砂基液化的因素筛选及预测模型
- 格式:pdf
- 大小:384.35 KB
- 文档页数:7
砂土液化的判别及处理建议前言:本文就目前的国内外的研究成果和实验方法作了一个总体的概括,指出现阶段对砂土液化研究中存在的一些问题。
并对砂土液化问题研究的趋势提出了一些观点。
饱和的松散砂土在动荷载作用下丧失其原有强度而急剧转变为液体状态,即所谓振动液化现象。
这种振动液化现象是一种特殊的强度问题,它以强度的大幅度骤然丧失为特征。
砂土地层液化使得地基失效从而导致房屋开裂。
因此判断砂土地基与否以及对可能液化砂土地基进行处理,是非常有必要的。
1 振动液化的机理和影响因素1.1 饱和砂土的液化机理饱和砂土是砂和水组成的两相复合体系——砂粒堆积成土的骨架,而砂粒孔隙间充满了水。
饱和砂土的液化机理有三种:(1) 砂沸是指当一个饱和砂沉积体中的孔隙水压力由于地下水头变化而上升到等于或超过它的上覆有效压力时,该饱和砂沉积体就会发生上浮或“沸腾”现象,并且全部丧失承载力。
(2) 流滑是饱和松砂的颗粒骨架在单程或剪切作用下,呈现出不可逆的体积压缩,在不排水的条件下,引起孔隙水压力增大和有效应力剪小,最后导致“无限度”的流动变形。
(3) 循环活动性主要曾被发现于相对密度较大的(中密以上到紧密)饱和无粘性土的固结不排水循环三轴或循环单剪和循环扭剪和循环试验中[1]。
为了浅显地说明问题,假定振前砂土骨架是一些均匀圆颗粒砂堆积成的松散结构,如图1-a所示,当其受到水平方向的动剪应力作用后,显然,土骨架由不稳定的堆积状态趋向稳定的堆积状态,颗粒靠紧,体积缩小,如图1-c。
在由松变密过程中,孔隙间充满的水在振动中受颗粒挤压,短时间内无法排出,故瞬间孔隙水压力上升,颗粒间有效压力减小,砂粒间相互脱离接触,处于悬浮状态,原来的砂水复合体系变为砂水的悬液体系。
通常地基内部的砂层首先发生液化,随之在砂层内产生很高超静水压力,为了消散水压力,在一定条件下就会引起地下水自下向上的渗流。
当水在上覆土层的渗流水力梯度超过流线上的临界水力梯度时,原来在振动中没有液化的上覆土层,在渗透水流作用下发生浮扬现象,也产生了“液化”,上涌的水带着砂粒冒出地面,即“喷水冒砂”现象。
砂土地震液化小结1 砂土液化概述1.1 定义饱和砂土在地震、动力荷载或其他外力作用下,受到强烈震动而丧失抗剪强度,使砂砾处于悬浮状态,致使地基失效的作用或现象称为沙土液化。
1.2 危害涌沙地面沉降及地面塌陷 砂土液化 地基失效滑塌(1)涌沙:涌出的砂掩盖农田,压死作物,使沃土盐碱化、砂质化,同时造成河床、渠道、径井筒等淤塞,使农业灌溉设施受到严重损害。
(2)地面沉降及地面塌陷:饱水疏松砂因振动而变密,地面也随之而下沉,低平的滨海湖平原可因下沉而受到海湖及洪水的浸淹,使之不适于作为建筑物地基。
(3)地基失效:随粒间有效正应力的降低,地基土层的承裁能力也迅速下降,甚至砂体呈悬浮状态时地基的承栽能力完全丧失。
(4)滑塌:由于下伏砂层或敏感粘土层震动液化和流动,可引起大规模滑坡。
2 砂土地震液化机理砂土是一种松散的物质,它主要依靠颗粒间的摩擦力承受外力和自身的稳定,而这种摩擦力取决于粒间法向压力:c tan +=ϕστ式中σ为正应力,φ为内摩擦角,c 为黏聚强度,σtan φ为摩擦强度饱和沙土是由水和砂复合体系,水的突出力学特性是体积难以压缩,能承受极大的法向压力,但不能承受剪力。
砂粒间可以承受剪力,但当水体饱和时,孔隙水压力增大,砂粒间的有效应力减小,在地震过程中反复振动,最终导致有效应力减为零,砂粒悬浮,发生沙土液化。
饱和砂土在强震作用下颗粒有移动和变密的趋势,应力的承受由砂土土体骨架转向水,由于砂土渗透性不良,孔隙水压力逐渐积累,有效应力下降,当孔隙水压力积累至总应力时,有效应力为零,土颗粒在水中处于悬浮状态。
3影响砂土地震液化因素3.1 影响因素砂土体类型和性质土饱和砂土(内因)地饱和砂层的埋藏条件震地震强度液地震作用(外因)化地震持续时间3.2 土体类型和性质以砂土的性对密实度Dr以及砂土粒径和级配表征砂土液化条件表1 影响砂土地震液化的因素之土性条件因素指标对液化的影响颗粒特征粒径平均粒径d50细颗粒较容易液化,平均粒径在0.1mm左右的细砂抗液化性最差级配不均匀系数Cu不均匀系数越小,抗液化性愈差,粘性土含量愈高,愈不容易液化形状—圆粒形砂比棱角形砂易液化密度相对密实度Dr密度愈高,液化可能性愈小渗透性渗透系数K 渗透性低的砂土容易液化结构性颗粒排列胶结程度均性—原状土比结构破坏土不易液化,老砂层比新砂层不易液化压密状态超固结比OCR超压密土比正常压密砂土不易液化3.3 饱和砂层埋藏条件(1)地下水埋深(2)砂土层上的非液化粘土层厚度表2 影响砂土地震液化的因素之埋藏条件因素指标对液化的影响上覆土层上覆土层有效压力,静止土压力系数K上覆土层越厚,土的上覆有效压力越大,越不易液化排水条件边界土层渗透性排水条件良好,有利于孔隙水的排出,减小液化可能性孔隙水向外排出的渗透路径长度液化砂层厚度地震历史—遭受过历史地震的沙土比未遭受地震的沙土不易液化,但曾经发生过液化的沙土重新压密后易重新液化。
(完整版)砂⼟液化的判别砂⼟液化判别基本原理⼀、地震地球内部,聚蓄的能量,在迅速释放时,使地壳产⽣快速振动,并以波的形式从震源向外扩散、传播称为地震。
诱发地震的因素很多,当地下岩浆活动、⽕⼭喷发、溶洞塌陷、⼭崩、泥⽯流、⼈⼯爆破、⽔库蓄⽔、矿⼭开采、深井注⽔等都会引起地震的发⽣。
但是它们的强度和影响范围都较⼩,危害不太⼤;世界上绝⼤多数地震,是由地壳运动引起岩⽯受⼒发⽣弹性变形并储存能量(应⼒),当能量聚积达到⼀定的强度并超过岩⽯某⼀强度时,使岩层发⽣断裂、错动,这时蓄积的变形能量在瞬时释放所形成的构造地震;强烈的构造地震影响范围⼴、破坏性⼤,发⽣的频率⾼,占破坏性地震的90%以上。
因此在《建筑抗震设计规范》中,仅限于讨论在构造地震作⽤下建筑的设防问题。
(⼀)地震波按其在地壳传播的位置不同,可分为体波、⾯波。
1、体波在地球内部传播的波为体波。
体波⼜可分纵波和横波,纵波⼜称P 波,它是从震源向四周传播的压缩波。
这种波的周期短、振幅⼩、波速快,它在地壳内传播的速度⼀般为200-1400m/s ;它主要引起地⾯垂直⽅向的振动。
横波⼜称s波,是由震源向四周传播的剪切波。
这种波的周期长、振幅⼤、波速慢,在地壳内的波速⼀般为100-800m/s。
它主要引起地⾯的⽔平⽅向的振动。
2、⾯波在地球表⾯传播的波,⼜称L波。
它是由于体波经过地层界⾯多次反射、折射所形成的次⽣波。
它是在体波到达之后(纵波P⾸先到达,横波S次之),⾯波(L波)最后才传到地⾯。
⾯波与横波⼀样,只有横向振动,没有纵向振动,其特点是波速较慢动、周期长、振动最强,对地⾯的破坏最强的⼀种。
所以在岩⼟⼯程勘察中,我们主要关⼼的还是⾯波(L波)对场地⼟的破坏。
⼆、砂⼟液化对⼯程建筑的危害地震时由于地震波的振动,会使埋深于地下⽔位以下的饱和砂⼟和粉⼟,⼟的颗粒之间有变密的趋势,孔隙⽔不能及时地排出,使⼟颗粒处于悬浮状态,呈现液体状。
此时,⼟体内的抗剪强度暂时为零,如果建筑物的地基⼟没有⾜够的稳定持⼒层,会导致喷⽔、冒砂,使地基⼟产⽣不均匀沉陷、裂缝、错位、滑坡等现象。
砂土液化的工程地质判别法说到砂土液化,嘿,大家听起来可能有点陌生,但要是我跟你说,它就像一只“潜伏在地下的炸弹”,说不定哪天它就会“嘭”一下,把你辛辛苦苦建起来的房子给震塌了,大家就不那么淡定了吧?别着急,我慢慢给你讲,听懂了你就能发现,其实这事儿并没有想象的那么可怕,关键是咱得学会怎么判断,提前发现问题。
好了,扯远了,咱还是从头说。
砂土液化呢,说白了就是地面上的砂土在受到强烈外力,比如地震、爆炸或者是大规模建筑施工震动时,水分被挤出,砂土就会像变魔术一样,失去固体状态,变成了液体那种感觉。
你想象一下,一片看起来很坚固的沙地,突然变成了“沙泥浆”,在上面建的高楼大厦就“嘎嘣”一声掉进去了,吓得人心慌慌。
所以,砂土液化的判断,简直是建筑行业的“头等大事”。
要判断砂土会不会液化,首先得看它的“家底”。
什么是家底?那就是地基的基本情况,简单来说,地底下的土壤啥样?如果地下是松软的沙土,而且水位又特别高,这时候就容易发生液化了。
想象一下,如果这块土层就像一碗沙拉,浑浑噩噩的加上一点水分,它就有可能失去原本的形态,一触即溃。
所以说,液化危险最喜欢找那些“松软的土层”,它就像是沙滩上的海浪,一不小心就会把上面的东西给冲垮了。
就是土壤颗粒的“心态”了。
你有没有注意到,某些沙子特别细,像面粉一样,粘性弱,颗粒松散,这种土壤最容易液化。
反过来说,颗粒大、紧密的土壤,它们的“凝聚力”强,就不容易液化。
所以,咱在判断砂土会不会液化的时候,不仅得看它是不是沙子,更得看它的颗粒啥样。
细沙松散,颗粒粗大,稳得很,不容易出事。
接下来就是水文条件的事儿。
地下水太高,简直就是“火上加油”。
你想,地下水位一旦上升,土壤的水分就被加持,土壤的“浮力”也变得更强。
特别是遇到地震或其他震动,这时候那一层沙子就像是加了弹簧的弹力床,随时准备弹起来,没地方去的水分又会像泄洪一样被挤出去,砂土液化的风险就一下子增加。
这个道理就像是你往盆里倒水,水位高了,水就开始溢出来,土壤被水撑起来,自然就没了稳固性。
砂土液化预测的Fisher判别分析模型及应用赵小敏;曹丽文【摘要】针对砂土地震液化预测问题,基于Fisher判别分析原理(FDA),选用平均粒径、不均匀系数、标贯击数、地下水水位、砂层埋深、剪应力与有效上覆应力比、地震烈度.震中距等8个实测指标为判别因子,建立Fisher线性判别函数模型,对砂土液化进行预测.研究结果表明,Fisher判别分析结果与神经网络输出结果一致,优于规范法和Seed法判别结果,验证了该模型的合理性和可靠性.运用该模型进行判别分析,简易方便,分类效率高,对砂土液化判别快速、有效,模型适用性强,具有一定的工程应用前景.%For the prediction of seismic liquefaction of sand, Fisher discriminant model is established to the prediction of sand liquefaction based on the principle of Fisher discriminant analysis theory with eight factors listed as follows: mean diameter, coefficient of non-uniformity, blow number of standard penetration test, underground water depth, sand depth, ratio of shearing stress to effective overburden stress, seismic intensity, epicenteral distance. Through computing practical examples and assessing the model, the Fisher discriminant analysis model is manifested to be of rationality and reliability and the model identification results are consistent with the neural network output, and are better than the discriminant results with the specification method and Seed method. It is easy and efficient to make discriminant analysis using this model and it can provide efficient means to predict sand liquefaction.【期刊名称】《水文地质工程地质》【年(卷),期】2012(039)003【总页数】5页(P129-133)【关键词】砂土液化;地震;Fisher判别分析【作者】赵小敏;曹丽文【作者单位】中国矿业大学资源与地球科学学院,徐州221008;淮北师范大学物理与电子信息学院,淮北235000;中国矿业大学资源与地球科学学院,徐州221008【正文语种】中文【中图分类】P642.27土体液化是指饱和状态砂土或粉土在一定强度的动荷载作用下表现出的类似液体的性质,完全丧失强度和刚度的现象[1]。
关于砂土液化的一些认识摘要:近些年,国内外砂土液化现象屡见不鲜,因此给人民群众带来的损失也是难以估量。
如何评价场地的地震液化等级,采取适当措施避免其对工程带来的不利影响,是目前每一个岩土工程师工作的重中之重。
本文从砂土液化的概念,形成机理,影响因素,判别方法,防治措施几个方面来阐述自己对其一些简单的认识。
关键词:饱和砂土;液化机理;影响因素;地基处理饱和砂土在地震、动荷载或其它外力作用下,受到强烈振动而丧失抗剪强度,使砂粒处于悬浮状态,致使地基失去承载力的现象成为砂土液化。
砂土液化在地震时可大规模地发生并造成严重危害。
在中国1966年的邢台地震,1975年的海城地震和1976年的唐山地震等几次大地震中,有些建筑物的破坏,就是由砂土液化造成的。
国外也有类似的例子,在美国1964年的阿拉斯加地震中,砂土液化也使许多建筑物下沉、歪斜和毁坏,有的地下结构甚至浮升到地面。
1925年,美国的舍费尔德土坝在地震时全部崩溃,也是由坝底部分饱水砂土振动液化所致。
1 液化的机理从力学性质来说,物质在固体状态时,同时具有抵抗体变(体积应变)和形变(剪应变)的能力,因此固体物质在力的作用下,内部可以同时存在球应力张量和偏应力张最状态。
理想液体只具有抵抗体变的能力,而没有抵抗形变的能力,粘滞液体也只有在形变运动过程中才产生与剪应变速率相当的剪应力。
物质从固体状态转化为液体状态的液化现象,从力学观点看,可以说是它的抗剪强度在某种条件下趋于捎失的过程。
对于砂土,它的抗剪强度主要依靠固体颗粒间的摩擦阻力。
如果砂土中颗粒间存在摩擦阻力,砂土呈固体状态,如果砂土颗粒间的接触压力等于或趋近于零,摩擦阻力也等于或接近于零,砂土就呈液体状态。
2 液化的影响因素影响砂土液化的因素很多,如砂土的地质成因和年代,颗粒的组成,大小、排列方式和形状以及松密程度,应力状态,应力历史,渗透性,压缩性,地震特性(如震级,震中距、持续时间)以及排水条件和边界条件,本文从如下几个方面进行简单分析:(1)土的物理力学性质土的颗粒越粗,平均粒径越大,动力稳定性就越高。
砂土的液化及防范措施【内容提要】明确砂土液化影响因素,判定液化等级,消除液化的措施及要求。
【主题词】砂土液化1、前言饱和砂土(含粉土,泛指无粘性土和少粘性土)在动力荷载(循环震动)作用下表现出类似液体性状而完全失去承载力的现象。
砂土颗粒间无内聚力的松散砂体,主要靠粒间摩擦力维持本身的稳定性和承受外力。
当受到振动时,粒间剪力使砂粒间产生滑移,改变排列状态。
如果砂土原处于非紧密排列状态,就会有变为紧密排列状态的趋势,如果砂的孔隙是饱水的,要变密实效需要从孔隙中徘出一部分水,如砂粒很细则整个砂体渗透性不良,瞬时振动变形需要从孔隙中排除的水来不及排出于砂体之外,结果必然使砂体中空隙水压力上升,砂粒之间的有效正应力就随之而降低,当空隙水压力上升到使砂粒间有效正应力降为零时,砂粒就会悬浮于水中,砂体也就完全丧失了强度和承载能力,这就是砂土液化。
地震、波浪、车辆行驶、机器震动等都可能引起饱和砂土的液化。
其中以地震引起的大面积甚至深层的砂土液化危害最大。
2、砂土液化的形成机制砂土受振动时,每个颗粒都受到其值等于振动加速度与颗粒质量乘积的惯性力的反复作用。
由于颗粒间没有内聚力或内聚力很小,在惯性力周期性反复作用下,各颗粒就都处于运动状态,它们之间必然产生相互错动并调整其相互位置,以便降低其总势能最终达到最稳定状态。
如果砂土位于地下水位以上的包气带中,由于空气可压缩又易于排出,通过气体的迅速排出立即可以完成这种调整与变密过程,此时只有砂土体积缩小而出现的“覆陷”现象,不会液化。
如果砂土位于地下水位以下的饱水带,情况就完全不同,此时要变密就必须排水。
地层的振动频率大约为1一2周期/秒,在这种急速变化的周期性荷载作用下,伴随每一次振动周期产生的孔隙度瞬时减小都要求排挤出一些水,如砂的渗透性不良,排水不通畅,则前一周期的排水尚未完成,下一周期的孔隙度再减小又产生了。
应排除的水不能排出,于是就产生了剩余孔隙水压力或超孔隙水压力。
探讨砂土的液化判别及其影响因素0 引言由地震產生的地基土液化危害已被工程界普遍认识和接受,地基土的液化是造成各类工程地基失效的首要原因。
地震时,饱和砂土的液化表现为喷砂冒水、地面变形、开裂下沉、滑移等,常引起建筑物的沉降、倾斜、甚至毁灭性的破坏。
判定地基土的液化可能性已成为工程勘察设计中的一项重要工作。
为了减轻建筑物的地震破坏,避免人员伤亡,减少经济损失,对地基液化产生的灾害应以预防为主,在地震易发区及强震区,应慎重选择建筑场地。
一般情况下,建筑场地应尽量避开可能液化的土层分布地段,应以地形平坦、液化土层及地下水埋藏较深、上覆非液化土层较厚的地段作为建筑场地。
1 砂土的液化机理及影响因素1.1 砂土液化机理饱和的疏松砂土体在地震或其他外力作用下,颗粒间的位置必然产生调整,以最终达到稳定的紧密排烈状态,饱和砂土要变密实就必须排水。
在地震过程的短暂时间内,由于孔隙水压力急剧增大,来不及消散,当孔隙水压力大到总应力值时,饱和砂土就丧失了抗剪强度,颗粒悬浮在水中,砂土体即发生液化[1]。
1.2 影响砂土液化的主要因素地震液化是由多种因素综合作用的结果,包括内因(土的颗粒组成、密度、埋深条件、地下水位、沉积环境和地质历史等)和外因(地震动强度和持续时间等)[2]。
(1)土性条件:主要包括土的颗粒组成、颗粒形状、土的密度等。
土的颗粒越粗,平均粒径越大,稳定性就越高。
因此粗、中、细、粉砂的液化可能性逐级增大。
同一级砂土中,颗粒的级配越好,即不均匀系数Cu越大,稳定性就越高。
砂土的密度是影响动力稳定性的根本因素,土的密度越高,液化的可能性越小。
(2)埋藏条件:液化砂层埋藏较深,当上覆以较厚的非液化粘性土层时,由于受到较大的覆盖层自重压力和侧压力,孔隙水压力很难上升到足以克服覆盖层压力的程度,因而抑制了液化,而直接出露于地表的饱水砂层最易于液化。
排水条件良好的,有利于孔隙水的消散,不易于液化。
(3)动荷条件:主要指震动强度、持续时间等。