y x =-(1)求该函数的关系式;(2)如果直线y kx b =+经过点()3,P m -,求m 的值; (3)求经过P 点的直线13y x n =+与直线y kx b =+和y 轴所围成的三角形的面积. 【答案】(1)24y x =--;(2)2m =;(3)212【分析】(1)根据直线y kx b =+平行于直线2y x =-可得k =-2,然后根据待定系数法算出b 即可; (2)将点P 代入表达式中计算m 即可; (3)分别计算出y kx b =+和13y x n =+与y 轴的交点坐标,然后直接计算所围成图形面积即可.【详解】解:∵y kx b =+与2y x =-平行, ∵2k =-, ∵2y x b =-+. ∵过点(2,0)A - ∵()022b =-⨯-+, ∵4b =-,∵该函数的关系式:24y x =--. (2)∵24y x =--经过点(3,)P m - ∵()234m =-⨯--, ∵2m =;(3)令直线24y x =--中0x =时,则4y =-, ∵直线24y x =--与y 轴的交点是(0,4)-. 令直线13y x n =+中2y =,3x =-,可得:12(3)3n =⨯-+, ∵3n =, ∵直线13y x n =+表达式为直线133y x =+∵直线13y x n =+与y 轴的交点坐标为(0,3), ∵所围成的三角形的面积1217322=⨯⨯=. 【点睛】本题主要考查一次函数求解析式和简单的几何问题,用待定系数法求解析式是解题的关键. 20.(本题10分)(2020·江苏苏州市·八年级月考)已知一次函数y =﹣2x ﹣2. (1)根据关系式画出函数的图象.(2)求出图象与x 轴、y 轴的交点A 、B 的坐标,(3)在坐标轴上有点C,使得AB=AC,写出C的坐标.【答案】(1)作图见解析;(2)A(−1,0),B(0,−2);(3)(0)或(−1 0)或(0,2).【分析】(1)根据函数解析式,可以画出相应的函数图象;(2)令x=0求出y的值,再令y=0求出x的值,即可得到点A和点B的坐标;(3)由AB=AC,分情况讨论点C在x轴,y轴的坐标,即可求得点C的坐标.【详解】解:(1)函数图象如图所示;(2)∵y=−2x−2,∵当x=0时,y=−2,当y=0时,x=−1,∵图象与x轴、y轴的交点A、B的坐标分别为(−1,0),(0,−2);(3)由(3)知,A、B的坐标分别为(−1,0),(0,−2),∵AB∵点C在坐标轴上,AB=AC,∵当C在x轴上时,点C的坐标为(0)或(−10),当点C 在y 轴上时,点C 的坐标为(0,2),综上所述,点C 的坐标为:(0)或(−10)或(0,2). 【点睛】本题考查一次函数的图象、一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.21.(本题12分)(2020·扬州市邗江区实验学校八年级月考)若等腰三角形的周长是80cm ,(1)写出这个等腰三角形的腰长y (cm )与底边长x (cm )之间的函数关系式,并求出自变量的取值范围; (2)画出该函数的图象.【答案】(1)400.5y x =-,040x <<;(2)见解析图 【分析】(1)根据等腰三角形的周长=腰长×2+底长.据此可得出函数关系式;根据三角形的三边关系来自变量取值范围;(2)按照画函数图象的方法,注意自变量取值范围即可. 【详解】(1)∵280y x += ∵400.5y x =- ∵0,0x y >>,2y x >∵0x >,400.50x ->,80x x ->. 解得:040x <<;(2)如图所示,注意自变量的取值范围,【点睛】本题考查了一次函数的应用,掌握求自变量的取值范围时要注意三角形三边关系是解题的关键.22.(本题12分)(2021·成都高新新源学校八年级期中)如图,直线AB :2y x k =-过点M (k ,2),并且分别与x 轴,y 轴相交于点A 和点B .(1)求k 的值;(2)求点 A 和点B 的坐标;(3)将直线AB 向上平移3个单位得直线l ,若C 为直线l 上一点,且3AOCS =,求点C的坐标.【答案】(1)2;(2)(1,0),(0,2)A B -;(3)5,62⎛⎫ ⎪⎝⎭或7,62⎛⎫-- ⎪⎝⎭. 【分析】(1)将()2M k ,代入2y x k =-中即可解题; (2)将2k =代入直线AB 可得∵22y x =-,再分别令0x =,0y =,即可解得点A 和点B 的坐标;(3)先解得平移3个单位后的直线l :21y x =+,设C 点坐标为(1)2a a +,,根据三角形面积公式解得11|21|32a ⨯⨯+=,结合绝对值的性质解题即可. 【详解】解:(1)将()2M k ,代入2y x k =-中可得, 22k k -=, 2k =,故k 的值为 2;(2)将2k =代入直线AB 可得∵22y x =-, 令0x =,则2y =-, 令0y =,则1x =,(1,0),(0,2)A B ∴-;(3)由题意可得,平移3个单位后的直线l 为,223y x =-+,即:21y x =+,设C 点坐标为(1)2a a +,, 12ADC C S AO y =⨯⨯△,11|21|32a ∴⨯⨯+=, |21|6a +=, 216a +=±,解得∵5 2a =或72a =-,代入可得,点C 的坐标为5,62⎛⎫ ⎪⎝⎭或7,62⎛⎫-- ⎪⎝⎭. 【点睛】本题考查一次函数,设及一次函数与坐标轴的交点、平移、三角形面积公式、绝对值等知识,是重要考点,难度较易,掌握相关知识是解题关键.23.(本题14分)(2021·全国八年级课时练习)已知,如图,一次函数的图象经过了点(64)P ,和(04)B -,,与x 轴交于点A . (1)求一次函数的解析式;(2)在y 轴上存在一点M ,且ABM 的面积为152,求点M 的坐标.【答案】(1)443y x =-;(2)()M 0,1或()09-, 【分析】(1)把P 点和B 点坐标代入y =kx +b 得到关于k 、b 的方程组,然后解方程组求出k 、b 即可得到一次函数解析式;(2)利用x 轴上点的坐标特征求出A 点坐标,根据三角形面积公式列等式求解即可. 【详解】(1)设一次函数的解析式为y kx b =+,把点()64P ,和()04B -,代入y kx b =+得644k b b +=⎧⎨=-⎩,解得434k b ⎧=⎪⎨⎪=-⎩,所以一次函数解析式为443y x =-; (2)当0y =时,4403x -=,解得3x =, 则A (3,0),在y 轴上存在一点M ,且ABM 的面积为152, 11522ABMA SBM x ∴=⋅=,即115322BM ⨯= 5BM ∴=,B (0,-4),()01,∴M 或()09-,.【点睛】本题考查了待定系数法求一次函数解析式以及一次函数与坐标轴的交点、三角形的面积,熟练掌握待定系数法是解题的关键.。