Charge carriers at organic heterojunction interface Exciplex emissio
- 格式:pdf
- 大小:303.06 KB
- 文档页数:4
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201910127394.X(22)申请日 2019.02.20(71)申请人 中国科学院兰州化学物理研究所地址 730000 甘肃省兰州市城关区天水中路18号(72)发明人 刘建华 汪兵洋 杨磊 夏春谷 许传芝 (74)专利代理机构 兰州智和专利代理事务所(普通合伙) 62201代理人 张英荷(51)Int.Cl.B01J 31/22(2006.01)C07D 215/233(2006.01)(54)发明名称一种苊并咪唑基氮杂环卡宾金属钯配合物催化剂及其制备和应用(57)摘要本发明公开了一种苊并咪唑基氮杂环卡宾金属钯配合物催化剂,是以3-氯吡啶或吡啶为轴向配体,苊并咪唑盐为骨架,在氮气保护、碳酸钾存在下,与金属配体PdCl 2进行配位,即得苊并咪唑基氮杂环卡宾金属钯配合物催化剂。
本发明合成的苊并咪唑基的氮杂环卡宾金属配合物中,由于蒽醌骨架的引入,影响了碳2-为原子与金属的配位,增加了金属中心的电荷密度,加强了σ给电子能力,有利于氧化加成反应,进而促进催化循环。
实验结果证明,采用苊并咪唑基氮杂环卡宾金属钯配合物催化剂,羰化环化反应的选择性高(选择性大于99%)、转化率高(大于85%)。
另外,催化剂用量小,反应条件温和,避免了有毒膦配体的使用,安全环保。
权利要求书2页 说明书11页 附图4页CN 109794295 A 2019.05.24C N 109794295A1.一种苊并咪唑基氮杂环卡宾金属钯配合物催化剂,其结构式如下:。
2.如权利要求1所述苊并咪唑基氮杂环卡宾金属钯配合物催化剂的合成方法,是以3-氯吡啶或吡啶为轴向配体,苊并咪唑盐为骨架,在氮气保护、碳酸钾存在下,与金属配体PdCl 2进行配位,即得苊并咪唑基氮杂环卡宾金属钯配合物催化剂。
3.如权利要求2所述苊并咪唑基氮杂环卡宾金属钯配合物催化剂的合成方法,其特征在于:所述苊并咪唑盐为苊并咪唑盐酸盐,其结构式如下:。
专利名称:来自丝状真菌的β葡聚糖
专利类型:发明专利
发明人:F·费德里茨,M·佩特鲁茨奥利,P·范登布雷克,F·斯廷格勒
申请号:CN01806862.6
申请日:20010320
公开号:CN1418256A
公开日:
20030514
专利内容由知识产权出版社提供
摘要:一种生产β-葡聚糖的方法,非病原腐生丝状真菌或包含它的组合物在提供β-葡聚糖,并由此改善食品结构、构造、稳定性或其组合中的用途;非病原腐生丝状真菌在提供β-葡聚糖并由此提供营养中的用途;真菌或包含它的组合物用在制备预防或治疗免疫疾病、肿瘤或微生物感染的药物或营养组合物中的用途。
申请人:雀巢制品公司
地址:瑞士沃韦
国籍:CH
代理机构:中国专利代理(香港)有限公司
更多信息请下载全文后查看。
科学研究 2019,Vol.36No.11化学与生物工程 Chemistry&Bioengineering doi:10.3969/j.issn.1672-5425.2019.11.003电催化氧化处理苯酚废水[J].化学与生物工程,2019,36(11):1-4.ZHANG C,JIA Z Q,ZHAO Y X.Electrocatalytic oxidation treatment of phenol wastewater[J].Chemistry&Bioengineering,2019,36(11):1 -4.电催化氧化处理苯酚废水张 闯1,2,贾志奇1,3∗,赵永祥1,2∗(1.山西大学化学化工学院,山西太原030006;2.精细化学品教育部工程研究中心,山西太原030006;3.山西大学固废利用襄垣研发基地,山西太原030006)摘 要:采用固定尺寸的铱钌镀钛电极作阳极、不锈钢电极作阴极、锰炭复合材料作粒子电极,利用三维电极对苯酚模拟废水进行电催化降解,并考察了电压、不同电解质、氯化钠加量、反应时间等因素对苯酚模拟废水处理效果的影响。
得到最佳反应条件为:电压15V、氯化钠加量2g、反应时间120min。
在最佳条件下,填充10g粒子电极的三维电极处理100mL10000mg·L-1的苯酚模拟废水,苯酚转化率为96.10%,COD降解率达83.97%。
关键词:苯酚废水;电催化氧化;处理中图分类号:X703.1 文献标识码:A 文章编号:1672⁃5425(2019)11⁃0012⁃05Electrocatalytic Oxidation Treatment of Phenol WastewaterZHANG Chuang1,2,JIA Zhiqi1,3∗,ZHAO Yongxiang1,2∗(1.School of Chemistry and Chemical Engineering,Shanxi University,Taiyuan030006,China;2.Engineering Research Center for Fine Chemicals of Ministry of Education,Taiyuan030006,China;3.Xiangyuan Research and Development Base for Solid Waste Utilization,Shanxi University,Taiyuan030006,China)Abstract:Using a fixed-size titanium-plated titanium ruthenium electrode as an anode,a stainless steel electrode as a cathode,and a manganese-carbon composite material as a particle electrode,we performed the electrocatalytic degra⁃dation of phenol simulated wastewater by using the three-dimensional electrode,and investigated the effects of voltage, different electrolytes,sodium chloride dosage,and reaction time on the treatment efficiency of phenol simulated wastewater.The optimum reaction conditions are determined as follows:the voltage of15V,the sodium chloride dosage of 2g,and the reaction time of120min.By comparison with two-dimensional electrode and three-dimensional electrode, it is indicated that three-dimensional electrode is more efficient than two-dimensional electrode in the treatment of phenol simulated wastewater.Under optimum conditions,when100mL10000mgoL-1phenol simulated wastewater is treated by the three-dimensional electrode filled with10g particle electrode,the phenol conversion rate will reach96. 10%,and the COD degradation rate will reach83.97%.Keywords:phenol wastewater;electrocatalytic oxidation;treatment 在我国水污染控制中,含酚废水被列为重点解决的有害废水之一。
专利名称:一种重组大肠杆菌周质蛋白液的制备方法专利类型:发明专利
发明人:林俊
申请号:CN98122065.7
申请日:19981204
公开号:CN1227873A
公开日:
19990908
专利内容由知识产权出版社提供
摘要:一种重组大肠杆菌周质蛋白液的制备方法,通过使用盐处理大肠杆菌细胞以增加细胞外膜的通透性,从而达到专一抽提细胞周质中的蛋白之目的。
本方法有效地防止了制备细胞周质液时对细胞细胞壁和内膜的损害,从而减少了细胞内干扰物质对目的蛋白分离纯化的影响。
它将促进周质分泌型工程菌的应用,特别是为该类型的基因工程菌工业化应用开辟道路。
申请人:中国科学院上海细胞生物学研究所
地址:200031 上海市岳阳路320号
国籍:CN
代理机构:上海华东专利事务所
代理人:费开逵
更多信息请下载全文后查看。
南京理工大学毕业设计(论文)外文资料翻译附件: 1.外文资料翻译译文;2.外文原文。
注:请将该封面与附件装订成册。
附件1:外文资料翻译译文水杨酸甲酯的热分析研究摘要文章采用TG-DTA(热重-差热)联用分析法对水杨酸甲酯的蒸发过程进行了研究。
实验数据表明该蒸发过程为零级速率过程。
研究结果发现通过基辛格(Kissinger)、小泽(Ozawa)法以及阿伦纽斯(Arrhenius)方程计算得到的活化能与克劳修斯-克拉珀龙(Clausius–Clapeyron)方程计算得到的汽化潜热大致相当。
通过基辛格法所得活化能值范围在52.5-60.4KJmol-1之间, 小泽法所得活化能在52.2–63.6 KJ mol-1之间,阿伦纽斯方程计算的活化能在47.2–50.3 KJ mol-1之间。
关键字:蒸发;水杨酸甲酯;基辛格法(Kissinger);小泽法(Ozawa);阿伦纽斯(Arrhenius)方程1.引言人们常采用多种分析仪器研究香精,如气相色谱法(GC),气相色谱质谱联用法(GC-MS))[1,2],红外光谱法(IR)[3],核磁共振法(NMR)[4]。
热分析[5]法是研究香精老化过程的额外途径,在热分析过程中,当香精样品被加热时,热重信号能记录香精重量的变化。
香精的释放速率取决于它的蒸发速率。
以下几种因素能影响蒸发速率,如蒸汽压力,分子量,温度以及暴露在空气中的表面积。
因此,蒸发过程对于香精尤为重要[6]。
对于大多数涉及热力学方法的反应,它们的动力学研究都是很复杂的,但是意识到一个具体参数的变化速率取决于反应物的数量和所应用的温度,也同样至关重要[7]。
使用不同方法计算得到的动力学参数也会呈现出不同的结果。
在本文的研究中,水杨酸甲酯蒸发过程中的动力学参数将分别使用阿伦纽斯、基辛格和小泽三种方法计算得到。
2. 实验部分本研究中所用材料是从西格玛化工有限公司购买的水杨酸甲酯(生产批号 106H08521)。
CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2018年第37卷第3期·1014·化 工 进展一锅溶剂蒸发诱导自组装法制备助剂体相分布的Pd-Ba-Zn/γ-Al 2O 3催化剂及其蒽醌加氢性能严润华1,蔡卫权1,2,卓俊琳1,王昕1,李旻哲1(1武汉理工大学化学化工与生命科学学院,湖北 武汉 430070;2广州大学化学化工学院,广东 广州 510006) 摘要:分别采用一锅溶剂蒸发诱导自组装法和等体积浸渍法制备了Ba-、Zn-助剂体相分布和表相分布的0.4%Pd-2.5%Ba-3.0%Zn/γ-Al 2O 3催化剂,并将其用于催化蒽醌加氢制氢蒽醌反应。
采用XRD 、TEM 、SEM 、EDS 、N 2吸附-脱附、XPS 和高效液相色谱等表征与测试手段,对比研究了上述助剂引入及其分布方式对催化剂微结构和催化性能的影响。
结果表明:添加Ba-、Zn-助剂后催化剂的最高氢化效率和氢化稳定性均有提高;Ba-、Zn-助剂由常规的表相分布变为体相分布后,催化剂的稳定性进一步提高,而氢化效率和蒽醌循环回收率基本相当。
和常规助剂表相分布催化剂的制备过程相比,制备助剂体相分布的催化剂时,Ba-、Zn-在制备载体前体时一步引入,省去了分步浸渍助剂前体盐和后续的干燥、焙烧等过程,因而制备工艺大大简化、能耗大幅度降低、制备效率显著提高。
关键词:加氢;2-乙基蒽醌;Pd-Ba-Zn/γ-Al 2O 3催化剂;助剂表相分布;助剂体相分布中图分类号:TQ426.94 文献标志码:A 文章编号:1000–6613(2018)03–1014–07 DOI :10.16085/j.issn.1000-6613.2017-1035One-pot solvent evaporation induced self-assembly synthesis ofPd-Ba-Zn/γ-Al 2O 3 catalyst with homogeneous distribution of the promoters and its hydrogenation performance of anthraquinoneYAN Runhua 1,CAI Weiquan 1,2,ZHUO Junlin 1,WANG Xin 1,LI Minzhe 1(1School of Chemistry ,Chemical Engineering and Life Sciences ,Wuhan University of Technology ,Wuhan 430070,Hubei ,China; 2School of Chemistry and Chemical Engineering ,Guangzhou University ,Guangzhou 510006,Guangdong ,China )Abstract : Two 0.4%Pd-2.5%Ba-3.0%Zn/γ-Al 2O 3 catalysts with homogeneous distribution and surface distribution of Ba- and Zn- promoters were prepared via one-pot solvent evaporation induced self-assembly method and incipient-wetness impregnation method ,respectively. The catalysts were evaluated in anthraquinone hydrogenation reaction for preparing hydroanthraquinone. Effects of the introduction of the two promoters and their distribution methods on the microstructures and catalytic performance of the catalysts were comparatively studied by XRD ,TEM ,SEM ,EDS ,N 2 adsorption-desorption ,XPS and high performance liquid chromatography. The results showed that ,both of the maximum hydrogenation efficiency and stability of the catalysts increase after introducingthe promoters. When distribution of the promoters was changed from surface distribution to homogeneous distribution ,the stability of the catalyst is further improved ,but its hydrogenation博士,教授,主要从事清洁工艺和材料化工领域的研究。
专利名称:在费-托合成中集成熔融碳酸盐燃料电池
专利类型:发明专利
发明人:P·J·贝洛维茨,T·A·巴尔克霍尔兹,F·赫什科维茨,K·泰勒
申请号:CN201480027190.4
申请日:20140313
公开号:CN105210222A
公开日:
20151230
专利内容由知识产权出版社提供
摘要:在各种方面中,提供了将熔融碳酸盐燃料电池与费-托合成工艺集成的系统和方法。
熔融碳酸盐燃料电池可以以各种方式与费-托合成工艺集成,包括提供用于生成烃质碳的合成气。
另外,熔融碳酸盐燃料电池与费-托合成工艺的集成可促进合成过程中产生的排出料流或次级产物料流的进一步处理。
申请人:埃克森美孚研究工程公司
地址:美国新泽西州
国籍:US
代理机构:北京市中咨律师事务所
更多信息请下载全文后查看。
专利名称:正极活性物质和使用该正极活性物质的二次电池专利类型:发明专利
发明人:铃木扩哲
申请号:CN202010440464.X
申请日:20200522
公开号:CN112018389A
公开日:
20201201
专利内容由知识产权出版社提供
摘要:本公开提供一种抑制二次电池的放电容量维持率降低的正极活性物质。
本公开的一个技术方案中的正极活性物质(10),具备包含锂复合氧化物的粒子(1)、和具有包含除锂以外的其它金属的磷酸铵化合物且被覆粒子(1)的被覆层(2)。
其它金属包含选自锰、镍和钴之中的至少一者。
磷酸铵化合物的重量相对于锂复合氧化物的重量的比率例如为1.0重量%以上且2.0重量%以下。
申请人:松下知识产权经营株式会社
地址:日本大阪府
国籍:JP
代理机构:北京市中咨律师事务所
更多信息请下载全文后查看。
专利名称:提高蛋白质产率的方法专利类型:发明专利
发明人:沃尔夫冈·马格雷
申请号:CN200880002782.5
申请日:20080125
公开号:CN101605813A
公开日:
20091216
专利内容由知识产权出版社提供
摘要:本发明涉及用于提高来自含蛋白质源的蛋白质,特别是血浆蛋白回收率的方法,其中将所述含蛋白质源在≤-70℃的温度下冷冻,并且以本身已知的方式进一步加工来自解冻的冷冻源的蛋白质。
申请人:奥克塔法马股份有限公司
地址:瑞士拉亨
国籍:CH
代理机构:北京集佳知识产权代理有限公司
更多信息请下载全文后查看。
Charge carriers at organic heterojunction interface:Exciplex emission or electroplex emission?Shengyi Yang,a͒Xiulong Zhang,Yanbing Hou,Zhenbo Deng,and Xurong XuKey Laboratory of Luminescence and Optical Information,Ministry of Education,Institute of OptoelectronicTechnology,Beijing Jiaotong University,Beijing100044,People’s Republic of China͑Received31October2006;accepted22January2007;published online1May2007͒We report the electroluminescence͑EL͒of organic heterojunction devices based on N,NЈ-diphenyl-N,NЈ-bis͑3-methylphenyl͒-͑1,1Ј-biphenyl͒-4,4Ј,-diamine͑TPD͒and2-͑4Ј-biphenyl͒-5-͑4Љ-tert-butylphenyl͒-1,3,4-oxadiazole͑PBD͒.Besides monomolecular emissions from TPD,there are twoadditional EL peaks at around460and480nm from the bilayer device indium tin oxide͑ITO͒/TPD͑100nm͒/PBD͑45nm͒/Al.Our experimental data confirmed that the EL emission maximizedat around460nm is from electroplex as the result of charge carriers cross recombination at theTPD/PBD interface and the EL emission maximized at around480nm originates from͑TPD*PBD͒-type exciplex.©2007American Institute of Physics.͓DOI:10.1063/1.2713947͔Over the last decade,extensive research into organic light-emitting diodes͑OLEDs͒has been made with the aim of improving the out-coupling efficiency and brightness as a way of implementing efficient blue,green,and red OLEDs in passive and active matrix displays.In both layered and single-film structures,the key device processes,charge re-combination and charge separation,occur at the heterojunc-tion between the two components.1,2Recently,a number of papers appeared showing the electroluminescence͑EL͒spec-tra of OLEDs to differ substantially from the photolumines-cence͑PL͒spectra of their component materials.3–11The EL spectra often show up as redshifted broadbands,which have been mostly assigned as emission from exciplexes formed at the solid interface between a hole-transporting layer͑HTL͓͒as molecular electron donors͑D͔͒and an electron-transporting layer͑ETL͓͒as molecular electron acceptors ͑A͔͒.Exciplex formation is favored where there is a signifi-cant spatial overlap between the lowest unoccupied molecu-lar orbitals͑LUMOs͒of the constituent species,12which is clearly the case for conjugated organics,whose LUMOs are highly delocalizedorbitals.On the other hand,an elec-troplex refers to a particular emission species,and is distin-guished from an exciplex in that an electroplex only occurs under high electricfields,but an exciplex occurs under both photoexcitation and high electricfields.3Thompson et al.13reported that all possible binary combinations of molecules from four different families of organics—N,NЈ-diphenyl-N,NЈ-bis͑3-methylphenyl͒-͑1,1Ј-biphenyl͒-4,4Ј,-diamine͑TPD͒,2-͑4Ј-biphenyl͒-5-͑4Љ-tert-butylphenyl͒-1,3,4-oxadiazole͑PBD͒,2,5-bis͑trimethylsilyl thiophene͒-1,1-dioxide,and poly͑9-vinylcarbazole͒—produce white or near-white emission due to exciplex for-mation between two components.Giro et al.10investigated the EL spectra of double-layer͑DL͒light-emitting diodes ͑LEDs͒based on TPD and PBD incorporated in bisphenol-A-polycarbonate͑PC͒polymer matrix and believed that the EL spectra of DL LEDs͓͑TPD+PC͒/PBD͔are composed of four components:1=400nm͑emission of TPD͒,3 =480nm͑exciplex emission at the TPD/PBD interface͒,2 =550nm͑electroplex emission in strongly disordered re-gions͒,and4=690nm͑from the trapping of the e-h hetero-pairs in a disordered environment͒.However,in their another later paper based on the same experimental data,Kalinowski et al.14believed that the broad EL spectra of DL LEDs ͓͑TPD+PC͒/PBD͔can be decomposed into four different Gaussian emission bands.As we know,the detailed process of charge carriers at the TPD/PBD interface is not clearly reported until now.Furthermore,the EL spectra of bilayer or multilayer devices usually depend both on the thickness of each organic layer and the applied voltage.15Then,what is the particular emission species at the TPD/PBD interface?Single-layer devices werefirstly fabricated and the ac-tive layer͑TPD or PBD͒was thermally evaporated under high vacuum of2ϫ10−6Torr onto the ITO substrates͑sheet resistance of10⍀/sq͒which were thoroughly cleaned by scrubbing,ultrasonication,and irradiation in an UV-ozone chamber,and then cathode Al was evaporated to complete the devices.For the bilayer device ITO/TPD/PBD/Al,TPD and PBDfilms were sequentially deposited by thermal evaporation at a rate of0.1nm/s.Each thickness of TPD or PBD layer was measured with an XP-2surface profilometer. The EL and PL spectra were measured with Spex Fluorolog-3spectrometer at room temperature in air.For comparison,the EL spectra of the device ITO/TPD͑105nm͒/Al at different applied voltages are shown in Fig.1and the inset shows the normalized EL and PL spectra of TPDfilm.From here,one can see that the EL of TPD maximizes at420nm with a shoulder peak at 400nm,but its PL maximizes at400nm with a shoulder peak at420nm.It is not easy to observe the EL of PBD because of its easy crystallization,and the surface morphol-ogy of the PBD layer is always rougher.16Also the normal-ized EL and PL spectra of the single-layer device ITO/PBD͑110nm͒/Al are shown in the inset of Fig.1.Ob-viously,the EL of PBD maximizes at385nm,and its PL maximizes at389nm with a shoulder peak at373nm.Then,a͒FAX:86-10-51683933;electronic mail:syyang@JOURNAL OF APPLIED PHYSICS101,096101͑2007͒0021-8979/2007/101͑9͒/096101/3/$23.00©2007American Institute of Physics101,096101-1we fabricated the bilayer device ITO/TPD ͑100nm ͒/PBD ͑45nm ͒/Al and its normalized EL spectra at different applied voltages are shown in Fig.2.From here,one can see that its EL spectra maximize at around 480nm with two shoulder peaks at around 400and 420nm under lower bi-ases,and these two shoulder peaks get more and more in-tense with increasing applied voltages.To a certain voltage,another shoulder peak at ϳ460nm appears and the emission peak at ϳ480nm gets less intense.Finally,the EL spectra maximize at ϳ400nm and other emission peaks become shoulder peaks.Undoubtedly,the emission peaks at ϳ400and ϳ420nm are from TPD,and the emission maximized at ϳ480nm is designed as exciplex emission 10,14since there is not such an emission from both single-layer devices ITO/TPD/Al and ITO/PBD/Al ͑see Fig.1and its inset ͒.Then what is the origin of the emission maximized at 460nm?Is it also an exciplex emission?The PL spectrum of the bilayer device ITO/TPD ͑100nm ͒/PBD ͑45nm ͒/Al under the excitation wavelength of 325nm is shown by the inset in Fig.2.Ob-viously,no obvious emission peaks at ϳ460and/or ϳ480nm can be observed in its PL spectrum because the monomolecular emission from TPD is more efficient under photoexcitation.Therefore,only monomolecular emissions from TPD ͑i.e.peak at ϳ400and ϳ420nm ͒can be observed although another weak emission peak at around 450nm can be seen in its EL spectra at a low temperature of 4.2K.17Here,it is worthy to note that its PL emission peak at ϳ420nm is more intense than the emission peak at ϳ400nm,which is different from the PL spectrum of pure TPD film but similar to the EL spectrum of ITO/TPD/Al ͑see Fig.1͒and it shows that the vibration levels of TPD play a dominant role in its EL spectra.17Further,the absorption spectra ͑not shown here ͒of TPD film,PBD film,layered TPD/PBD film,and coevaporated TPB:PBD film ͑1:1in weight ͒on quartz plates confirm that the emission peak at 460nm does not belong to charge-transfer transition since there is no new absorption that occurs in their absorption spectra.As we know,an exciplex is formed when the excited state of a very polarizable species participates in charge-transfer interactions with other polar or polarizable species.Generally,the exciplex can be described 18by a function ex =c 1͉DA ͘loc *+c 2͉DA ͘CT *,which expresses the quantum me-chanical mixing of the locally ͑LOC ͒excited exciplex con-figuration ͉DA ͘loc *=a 1͉D *A ͘+a 2͉DA *͘,and charge-transfer ͑CT ͒exciplex configuration,͉DA ͘CT *=b 1͉D +A −͘+b 2͉D −A +͘.Whereas the coefficients c 1and c 2determine the contribu-tions of the LOC and CT configurations to the exciplex,the coefficients a 1and a 2are the amplitudes of the two compo-nent state of the LOC configuration emerging as a result of the excitonic resonance between states ͉D *A ͘and ͉DA *͘with the excitation localized on the donor and acceptor,respec-tively.Furthermore,the coefficients b 1and b 2determine the amplitudes of two extreme CT states,͉D +A −͘and ͉D −A +͘.The relation between amplitudes of various components of ex and the exciplex energy ͑E exc ͒depend on the difference between the ionization potential of the donor ͑I D ͒and elec-tron affinity of the acceptor ͑A A ͒of the molecular exciplex components.If the difference between electron affinities ͑LUMO level positions ͒is smaller than that between ioniza-tion potentials ͓highest occupied molecular orbital ͑HOMO ͒level positions ͔of donor and acceptor species,the formation of D *by the excessive electron transfer from the LUMO of A −to the LUMO of D +becomes dominating and exciplexes of the ͉D *A ͘-type are efficiently produced.The cross recom-bination of a hole from a HTL molecule ͑D +͒and an electron from an ETL molecule ͑A −͒results to emission of ͉D +A −͘state in the presence of oppositely charged molecules pro-duced as a rule in OLEDs operating under external electric field,and this special emitting species have been named “electroplex.”3The energy diagram 7,19of TPD/PBD heterojunction and several possible radiation processes are shown by the inset in Fig.3.For the high injection barrier for holes ͑0.7eV ͒at the TPD/PBD interface,some holes will be blocked by PBD and accumulate at the TPD/PBD interface.Similarly,electron in-jection barrier is 0.4eV at the TPD/PBD interface,andpartsFIG.1.͑Color online ͒The EL spectra of the device ITO/TPD ͑105nm ͒/Al at different applied voltages.The inset shows the normalized EL spectra at different applied voltages and the PL spectrum of TPD film under excitation wavelength of 325nm,as well as the EL and PL of PBDfilm.FIG.2.͑Color online ͒The normalized EL spectra of the bilayer device ITO/TPD ͑100nm ͒/PBD ͑45nm ͒/Al at different applied voltages.Note that these are normalized at 470nm.The inset shows its PL spectrum under excitation wavelength of 325nm.of electrons will be blocked by TPD and accumulate at the TPD/PBD interface,while other electrons will tunnel through the interface into TPD layer—that is the reason why monomolecular emissions from TPD ͑especially the emis-sion peak at ϳ400nm ͒and exciplex emission ͑maximized at ϳ480nm ͒can be observed.The amount of holes accumu-lated at the TPD/PBD interface increases with applied volt-age,and sequentially the electric field in the bulk redistrib-utes.As a result,the electric field in the PBD layer gets higher than that in the TPD layer,which will make the elec-tron mobility in the PBD layer increase dramatically.In this way,more electrons tunnel into the TPD layer and exciton radiations from TPD get more intense.At the same time,cross recombination takes place between charge carriers across the TPD/PBD interface ͑which corresponds to process 2͒and it results to 460nm emission band.After tunneling through the TPD/PBD interface,electrons will form excitons with holes in TPD and then follow processes 3and 1:pro-cess 3corresponds to monomolecular emissions of TPD and process 1corresponds to ͑TPD *PBD ͒-type exciplex emission maximized at ϳ480nm ͑ϳ2.6eV ͒.10,14As a further proof,one can see that the relative emission intensities at 400and 420nm increase significantly with in-creasing applied voltages ͑see Fig.2͒,which implies that more electrons tunnel through the TPD/PBD interface and form excitons in the TPD layer with increasing applied volt-ages.It is worthy to note that the ratio of EL emission inten-sity at ϳ400nm to that at ϳ420nm ͑I 400nm /I 420nm ͒of the bilayer device ITO/TPD ͑100nm ͒/PBD ͑45nm ͒/Al in-creases with applied voltages,as shown in Fig.3.However,the ratio I 400nm /I 420nm for the single-layer device ITO/TPD ͑105nm ͒/Al increases at the beginning and then de-creases with increasing applied voltages ͑not shown here ͒.Under higher electric fields,more charge carriers accumulate at the TPD/PBD interface and more TPD excitons will be produced;however,the contact area between TPD and PBD is limited and the quantity of holes in vibration levels gets less—that is the reason why the emission peak at ϳ460nm gets more and more intense but the intensity of the emission peak at ϳ480nm gradually decreases under high electric fields.Excitons get more energy under higher electric fields,so that the intensity of the emission peak at ϳ400nm gets more and more intense than that of the emission peak at ϳ420nm with increasing applied voltages.In conclusion,we have observed exciplex emission ͑maximized at around 480nm ͒and electroplex emission ͑maximized at around 460nm ͒coexisting at the TPD/PBD interface,and they compete with each other under high elec-tric fields.The emission peak at ϳ460nm is from elec-troplex emission as the result of charge carrier cross recom-bination at the TPD/PBD interface,and the emission peak at ϳ480nm originates from ͑TPD *PBD ͒-type exciplex.This project was supported by the National Natural Sci-ence Foundation of China ͑60406006and 10434030͒,the Beijing Natural Science Foundation ͑2062019͒,the Beijing NOV A program ͑2006B20͒,and the “973”National Key Ba-sic Research Special Foundation of China ͑2003CB314707͒.1B.K.Crone,P.S.Davids,I.H.Campbell,and D.L.Smith,J.Appl.Phys.87,1974͑2000͒.2H.J.Snaith,A.C.Arias,A.C.Morteani,C.Silva,and R.H.Friend,Nano Lett.2,1353͑2002͒.3T.Granlund,L.A.A.Petterson,M.R.Anderson,and O.Inganäs,J.Appl.Phys.81,8097͑1997͒.4D.D.Gebler,Y .Z.Wang,D.-K.Fu,T.M.Swager,and A.J.Epstein,J.Appl.Phys.108,7842͑1998͒.5K.Itano,H.Ogawa,and Y .Shirota,Appl.Phys.Lett.72,636͑1998͒.6J.Rommens,A.Vaes,M.Van der Auweraer,F.C.De Schryver,H.Bässler,H.Vestweber,and J.Pommerehne,J.Appl.Phys.84,4487͑1998͒.7H.Ogawa,R.Okuda,and Y .Shirota,Appl.Phys.A:Mater.Sci.Process.67,599͑1998͒.8X.-T.Tao,Y .-D.Zhang,T.Wada,H.Sasabe,H.Suzuki,T.Watanabe,and S.Miyata,Adv.Mater.͑Weinheim,Ger.͒10,226͑1998͒.9H.Cao,X.C.Gao,and C.H.Huang,Appl.Surf.Sci.161,443͑2000͒.10G.Giro,M.Cocchi,J.Kalinowski,P.Di Marco,and V .Fattori,Chem.Phys.Lett.318,137͑2000͒.11B.Hu,Z.Yang,and F.E.Karasz,J.Appl.Phys.76,2419͑1994͒.12A.Horvath and K.L.Stevenson,Coord.Chem.Rev.153,57͑1996͒.13J.Thompson,R.I.R.Blyth,M.Mazzeo,M.Anni,G.Gigli,and R.Cingotani,Appl.Phys.Lett.79,560͑2001͒.14J.Kalinowski,M.Cocchi,P.Di Marco,W.Stampor,G.Giro,and V .Fattori,J.Phys.D 33,2379͑2000͒.15S.Y .Yang,D.Liu,Y .Jiang,F.Teng,Z.Xu,Y .Hou,and X.R.Xu,Eur.Phys.J.B 52,329͑2006͒.16K.-H.Choi,D.-H.Hwang,H.-M.Lee,L.-M.Do,and T.Zyung,Synth.Met.96,123͑1998͒.17A.J.Campbell,D.D.C.Bradley,ubender,and M.Sokolowski,J.Appl.Phys.86,5004͑1999͒.18M.Cocchi,D.Virgili,C.Sabatini,and J.Kalinowski,Chem.Phys.Lett.421,351͑2006͒.19Y .Shirota,Y .Kuwabara,H.lnada,T.Wakimoto,H.Nakada,Y .Yonemoto,S.Kawami,and K.lmai,Appl.Phys.Lett.65,807͑1994͒.FIG.3.͑Color online ͒The ratio of emission intensity at 400nm to that at 420nm ͑I 400nm /I 420nm ͒for the bilayer device ITO/TPD ͑100nm ͒/PBD ͑45nm ͒/Al at different applied voltages.The inset shows the energy diagram of the TPD/PBD heterojunction and several possible radiation processes.。