第八章 电力系统中性点接地方式
- 格式:ppt
- 大小:1.65 MB
- 文档页数:47
第八章 电力系统中性点接地方式第一节 概述·中性点接地方式:电力系统中性点与大地间的电气连接方式。
·中性点接地方式类型:①非有效接地系统或小接地电流系统:中性点不接地,经消弧线圈接地,经高阻抗接地的系统。
X 0/X 1>3,R 0/X 1>1。
②有效接地系统或大接地电流系统:中性点直接接地,经低阻抗接地的系统。
X 0/X 1≤3,R 0/X 1≤1。
X 0零序电抗, R 0零序电阻,X 1正序电抗。
第二节 中性点非有效接地系统一、中性点不接地系统设三相电源电压W V U U U U ∙∙∙、、对称,各相对地电压为W V U U U U ∙∙∙'''、、,中性点电压为∙no U 。
1、正常运行时中性点电压jd U U phno --=∙∙11ρ 式中,WV U W V U C C C C C C ++++=∙ααρ2,)(3W V U C C C g d ++=ω。
(1)当架空线路经过完全换位时,各相导线的对地电容是相等的,这时∙ρ=0,∙no U =0,中性点O 对地没有电位偏移。
(2)当架空线路不换位或换位不完全时,各相对地电容不等,这时∙ρ≠0,∙no U ≠0,中性点O 对地存在电位偏移。
2、单相接地故障①金属性接地故障点零序电压∙∙∙=-=o U U U U )0(。
电容电流(接地电流)∙∙∙=-=o U C U C j U C j I ωω33,绝对值I C =3ωCU ph 。
(1)中性点对地电压∙o U 与接地相的相电压大小相等,方向相反,并等于电网出现的零序电流。
(2)故障相的对地电压降为零;两健全相得对低电压为相电压的√3倍,其相位差为60º,而不是120º。
(3)三个相电压仍保持对称和大小不变,故对电力用户的继续工作没有影响。
也是这种系统的主要优点。
(4)两健全相的电容电流相应地增大为正常时相对地电容电流的√3倍,分别超前相应的相对地电压90º;流过接地点的单相接地电流I C 为正常时电容电流的3倍,相位超前中性点对地电压90º。
电力系统中性点不接地、经电阻接地、经消弧线圈接地、直接接地大全!电力系统中性点运行方式有不接地、经电阻接地、经消弧线圈接地或直接接地等多种。
我国电力系统目前所采用的中性点接地方式主要有三种:即不接地、经消弧线圈接地和直接接地。
小电阻接地系统在国外应用较为广泛,我国开始部分应用。
1、中性点不接地(绝缘)的三相系统各相对地电容电流的数值相等而相位相差120°,其向量和等于零,地中没有电容电流通过,中性点对地电位为零,即中性点与地电位一致。
这时中性点接地与否对各相对地电压没有任何影响。
可是,当中性点不接地系统的各相对地电容不相等时,及时在正常运行状态下,中性点的对地电位便不再是零,通常此情况称为中性点位移即中性点不再是地电位了。
这种现象的产生,多是由于架空线路排列不对称而又换位不完全的缘故造成的。
在中性点不接地的三相系统中,当一相发生接地时:一是未接地两相的对地电压升高到√3倍,即等于线电压,所以,这种系统中,相对地的绝缘水平应根据线电压来设计。
二是各相间的电压大小和相位仍然不变,三相系统的平衡没有遭到破坏,因此可继续运行一段时间,这是这种系统的最大优点。
但不许长期接地运行,尤其是发电机直接供电的电力系统,因为未接地相对地电压升高到线电压,一相接地运行时间过长可能会造成两相短路。
所以在这种系统中,一般应装设绝缘监视或接地保护装置。
当发生单相接地时能发出信号,使值班人员迅速采取措施,尽快消除故障。
一相接地系统允许继续运行的时间,最长不得超过2h。
三是接地点通过的电流为电容性的,其大小为原来相对地电容电流的3倍,这种电容电流不容易熄灭,可能会在接地点引起弧光解析,周期性的熄灭和重新发生电弧。
弧光接地的持续间歇性电弧较危险,可能会引起线路的谐振现场而产生过电压,损坏电气设备或发展成相间短路。
故在这种系统中,若接地电流大于5A时,发电机、变压器和电动机都应装设动作于跳闸的接地保护装置。
2、中性点经消弧线圈接地的三相系统中性点不接地三相系统,在发生单相接地故障时虽还可以继续供电,但在单相接地故障电流较大,如35kV系统大于10A,10kV系统大于30A时,就无法继续供电。
电力系统中性点接地方式研究1. 引言电力系统是现代社会中不可或缺的基础设施之一。
而电力系统的接地方式在保障系统安全稳定运行中起着重要作用。
其中,中性点接地方式是一种常用的接地方式。
本文将围绕电力系统中性点接地方式展开研究,并讨论其优缺点以及适用场景。
2. 中性点接地方式的定义和原理中性点接地方式是指将电力系统的中性点连接到地面成为接地点。
在电力系统中,中性点是指电源系统的零线或者中间点。
中性点接地方式通过将电力系统的中性点与地之间建立导通来保证系统的安全可靠运行。
中性点接地方式的原理是基于电力系统中存在不对称故障电流以及系统的短路电流。
中性点接地方式可将故障电流引入接地系统中从而达到减小故障电流和系统损伤的目的。
中性点接地方式一般包括直接接地方式、绝缘中性点接地方式和阻抗中性点接地方式。
3. 直接接地方式直接接地方式是指将电力系统的中性点直接与地面连接。
该方式对系统的故障电流有较好的限制作用。
当电力系统出现故障时,故障电流将通过接地导线流入地面,从而避免了故障电流在系统中流动导致系统的破坏。
这种方式具有简单可行、成本较低的优点。
然而,直接接地方式容易造成电流过大,可能引发火灾和电击等安全问题。
4. 绝缘中性点接地方式绝缘中性点接地方式是指电力系统的中性点通过绝缘设备与地电网分离,以避免故障电流通过接地导线流入地面。
该方式主要采用绝缘变压器或绝缘连接器来实现。
绝缘中性点接地方式可以有效降低故障电流的产生,从而减少系统的故障率。
但是,绝缘中性点接地方式需要采用额外的绝缘设备,增加了系统的复杂性和成本。
5. 阻抗中性点接地方式阻抗中性点接地方式是指将电力系统的中性点通过接入阻抗设备与地接地。
阻抗中性点接地方式能够有效地限制故障电流的大小,从而减小故障带来的影响。
该方式具有较低的接地电流和较好的安全性能。
然而,阻抗中性点接地方式需要考虑接地设备的阻抗数值及其选择,需要经过详细的计算和设计。
6. 不同接地方式的比较和选择不同的中性点接地方式在实际应用中具有各自的优缺点。
电力系统中性点接地的三种方式有效接地系统(又称大电流接地系统)小电流接地系统(包含不接地和经消弧线圈接地)经电阻接地系统(含小电阻、中电阻和高电阻)大电流接地系统用于110kV及以上系统及。
该系统在单相接地时,另外两相对地电压基本不变,系统过电压较低,对110kV及以上系统抑制过电压有利,但此时接地电流很大,运行设备很难长时间通过此电流,接地相对地电压很低,甚至为零,系统电压严重不平衡,许多电气设备无法正常工作,必须及时切除接地点。
大电流接地系统要求部分主变的中性点接地,避免单相接地时短路电流过大。
这些主变必须有一个三角形接线的绕组,以构成零序通路,降低零序阻抗。
主变的零序阻抗一般为正序阻抗的1/3,线路的零序阻抗一般为正序阻抗的3倍。
作为220kV枢纽变电站的主变必须并列运行。
其中一台主变的220kV侧中性点和110kV侧中性点必须直接接地,其他主变中性点通过间隙接地。
好处是110kV侧零序阻抗稳定,有利于该110kV系统零序定值的计算和整定,零序过流保护的保护范围变化很小,容易保持其阶梯特性;未220kV系统提供稳定的零序电源,保持220kV 系统零序保护的方向性和稳定性。
主变220kV侧中性点和110kV侧中性点均加装间隙保护,保护动作跳开各侧断路器。
作为220kV负荷变电站的主变必须分列运行。
此时所有主变的220kV侧中性点必须通过间隙接地,110kV侧中性点全部接地运行。
所有主变不能相220kV系统提供零序电流,110kV侧零序阻抗稳定。
主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。
作为链式接线的220kV变电站,其220kV侧母线并列运行并有两个电源。
虽然主变分列运行,但必须有一台主变的220kV侧中性点直接接地,其他主变的220kV 侧中性点通过间隙接地。
110kV侧中性点必须全部直接接地。
主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。
目前运行的110kV变电站全部主变均分裂运行,其电源侧母线为单电源。
电力系统中性点接地方式及其零序保护电力系统中性点是指发电机、变压器的中性点且指变压器Y形接线,通常情况下,接地中性点管理方式主要有两种,中性点不接地和中性点接地,而中性点接地根据接地方式不同又可以分为中性点经消弧线圈接地以和中性点直接接地。
本文主要介绍了中性点三种接地方式的特点及其在单相接地故障发生时,常见零序保护方式及其特点。
标签:中性点接地方式;零序保护;电力系统0 前言电力系统中绝大多数故障都是单相接地故障。
为提高其动作灵敏性,均装设专门的接地保护装置。
该装置构成简单,易于实现。
通常反映接地故障时的零序电流和电压,称为零序保护装置。
零序保护装置的装设可以使相间短路的保护接线用电流互感器不完全星形接法来实现,简化了设备。
而中性点不接地、中性点经消弧线圈接地系统在发生单相接地故障时,由于故障电流小,线电压仍然对称,系统还可以持续运行1-2小时,故称为小电流接地系统。
除非有特殊要求,该系统的接地保护才作用于跳闸,否则接地保护只作用于信号,提醒运行人员注意。
下面就本人在工作学习过程中的知识点,做一简单介绍。
1 中性点运行方式及其特点介绍1.1 中性点不接地系统当出现故障时,造成单相接地现象,单向回路短路,造成使故障相动作电压降低为零,同时非故障相电压相对升高,成为高线电压。
而中性点电压由于发生偏移变化,等同于一相电压。
接地点电流也因此产生变化,等同于非故障相对地电容电流的和,而数值也因此成为正常运行时单相对地电容电流的3倍。
虽然出现中性点的偏移导致电相、电压以及电流的变化,但线压仍然以对称的形式存在保证对称供应,可以连续继续运行2小时以上。
此外,由于中性点发生接地现象,导致接地容性电流的产生并且较强,因此导致接地点在一定范围内产生电弧,对周边安全造成影响。
此种方法为小电流接地系统方法,通常针对与电流相对较小的电力系统,如6kV以下系统。
1.2 中性点接地系统1.2.1 中性点经消弧线圈接地系统当采用中性点经消弧线圈接地系统时,其正常运行状态下电压、电流以均衡、对称额形式存在。
第八章电力系统中性点接地方式8-1 概述电力系统三相交流发电机、变压器接成星形绕组的公共点,称为电力系统中性点。
电力系统中性点与大地间的电气连接方式,称为电力系统中性点接地方式。
我国电力系统广泛采用的中性点接地方式主要有三种,即:不接地,经消弧线圈接地和直接接地。
根据主要运行特征,可将电力系统按中性点接地方式归纳为两大类:(1)非有效接地系统或小接地电流系统。
含中性点不接地、经消弧线圈接地及经高阻抗接地的系统。
通常这类系统有X0X1>3,R0X1>1。
当发生单相接地故障时,接地电流被限制到较小数值,非故障相的对地稳态电压可能达到线电压。
(2)有效接地系统或大接地电流系统。
含中性点直接接地及经低阻抗接地的系统。
通常这类系统有X0X1≤3,R0X1≤1。
当发生单相接地故障时,接地电流有较大数值,非故障相的对地稳态电压不超过线电压的80%。
电力系统的中性点接地方式是一个涉及到多方面的综合性技术问题。
包括:短路电流大小、供电可靠性、过电压大小及绝缘配合、继电保护合自动装置的配置及动作状态、系统稳定、通信干扰等等。
8-2 中性点非有效接地系统一、中性点不接地系统中性点不接地又叫做中性点绝缘。
在这种系统中,中性点对地的电位是不固定的,在不同的情况下,它可能具有不同的数值。
中性点对地的电位偏移称为中性点位移。
中性点位移的程度,对系统绝缘的运行条件来说是至为重要的。
1.中性点不接地系统的正常运行中性点不接地系统正常运行时,中性点的对地电位,称为不对称电压,用U no表示。
U nO =−UU Y U +U V Y V +U W Y W Y U +Y V +Y W(8−2) 取UU 为参考量,即 UU =U U =U ph , U V =a 2U ph , U W =aU ph (8−3) 其中:a =e j120°=1+j 3, a 2=e −j120°=−1−j 3,1+a +a 2=0 考虑到三相泄漏电导g U 、g V 、g W 大致相同,以g 表示: U nO =−U ph ρ1(8−4) ρ=C U +a 2C V +aC W U V W (8−5) d =3g U V W(8−6) ρ近似地代表中性点不接地系统正常运行时不对称电压UnO 与相电压U ph 的比值(因d ≪1),称为系统的不对称度。
平丰电气6月6日山东平丰电气设备有限公司主要生产高中低压电力电气产品,我们将提供有价值的阅读,与中国电力电气企业共同成长。
——电力系统中性点接地方式是一个很重要的综合性问题,今天我们来聊一聊这方面的问题。
电力系统中性点是指三相绕组作星形连接的变压器和发电机的中性点。
电力系统中性点与大地间的电气连接方式称为电力系统中性点接地方式(即中性点运行方式)。
中性点非有效接地,发生单相接地时,因发生单相接地时由于不构成短路回路,接地电流被限制到较小数值,故又称为小接地电流系统;而中性点有效接地系统,接地电流很大,故又称为大接地电流系统。
我国电力系统广泛采用的中性点接地方式主要有中性点不接地、中性点经消弧线圈接地及中性点直接接地三种。
电力系统中性点的运行方式不同,其技术特性和工作条件也不同,还与故障分析、继电保护配置、绝缘配合等均密切相关。
那么究竟采用哪一种中性点运行方式呢?这就要综合考虑到电网的绝缘水平、系统供电的可靠性和连续性的要求、电网的造价以及对通信线路的干扰程度等多方面因素。
为了分析这个问题,首先我们要了解中性点接地与否,在单相接地故障时,故障电压的情况。
1、中性点不接地如上图所示,当中性点不接地系统发生单相接地故障时,故障相电压为零。
非故障相相电压上升为线电压,为原来的1.732倍。
但线电压不变,对电力用户没有影响,系统还可以继续供电,一般可允许继续运行两个小时,此期间应发出信号,由工作人员尽快查清原因并解除故障,使系统正常运行。
故当线路不长、电压不高时,接地电流较小,电弧一般能自动熄灭,特别是35kV 及以下的系统中,绝缘方面的投资增加不多,而供电可靠性较高的优点突出,所以中性点宜采用不接地的运行方式。
当电压高、线路长时,接地电流较大。
可能产生稳定电弧或间歇性电弧,而且电压等级较高时,整个系统绝缘方面的投资大为增加。
上述优点便不存在了。
2、中性点经消弧线圈接地单相接地时,当接地电流大于10A而小于30A时,有可能产生不稳定的间歇性电弧,随着间歇性电弧的产生将引起幅值较高的弧光接地过电压。