河南省安阳市滑县2019届中考数学第一次模拟考试试题及答案
- 格式:doc
- 大小:8.66 MB
- 文档页数:9
2019年河南省安阳市安阳县中考数学一模试卷含答案解析2019年河南省安阳市安阳县中考数学一模试卷一、选择题(每小题3分,共30分)1.(3分)﹣2019的相反数是()A.﹣2019 B.2019 C.D.﹣2.(3分)2019年2月18日清•袁牧的一首诗《苔》被乡村老师梁俊和山里的孩子小梁在《经典永流传》的舞台重新唤醒,“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084=8.4×10n,则n为()A.﹣5 B.﹣6 C.5 D.63.(3分)如图所示的几何体,它的左视图正确的是()A.B.C.D.4.(3分)下列计算正确的是()A.4m+2n=6mn B. =±5C.x3y2÷2xy=x2y D.(﹣2xy2)3=﹣6x3y65.(3分)小刚为了全家外出旅游方便,他统计了郑州市2019年春节期间一周7天的最低气温如下表:则这组数据的中位数与众数分别是()A.1,﹣2 B.﹣2,﹣2 C.1.5,1 D.1,﹣36.(3分)若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1 B.m≥﹣1且m≠0 C.m>﹣1且m≠0 D.m≠07.(3分)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F,若四边形DCFE的周长为25cm,AC的长5cm,则AB的长为()A.13cm B.12cm C.10cm D.8cm8.(3分)若一个袋子中装有形状与大小均完全相同有4张卡片,4张卡片上分别标有数字﹣2,﹣1,2,3,现从中任意抽出其中两张卡片分别记为x,y,并以此确定点P(x,y),那么点P落在直线y=﹣x+1上的概率是()A.B.C.D.9.(3分)小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A. =15 B. =15C. =D.10.(3分)如图,在菱形ABCD中,∠DAB=60°,现把菱形ABCD绕点A逆时针方向旋转30°得到菱形AB′C′D′,若AB=4,则阴影部分的面积为()A.4π﹣12+12 B.4π﹣8+12 C.4π﹣4D.4π+12二、填空题(共5小题,每小题3分,满分15分)11.(3分)计算:2﹣1﹣=12.(3分)如图,△ABC中,∠B=35°,∠BCA=75°,请依据尺规作图的作图痕迹,计算∠α= °13.(3分)如图,反比例函数y=的图象经过矩形OABC的边AB的中点E,并与矩形的另一边BC交于点F,若S△BEF=1,则k=14.(3分)如图1,则等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC的面积为.15.(3分)如图,在Rt△ACB中,∠ACB=90°,AB=10,BC=6,点N是线段BC上的一个动点,将△ACN沿AN折叠,使点C落在点C'处,当△NC'B是直角三角形时,CN的长为.三、解答题(共8小题,满分75分)16.(8分)先化简,再求值:,其中x是满足不等式﹣(x﹣1)≥的非负整数解.17.(9分)小明利用寒假进行综合实践活动,他想利用测角仪和卷尺测量自家所住楼(甲楼)与对面邮政大楼(乙楼)的高度,现小明用卷尺测得甲楼宽AE是8m,用测角仪在甲楼顶E处与A处测得乙楼顶部D的仰角分别为37°和42°,同时在A处测得乙楼底部B处的俯角为32°,请根据小明测得数据帮他计算甲、乙两个楼的高度.(精确到0.01m)(cos32°≈0.85,tan32°≈0.62,cos42°≈0.74,tan42°≈0.90,cos37°≈0.80,tan37°≈0.75)(1)九年级(1)班共有人,D级学生所在的扇形圆心角的度数为;(2)请补全条形统计图与扇形统计图;(3)该班学生体育测试成绩的中位数落在等级内;(4)若该校九年级学生共有800人,请你估计这次考试中A级和B级的学生共有多少人?19.(9分)如图,AC是⊙O的直径,点P在线段AC的延长线上,且PC=CO,点B在⊙O上,且∠CAB=30°.(1)求证:PB是⊙O的切线;(2)若D为圆O上任一动点,⊙O的半径为5cm时,当弧CD长为时,四边形ADPB为菱形,当弧CD长为时,四边形ADCB为矩形.20.(9分)小明从家去体育场锻炼,同时,妈妈从体育场以50米/分的速度回家,小明到体育场后发现要下雨,立即返回,追上妈妈后,小明以250米/分的速度回家取伞,立即又以250米/分的速度折回接妈妈,并一同回家.如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图象.(注:小明和妈妈始终在同一条笔直的公路上行走,图象上A、C、D三点在一条直线上)(1)求线段BC的函数表达式;(2)求点D坐标,并说明点D的实际意义;(3)当 x的值为时,小明与妈妈相距1 500米.21.(10分)阳光体育用品商店,在新学期开始准备购进AB两种体育器材共100件进行销售,这两种体育器材的进价、售价如下表所示:请解答下列问题: (1)如果所进的这100件体育器材全部售出,请问该体育用品高店该如何进货,才能使利润能达到1264 元?请说明理由;(2)要使此次销售所获利润最大,且所获利润不超过总进货价格的50%,请你帮该体育用品商店设计一个进货方案,如何进货才能使利润最大?最大利润是多少?22.(10分)如图,在△ABC 中,点N 为AC 边的任意一点,D 为线段AB 上一点,若∠MPN 的顶点P 为线段CD 上任一点,其两边分别与边BC ,AC 交于点M 、N ,且∠MPN+∠ACB=180°.(1)如图1,若AC=BC ,∠ACB=90°,且D 为AB 的中点时,则= ,请证明你的结论;(2)如图2,若BC=m ,AC=n ,∠ACB=90°,且D 为AB 的中点时,则= ;(3)如图3,若=k ,BC=m ,AC=n ,请直接写出的值.(用k ,m ,n 表示)23.(11分)如图,在平面直角坐标系xOy 中,抛物线y=ax 2+bx ﹣与x 轴交于A (1,0),B (﹣3,0)两点,现有经过点A 的直线l :y=kx+b 1与y 轴交于点C ,与抛物线的另个交点为D .(1)求抛物线的函数表达式;(2)若点D 在第二象限且满足CD=5AC ,求此时直线1的解析式;在此条件下,点E 为直线1下方抛物线上的一点,求△ACE 面积的最大值,并求出此时点E 的坐标;(3)如图,设P 在抛物线的对称轴上,且在第二象限,到x 轴的距离为4,点Q 在抛物线上,若以点A ,D ,P ,Q 为顶点的四边形能否成为平行四边形?若能,请直接写出点Q 的坐标;若不能,请说明理由.2019年河南省安阳市安阳县中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)﹣2019的相反数是()A.﹣2019 B.2019 C.D.﹣【解答】解:﹣2019的相反数是2019.故选:B.2.(3分)2019年2月18日清•袁牧的一首诗《苔》被乡村老师梁俊和山里的孩子小梁在《经典永流传》的舞台重新唤醒,“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084=8.4×10n,则n为()A.﹣5 B.﹣6 C.5 D.6【解答】解:0.0000084=8.4×10﹣6,则n为﹣6.故选:B.3.(3分)如图所示的几何体,它的左视图正确的是()A.B.C.D.【解答】解:从几何体的左面看所得到的图形是:.故选:B.4.(3分)下列计算正确的是()A.4m+2n=6mn B. =±5C.x3y2÷2xy=x2y D.(﹣2xy2)3=﹣6x3y6【解答】解:A、4m+2n无法计算,故此选项错误;B、=5,故此选项错误;C、x3y2÷2xy=x2y,正确;D、(﹣2xy2)3=﹣8x3y6,故此选项错误;故选:C.5.(3分)小刚为了全家外出旅游方便,他统计了郑州市2019年春节期间一周7天的最低气温如下表:则这组数据的中位数与众数分别是()A.1,﹣2 B.﹣2,﹣2 C.1.5,1 D.1,﹣3【解答】解:把这些数从小到大排列为:﹣3,﹣2,﹣2,﹣2,0,1,1,最中间的数是﹣2,则这组数据的中位数是﹣2;∵﹣2出现了3次,出现的次数最多,∴这组数据的众数是﹣2;故选:B.6.(3分)若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1 B.m≥﹣1且m≠0 C.m>﹣1且m≠0 D.m≠0【解答】解:原方程可变形为mx2﹣x﹣=0.∵关于x的一元二次方程mx2﹣x=有实数根,∴,解得:m≥﹣1且m≠0.故选:B.7.(3分)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F,若四边形DCFE的周长为25cm,AC的长5cm,则AB的长为()A.13cm B.12cm C.10cm D.8cm【解答】解:如图,∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥FC.BC=2DE,又 EF∥DC,∴四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25cm,AC的长5cm,∴BC=25﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25﹣AB)2+52,解得,AB=13cm,故选:A.8.(3分)若一个袋子中装有形状与大小均完全相同有4张卡片,4张卡片上分别标有数字﹣2,﹣1,2,3,现从中任意抽出其中两张卡片分别记为x,y,并以此确定点P(x,y),那么点P落在直线y=﹣x+1上的概率是()A.B.C.D.【解答】解:画树状图如下:由树状图可知共有12种等可能结果,其中点P落在直线y=﹣x+1上的有(﹣2,3)、(﹣1,2)、(2,﹣1)、(3,﹣2),所以点P落在直线y=﹣x+1上的概率是=,故选:B.9.(3分)小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A. =15 B. =15C. =D.【解答】解:设走路线A时的平均速度为x千米/小时,根据题意,得﹣=.故选:D.10.(3分)如图,在菱形ABCD中,∠DAB=60°,现把菱形ABCD绕点A逆时针方向旋转30°得到菱形AB′C′D′,若AB=4,则阴影部分的面积为()A.4π﹣12+12 B.4π﹣8+12 C.4π﹣4D.4π+12[来源:]【解答】解:由题意:AB=AD=DC=AB′=CB′=4,∠DAC=∠DCA=∠DC′F=30°,∵∠C′DC=60°,∴∠DFC′=90°,∵AC=AC′=4,C′D=4﹣4,∴DF=DC′=2﹣2,C′F=6﹣2,∴S阴=S扇形ACC′﹣S△ADC﹣S△DFC′=﹣×4×2﹣×(2﹣2)(6﹣2)=4π﹣12+12,故选:A.二、填空题(共5小题,每小题3分,满分15分)11.(3分)计算:2﹣1﹣= ﹣2【解答】解:原式=﹣3=﹣2,故答案为:﹣212.(3分)如图,△ABC中,∠B=35°,∠BCA=75°,请依据尺规作图的作图痕迹,计算∠α= 75 °【解答】解:∵∠B=35°,∠BCA=75°,∴∠BAC=70°,∵由作法可知,AD是∠BAC的平分线,[来源:Z#xx#]∴∠CAD=∠BAC=35°,∵由作法可知,EF是线段BC的垂直平分线,∴∠BCF=∠B=35°,∵∠ACF=∠ACB﹣∠BCF=40°,∴∠α=∠CAD+∠ACF=75°,故答案为:75.13.(3分)如图,反比例函数y=的图象经过矩形OABC的边AB的中点E,并与矩形的另一边BC交于点F,若S△BEF=1,则k= ﹣4【解答】解:设E的坐标是(m,n),则C的坐标是(2m,n),在y=中,令x=2m,解得:y=,∵S△BEF=1,∴BE•BF=1,∴|m|•|n﹣|=1,∵mn<0,解得:mn=﹣4,∴k=mn=﹣4,故答案为﹣4.14.(3分)如图1,则等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC的面积为16.【解答】解:由题可得,∠APD=60°,∠ABC=∠C=60°,∴∠BAP=∠CPD,∴△ABP∽△PCD,∴,设AB=a,则,∴y=,当x=时,y取得最大值2,即P为BC中点时,CD的最大值为2,∴此时∠APB=∠PDC=90°,∠CPD=30°,∴PC=BP=4,∴等边三角形的边长为为8,∴根据等边三角形的性质,可得S=×82=16.故答案为:16.15.(3分)如图,在Rt△ACB中,∠ACB=90°,AB=10,BC=6,点N是线段BC上的一个动点,将△ACN沿AN折叠,使点C落在点C'处,当△NC'B是直角三角形时,CN的长为或.【解答】解:①如图,当∠NC'B=90°时,C'落在AB边上,则AC'=AC=8,∴BC'=2,由△ACB∽△NC'B可得,,∴CN=CN'=;②如图,当∠NBC'=90°时,过A作AD⊥BC'于D,由AC'=AC=8,AD=BC=6,可得C'D=2,BC'=8﹣2,由△ADC'∽△C'BN,可得,∴CN=C'N=×(8﹣2)=;综上所述,当△NC'B是直角三角形时,CN的长为或.故答案为:或.三、解答题(共8小题,满分75分)16.(8分)先化简,再求值:,其中x是满足不等式﹣(x﹣1)≥的非负整数解.【解答】解:∵﹣(x﹣1)≥,∴x﹣1≤﹣1∴x≤0,非负整数解为0∴x=0原式=÷(﹣)=×==17.(9分)小明利用寒假进行综合实践活动,他想利用测角仪和卷尺测量自家所住楼(甲楼)与对面邮政大楼(乙楼)的高度,现小明用卷尺测得甲楼宽AE是8m,用测角仪在甲楼顶E处与A处测得乙楼顶部D的仰角分别为37°和42°,同时在A处测得乙楼底部B处的俯角为32°,请根据小明测得数据帮他计算甲、乙两个楼的高度.(精确到0.01m)(cos32°≈0.85,tan32°≈0.62,cos42°≈0.74,tan42°≈0.90,cos37°≈0.80,tan37°≈0.75)【解答】解:过点A作AN⊥BD于点N,在Rt△DNE,tan37°=≈0.75=,设DN=3x,则EN=4x,在Rt△DNA中,有DN=3x、AN=4x﹣8,∵ta n42°=,即≈0.9,解得:x=12,∴DN=36、AN=40,在Rt△BNA中,由题意知∠NAB=32°,∵tan32°=,∴BN=ANtan32°≈24.8,∴DB=DN+BN=36+24.8=60.8,AC=BN=24.8,答:甲楼的高为60.8m,乙楼的高为24.8m.[来源:学+科+网](1)九年级(1)班共有60 人,D级学生所在的扇形圆心角的度数为36°;(2)请补全条形统计图与扇形统计图;(3)该班学生体育测试成绩的中位数落在等级 A 内;(4)若该校九年级学生共有800人,请你估计这次考试中A级和B级的学生共有多少人?【解答】解:(1)总人数=36÷60%=60(人);D级学生所在的扇形圆心角的度数为×360°=36°,故答案为:60,36°;(2)B级的人数为:60﹣(36+3+6)=15人,百分比为×100%=25%;D级的百分比为10%;补全条形统计图与扇形统计图如下:(3)由题可得,排序后第30和31个数据在A等级内,故该班学生体育测试成绩的中位数落在等级A内,故答案为:A;(4)800×(60%+25%)=680人,答:这次考试中A级和B级的学生共有680人.19.(9分)如图,AC是⊙O的直径,点P在线段AC的延长线上,且PC=CO,点B在⊙O上,且∠CAB=30°.(1)求证:PB是⊙O的切线;(2)若D为圆O上任一动点,⊙O的半径为5cm时,当弧CD长为cm 时,四边形ADPB为菱形,当弧CD 长为cm 时,四边形ADCB为矩形.【解答】解:(1)如图连接OB、BC.∵OA=OB,∴∠OAB=∠OBA=30°,∴∠COB=∠OAB=∠OBA=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OC,∵PC=OA=OC,∴BC=CO=CP,∴∠PBO=90°,∴OB⊥PB,∴PB是⊙O的切线.(2)①的长为cm时,四边形ADPB是菱形.∵四边形ADPB是菱形,∠ADB=△ACB=60°,∴∠COD=2∠CAD=60°,∴的长==cm.②当四边形ADCB是矩形时,易知∠COD=120°,∴的长==cm.[来源:学#科#网]故答案为cm, cm;20.(9分)小明从家去体育场锻炼,同时,妈妈从体育场以50米/分的速度回家,小明到体育场后发现要下雨,立即返回,追上妈妈后,小明以250米/分的速度回家取伞,立即又以250米/分的速度折回接妈妈,并一同回家.如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图象.(注:小明和妈妈始终在同一条笔直的公路上行走,图象上A、C、D三点在一条直线上)(1)求线段BC的函数表达式;(2)求点D坐标,并说明点D的实际意义;(3)当 x的值为10或30 时,小明与妈妈相距1 500米.【解答】解:(1)∵45×50=2250(米),3000﹣2250=750(米),[来源:学科网ZXXK]∴点C的坐标为(45,750).设线段BC的函数表达式为y=kx+b(k≠0),把(30,3000)、(45,750)代入y=kx+b,,解得:,∴线段BC的函数表达式y=﹣150x+7500(30≤x≤45).(2)设直线AC的函数表达式为:y=k1x+b1,把(0,3000)、(45,750)代入y=k1x+b1,,解得:.∴直线AC的函数表达式为y=﹣50x+3000.∵750÷250=3(分钟),45+3=48,∴点E的坐标为(48,0).∴直线ED的函数表达式y=250(x﹣48)=250x﹣12000.联立直线AC、ED表达式成方程组,,解得:,∴点D的坐标为(50,500).实际意义:小明将在50分钟时离家500米的地方将伞送到妈妈手里.(3)∵3000÷30=100(米/分钟),∴线段OB的函数表达式为y=100x(0≤x≤30),由(1)线段BC的表达式为y=﹣150x+7500,(30≤x≤45)当小明与妈妈相距1500米时,即﹣50x+3000﹣100x=1500或100x﹣(﹣50x+3000)=1500或(﹣150x+7500)﹣(﹣50x+3000)=1500,解得:x=10或x=30,∴当x为10或30时,小明与妈妈相距1500米.故答案为:10或30.21.(10分)阳光体育用品商店,在新学期开始准备购进AB两种体育器材共100件进行销售,这两种体育器材的进价、售价如下表所示:请解答下列问题:(1)如果所进的这100件体育器材全部售出,请问该体育用品高店该如何进货,才能使利润能达到1264 元?请说明理由;(2)要使此次销售所获利润最大,且所获利润不超过总进货价格的50%,请你帮该体育用品商店设计一个进货方案,如何进货才能使利润最大?最大利润是多少?【解答】解:(1)设A种器材为x件,则B种器材为(100﹣x)件,可得:(30﹣22)x+(44﹣28)(100﹣x)=1264,解得:x=42.100﹣x=58(件)答:A种器材为42件,则B种器材为58件;(2)设A种器材为a件,则B种器材为(100﹣a)件,可得(30﹣22)a+(44﹣28)(100﹣a)≤50%[22a+28(100﹣a)],解得:a≥40,设利润为y,则可得:y=(30﹣22)a+(44﹣28)(100﹣a)=﹣8a+1600,因为是减函数,所以当x=40时,利润最大,即最大利润=﹣40×8+1600=1280(元).答:A种器材为40件,则B种器材为60件利润最大,最大利润是1280元.22.(10分)如图,在△ABC中,点N为AC边的任意一点,D为线段AB上一点,若∠MPN的顶点P为线段CD上任一点,其两边分别与边BC,AC交于点M、N,且∠MPN+∠ACB=180°.(1)如图1,若AC=BC,∠ACB=90°,且D为AB的中点时,则= 1 ,请证明你的结论;(2)如图2,若BC=m,AC=n,∠ACB=90°,且D为AB的中点时,则= ;(3)如图3,若=k,BC=m,AC=n,请直接写出的值.(用k,m,n表示)【解答】解:(1)如图1中,作PG⊥AC于G,PH⊥BC于H.∵AC=BC,∠ACB=90°,且D为AB的中点,∴CD平分∠ACB,∵PG⊥AC于G,PH⊥BC于H,∴PG=PH,∵∠PGC=∠PHC=∠GCH=90°,∴∠GPH=∠MPN=90°,∴∠MPH=∠NPG,∵∠PHM=∠PGN=90°,∴△PHM∽△PGN,∴==1,故答案为1.(2)如图2中,作PG⊥AC于G,PH⊥BC于H.∵∠PGC=∠PHC=∠GCH=90°,∴∠GPH=∠MPN=90°,∴∠MPH=∠NPG,∵∠PHM=∠PGN=90°,∴△PHM∽△PGN,∴=,∵△PHC∽△ACB,PG=HC,∴====.故答案为.(3)如图3中,作PG⊥AC于G,PH⊥BC于H,DT⊥AC于T,DK⊥BC于K.易证△PMH∽△PGN,∴=,∵==,∴=,∵DT∥PG,DK∥PH,∴==,∴==,∴=.23.(11分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣与x轴交于A(1,0),B(﹣3,0)两点,现有经过点A的直线l:y=kx+b1与y轴交于点C,与抛物线的另个交点为D.(1)求抛物线的函数表达式;(2)若点D在第二象限且满足CD=5AC,求此时直线1的解析式;在此条件下,点E为直线1下方抛物线上的一点,求△ACE面积的最大值,并求出此时点E的坐标;(3)如图,设P在抛物线的对称轴上,且在第二象限,到x轴的距离为4,点Q在抛物线上,若以点A,D,P,Q为顶点的四边形能否成为平行四边形?若能,请直接写出点Q的坐标;若不能,请说明理由.【解答】解:(1)设抛物线解析式为y=a(x﹣1)(x+3),即y=ax2+2ax﹣3a,∴﹣3a=﹣,解得a=,∴抛物线解析式为y=x2+x﹣;(2)作DF⊥x轴于F,EM∥y轴交AD于M,如图1,∵OC∥DF,∴=,而CD=5AC,∴OF=5OA=5,即点D的横坐标为﹣5,当x=﹣5时,y=x2+x﹣=6,则D(﹣5,6),把A(1,0),D(﹣5,6)代入y=kx+b1得,解得,∴直线l的解析式为y=﹣x+1,设E(x, x2+x﹣),则E(x,﹣x+1),∴ME=﹣x+1﹣(x2+x﹣)=﹣x2﹣2x+,∴S△ACE=S△AME﹣S△CME=•1•EM=(﹣x2﹣2x+)=﹣x2﹣x+=﹣(x+2)2+,当x=﹣2时,S△ACE有最大值,最大值为,此时E点坐标为(﹣2,﹣);(3)抛物线的对称轴为直线x=﹣1,而P在抛物线的对称轴上,且在第二象限,到x轴的距离为4,∴P(﹣1,4),设Q(t, t2+t﹣),当AP为平行四边形APDQ的一边时,如图2,点A(1,0)向左平移2个单位,向上平移4个单位得到点P(﹣1,4),则点Q向左平移2个单位,向上平移4个单位得到点D,则D(t﹣2, t2+t﹣+4),把D(t﹣2, t2+t﹣+4)代入y=x2+x﹣得(t﹣2)2+(t﹣2)﹣=t2+t﹣+4,解得t=﹣2,此时Q(﹣2,﹣);当AP为平行四边形ADPQ的对角线时,如图3,线段AP的中点坐标为(0,2),设D(m,n),则=0, =2,∴m=﹣t,n=﹣t2﹣t+,∴D(﹣t,﹣t2﹣t+),把D(﹣t,﹣t2﹣t+)代入y=x2+x﹣得t2﹣t﹣=﹣t2﹣t+,解得t1=,t2=﹣,此时Q点坐标为(,2+)或(﹣,2﹣),综上所述,Q点坐标为(﹣2,﹣)或(,2+)或(﹣,2﹣).中考数学模拟试卷一、选择题(本大题共6题, 每题4分, 满分24分)【每题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.函数12-=x y 的图像不经过( ▲ )(A ) 第一象限; (B ) 第二象限; (C ) 第三象限; (D ) 第四象限. 2.下列式子一定成立的是( ▲ )(A ) a a a 632=+; (B )428x x x =÷; (C ) aa 121=; (D )6321)(aa-=--. 3.下列二次根式中,2的同类二次根式是( ▲ ) (A )4; (B )x 2; (C )92; (D )12. 4.已知一组数据2、x 、8、5、5、2的众数是2,那么这组数据的中位数是( ▲ ) (A ) 3.5; (B ) 4; (C ) 2; (D )6.5.5.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点,那么d 的值可以取( ▲ )(A ) 11; (B ) 6; (C ) 3; (D )2.6.已知在四边形ABCD 中,AD//BC ,对角线AC 、BD 交于点O ,且AC=BD ,下列四个命题中真命题是( ▲ )(A ) 若AB=CD ,则四边形ABCD 一定是等腰梯形; (B ) 若∠DBC=∠ACB,则四边形ABCD 一定是等腰梯形; (C ) 若ODCOOB AO =,则四边形ABCD 一定是矩形; (D ) 若AC⊥BD 且AO=OD ,则四边形ABCD 一定是正方形. 二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7. 计算:=--︒0)3(30sin ▲ . 8. 方程6+=-x x 的解是 ▲ .9. 不等式组⎪⎩⎪⎨⎧≥-<+-1)12(303x x 的解集是 ▲ .10.已知反比例函数xky =的图像经过点(-2017,2018),当0>x 时,函数值y 随 自变量x 的值增大而 ▲ .(填“增大”或“减小”)11.若关于x 的方程032=--m x x 有两个相等的实数根,则m 的值是 ▲ . 12.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是 ▲ .13.抛物线522++=mx mx y 的对称轴是直线 ▲ . 14.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的 通话次数的频率是 ▲ .15.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC 的度数为 ▲ .16.如图,在梯形ABCD 中,AB//CD ,∠C=90°,BC=CD=4,52=AD ,若a AD =,=,用、表示= ▲ . 17.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC 是半高三角形,且斜边5=AB ,则它的周长等于 ▲ . 18.如图,在矩形ABCD 中,对角线BD 的长为1,点P 是线段BD上的一点,联结CP ,将△BCP 沿着直线CP 翻折,若点B 落在 边AD 上的点E 处,且EP//AB ,则AB 的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)先化简,再求值:12341311222+-++÷-+-+x x x x x x x ,其中121+=x .20.(本题满分10分)解方程组:⎩⎨⎧=-=-+②12①06522 . ,y x y xy x21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,在等腰三角形ABC 中,AB=AC ,点D 在BA 的延长线上,BC=24,135sin =∠ABC .(1)求AB 的长;(2)若AD=6.5,求DCB ∠的余切值.ACD第21题图第14题图ADE F第15题第16题图D CBA第18题图AB CD22.(本题满分10分,第(1)小题5分,第(2)小题5分)某旅游景点的年游客量y (万人)是门票价格x (元)的一次函数,其函数图像如下图. (1)求y 关于x 的函数解析式;(2)经过景点工作人员统计发现:每卖出一张门票所需成本为20元.那么要想获得年利润11500万元,且门票价格不得高于230元,该年的门票价格应该定为多少元?23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD//BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB//CD ;(2)若BD GD BC ⋅=2,BG=GE ,求证:四边形ABCD 是菱形.24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分) 如图在直角坐标平面内,抛物线32-+=bx ax y 与y 轴交于点A ,与x 轴分别交于点B (-1,0)、点C (3,0),点D 是抛物线的顶点.(1)求抛物线的表达式及顶点D 的坐标; (2)联结AD 、DC ,求ACD ∆的面积;(3)点P 在直线DC 上,联结OP ,若以O 、P 、C 为顶点的三角形与△ABC 相似,求点P 的坐标. 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)在圆O 中,C 是弦AB 上的一点,联结OC 并延长,交劣弧AB 于点D ,联结AO 、BO 、AD 、BD. 已知圆O 的半径长为5 ,弦AB 的长为8.(1)如图1,当点D 是弧AB 的中点时,求CD 的长; (2)如图2,设AC=x ,y S S OBDACO=∆∆,求y 关于x 的函数解析式并写出定义域; (3)若四边形AOBD 是梯形,求AD 的长.中考数学二模试卷 参考答案和评分建议 一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.C ; 4.A ; 5.D ; 6.C . 二.填空题:(本大题共12题,满分48分) 7.21-; 8.2-=x ; 9.3>x ; 10.增大; 11.43-=m ; 12.53; 13.1-=x ;14.7.0;15.︒140; 16.→→-a b 21; 17.255或535++; 18.215-.三、(本大题共7题,第19、20、21、22每题10分,第23、24每题12分,第25题14分,满分78分)第22题图ACDEFGB第23题图备用图 第24题图19. (本题满分10分)解:原式= )1)(3()1()1)(1(3112++-⨯-++-+x x x x x x x (3分) =2)1(111+--+x x x (2分) =2)1(11++-+x x x (1分)=2)1(2+x (1分) 当12121-=+=x 时,原式=2)1(2+x =2)112(2+- =2)2(2=1 (3分) 20.(本题满分10分)解:方程①可变形为0))(6(=-+y x y x得06=+y x 或0=-y x (2分)将它们与方程②分别组成方程组,得(Ⅰ)⎩⎨⎧=-=+1206y x y x 或(Ⅱ)⎩⎨⎧=-=-120y x y x (2分)解方程组(Ⅰ)⎪⎩⎪⎨⎧-==131136y x , 解方程组(Ⅱ)⎩⎨⎧==11y x (4分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)另解:由②得12-=x y ③ (1分) 把③代入①,得0)12(6)12(522=---+x x x x (1分) 整理得:0619132=+-x x (2分)解得:1,13621==x x (2分) 分别代入③,得1,13121=-=y y (2分)所以原方程组的解是⎪⎩⎪⎨⎧-==13113611y x , ⎩⎨⎧==1122y x . (2分)21.(本题满分10分,第(1)小题4分,第(2)小题6分)解:(1)过点A 作AE ⊥BC ,垂足为点E又∵AB=AC ∴BC BE 21= ∵BC=24 ∴ BE=12 (1分)在ABE Rt ∆中,︒=∠90AEB ,135sin ==∠AB AE ABC (1分) 设AE=5k,AB=13k ∵222BE AE AB += ∴1212==k BE ∴1=k , ∴55==k AE , 1313==k AB (2分) (2)过点D 作DF ⊥BC ,垂足为点F∵AD=6.5,AB=13 ∴BD=AB+AD=19.5∵AE ⊥BC ,DF ⊥BC ∴ ︒=∠=∠90DFB AEB ∴ DF AE //∴BDABBF BE DF AE == 又 ∵ AE=5,BE=12,AB=13, ∴18,215==BF DF (4分)∴BF BC CF -= 即61824=-=CF (1分)在DCF Rt ∆中,︒=∠90DFC ,542156cot ===∠DF CF DCB (1分)22.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)设)0(≠+=k b kx y ,函数图像过点(200,100), (50,250) (1分)代入解析式得:⎩⎨⎧=+=+25050100200b k b k (2分)解之得:⎩⎨⎧=-=3001b k (1分)所以y 关于x 的解析式为:300+-=x y (1分) (2)设门票价格定为x 元,依题意可得:11500)300)(20(=+--x x (2分) 整理得: 0175003202=+-x x 解之得:x=70或者x=250(舍去) (2分)答:门票价格应该定为70元. (1分)23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵BC AD // ∴BG DG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分)∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG=GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分) ∴BC=CD (1分)∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分)24.(本题满分12分,第(1)小题4分,第(2)小题3分,第(3)小题5分) 解:(1) 点B (-1,0)、C (3,0)在抛物线32-+=bx ax y 上∴⎩⎨⎧=-+=--033903b a b a ,解得⎩⎨⎧-==21b a ( 2分)∴抛物线的表达式为322--=x x y ,顶点D 的坐标是(1,-4) ( 2分) (2)∵A(0,-3),C (3,0),D (1,-4) ∴23=AC ,52=CD ,2=AD∴222AD AC CD += ∴︒=∠90CAD ( 2分) ∴.32232121=⨯⨯=⋅⋅=∆AD AC S ACD (1分) (3)∵︒=∠=∠90AOB CAD ,2==AOACBO AD , ∴△CAD ∽△AOB ,∴OAB ACD ∠=∠∵OA=OC ,︒=∠90AOC ∴︒=∠=∠45OCA OAC∴ACD OCA OAB OAC ∠+∠=∠+∠,即BCD BAC ∠=∠ ( 1分) 若以O 、P 、C 为顶点的三角形与△ABC 相似 ,且△ABC 为锐角三角形 则POC ∆也为锐角三角形,点P 在第四象限由点C (3,0),D (1,-4)得直线CD 的表达式是62-=x y ,设)62,(-t t P (30<<t ) 过P 作PH ⊥OC ,垂足为点H ,则t OH =,t PH 26-=①当ABC POC ∠=∠时,由ABC POC ∠=∠tan tan 得BO AO OH PH =,∴326=-t t ,解得56=t , ∴)518,56(1-P (2分) ②当ACB POC ∠=∠时,由145tan tan tan =︒=∠=∠ACB POC 得1=OHPH ,∴126=-tt,解得2=t ,∴)2,2(2-P ( 2分) 综上得)518,56(1-P 或)2,2(2-P 25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)∵OD 过圆心,点D 是弧AB 的中点,AB=8,∴OD⊥AB,421==AB AC (2分) 在Rt △AOC 中,︒=∠90ACO ,AO=5,∴322=-=AC AO CO (1分)5=OD ,2=-=∴OC OD CD (1分)(2)过点O 作OH ⊥AB,垂足为点H ,则由(1)可得AH=4,OH=3 ∵AC=x ,∴|4|-=x CH在Rt △HOC 中,︒=∠90CHO ,AO=5, ∴258|4|322222+-=-+=+=x x x HC HO CO , (1分)∴525882+-⋅-=⋅=⋅==∆∆∆∆∆∆x x x x OD OC BC AC S S S S S S y OBD OBC OBC ACO OBD ACO xx x x 5402582-+-= (80<<x ) (3分)(3)①当OB//AD 时, 过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD,垂足为点F ,则OF=AE , AE OB OH AB S ABO ⋅=⋅=∆2121 ∴OF OB OH AB AE ==⋅=524 在Rt △AOF 中,︒=∠90AFO ,AO=5,∴5722=-=OF AO AF ∵OF 过圆心,OF ⊥AD ,∴5142==AF AD . (3分)②当OA//BD 时, 过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,则由①的方法可得524==BM DG , 在Rt △GOD 中,︒=∠90DGO ,DO=5, ∴5722=-=DG DO GO ,518575=-=-=GO AO AG ,在Rt △GAD 中,︒=∠90DGA ,∴622=+=DG AG AD ( 3分)综上得6514或=AD中考数学模拟试卷一、选择题(每小题3分,共30分)1. 下列图形是中心对称图形.()A.B.C.D.2.在抛物线y=﹣2(x﹣1)2上的一个点是()A.(2,3)B.(﹣2,3)C.(1,﹣5)D.(0,﹣2)3.如图,二次函数y=ax2+bx的图象经过点A,B,C,则判断正确的是()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>04.将抛物线y=x2平移得到抛物线y=(x﹣3)2,则这个平移过程正确的是()A.向左平移3个单位B.向右平移3个单位C.向上平移3个单位D.向下平移3个单位5.不解方程,判断方程x2+2x﹣1=0 的根的情况是()A.有两个相等的实根B.有两个不相等的实数根C.无实数根 D.无法确定6.一件商品的原价是100元,经过两次提价后的价格为121元.如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.100(1﹣x)=121 B.100(1+x)=121C.100(1﹣x)2=121 D.100(1+x)2=1217.已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1 B.a=﹣5,b=1 C.a=5,b=﹣1 D.a=﹣5,b=﹣18.如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M.AB=8cm,∠D=40°,那么AM的值和∠C的度数分别是()A.3cm和30° B.3cm和50°C.4cm和50°D.4cm和60°9.如图,四边形ABCD 是圆内接四边形,AB 是⊙O 的直径, 若∠BAC=20°,则∠ADC 的度数为( ) A. 110° B. 100° C. 120° D. 90°10. 如图,△COD 是△AOB 绕点O 顺时针旋转40°后得到的图形,若点C 恰好落在AB 上,且∠AOD 的度数为90°,则∠COB 、∠B 的度数是( ).A .10°和40°B .10°和50°C .40°和50°D .10°和60° 二、填空题(每小题3分,共15分)11.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到白球的概率为 .12.把二次函数y=x 2﹣2x+3化成y=a (x ﹣h )2+k 的形式为 .13.如图,⊙O 的直径AB 垂直弦CD 于点E ,AB=8,∠A=22.5°,则CD=14.如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD ,已知DE=6,∠BAC+∠EAD=180°,则弦BC 的长等于__________13 14 1515.如图,将△ABC 绕点B 逆时针旋转到△A ′BC ′,使点 A ,B ,C ′在同一直线上,若∠BCA =90°,∠BAC =30°,AB =4 cm ,则图中阴影部分面积为__________ cm 2. 三、解答题(本大题共8个小题,满分75分) 16.选择适当的方法解下列方程:(每小题4分,共12分)(1)x 2+2x ﹣35=0 (2)x 2﹣7=4x (3)10452-=-x x x )(17.(6分)在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0),求该二次函数的关系式;。
2019年安阳市中招模拟考试试题(一)数学一、选择题(每小题3分,共24分) 1.下列各数中,最小的数是【 】AB .32C .πD .-22.据报道,中国工商银行2019年实现净利润2 777亿元.数据2 777亿用科学记数法表示为【 】A .102.77710⨯B .112.77710⨯C .122.77710⨯D .130.277710⨯3.下列计算正确的是【 】A .21a a -=B .33a a a ⋅=C .2224()ab a b =D .222()2a b ab ab ÷= 4.如图所示的几何体的俯视图是【 】A .B .C .D .5.某班50名同学的年龄统计如下:A .6,13B .13,13.5C .13,14D .14,146.如图,AB ∥CD ,AD 与BC 相交于点O ,若AO =2,DO =4,BO =3,则BC 的长为【 】A .6B .9C .12D .157.如图所示,点D 是弦AB 的中点,点C 在⊙O 上,CD 经过圆心O ,则下列结论中不一 定正确的是【 】A .CD ⊥ABB .∠OAD =2∠CBDC .∠AOD =2∠BCDD .=正面8.如图所示,在平面直角坐标系中A (0,0),B (2,0),△AP 1B 是等腰直角三角形,且∠P 1=90°.把△AP 1B 绕点B 顺时针旋转180°,得到△BP 2C ;把△BP 2C 绕点C 顺时针旋转180°,得到△CP 3D ,依此类推,则旋转第2 015次后,得到的等腰直角三角形的直角顶点P 2 016的坐标为【 】A .(4 030,1)B .(4 029,-1)C .(4 032,-1)D .(4 031,-1) 二、填空题(每小题3分,共21分)9.2+-=__________.10.如图,CB 平分∠ECD ,AB ∥CD ,AB 与EC 交于点A .若∠B =40°,则∠EAB 的度 数为___________.11.已知点1(1)A y ,,2)B y ,3(3)C y -,都在反比例函数y =的图象上,则123y y y ,,的大小关系是____________.12.从2,2,3,4四个数中随机取两个数,第一个作为个位数字,第二个作为十位数 字,组成一个两位数,则这个两位数是2的倍数的概率是__________.13.如图,矩形ABCD 中,AB =4 cm ,BC =8 cm ,把△ABC 沿对角线AC 折叠,得到△ AB ′C ,B ′C 与AD 相交于点E ,则AE 的长为_______cm . 14.如图,Rt △ABC 中,∠B =90°,AB =3,BC =4,将Rt △ABC 绕点C 按顺时针方向旋 转90°,得到Rt △A ′B ′C ,则边AB 扫过的面积(图中阴影部分)是____.15.如图,四边形ABCD 和AEGF 都是菱形,∠A =60°,AD =3,点E ,F 分别在AB ,AD 边上(不与端点重合).当△GBC 为等腰三角形时,AF 的长为_______.ODC BAED C B A B'E D CBA G FE D CBA三、解答题(本大题包括8个小题,共75分)16.(8分)先化简,再求值:22112()22a ab b b aa b -+-÷-,其中1a =,1b =.17.(9分)成语是汉语中的重要词汇,字虽少却含义丰富,某市教育主管部门为了了解本市初中生成语知识的掌握情况,举行了一次成语知识大赛,随机抽取了部分 同学的成绩(x 均为整数,总分100分),绘制了如下尚不完整的统计图表.调查结果统计图 调查结果扇形统计图(1)统计表中,a =_______,b =_______,c =_______;(2)扇形统计图中,m 的值为____,“D ”所对应的圆心角的度数是____; (3)若参加本次成语知识大赛的同学共有5 000人,请你估计成绩在90分及以上的学生大约有多少人?18.(9分)如图,AB 是⊙O 的直径,E 在AB 的延长线上,EC ,ED 是⊙O 的两条切线,切点分别是C ,D .(1)求证:△OBC ≌△OBD .(2)填空:①当∠A =________度时,四边形ODBC 是菱形; ②当∠A =________度时,四边形ODEC 是正方形.24%m %16%E D CB AA19.(9分)关于x的一元二次方程2(2)210 m x x+--=.(1)若原方程有两个不相等的实数根,求m的取值范围;(2)若原方程的一个根是1,求此时m的值及方程的另外一个根.20.(9分)如图所示,楼房AB的对面有一个建筑物EC,建筑物上方有一个信号发射塔EF.为测量EF的高度,某数学活动小组在B处测得塔尖F仰角为45°,在A处测得塔尖F仰角为α,测得点E仰角为β.已知AB高为10米,求EF的高度.(参考数据:39 tan tan425αβ==,)(10分)“五一”期间,甲、乙两家商店以同样价格销售相同的商品,它们的优惠方案分别为:甲店一次性购物中超过200元后的价格部分打七折;乙店一次性购物中超过500元后的价格部分打五折.设商品原价为x元(x≥0),购物应付金额为y元.(1)求甲商店购物时y1与x之间的函数关系;(2)两种购物方式对应的函数图象如图所示,求交点C的坐标;(3)根据图象,请直接写出“五一”期间选择哪家商店购物更优惠.22.(10分)(1)如图1,四边形ABCD与BEFG都是正方形,将正方形BEFG绕点B按顺时针方向旋转,记旋转角为α,则图中AG与CE的数量关系是________,AG 与CE的位置关系是_______________;(2)如图2,四边形ABCD和BEFG都是矩形,且BC=2AB,BE=2BG,将矩形BEFG 绕点B按顺时针方向旋转,记旋转角为α,图中AG与CE的数量和位置关系分别是什么?请仅就图2的情况给出证明;(3)在(2)的情况下,若AB,BG=1,当点F恰好落在直线CE上时,请直接写出CF的长.FECD BA图1GF EDC BAAB CD EFG 图223.(11分)如图,直线122y x =-与x 轴交于点A ,与y 轴交于点C ,抛物线y =ax 2+bx -2经过点A ,B ,C ,且点B 的坐标是(-1,0). (1)求抛物线的解析式;(2)若点D 是线段AC 上一个动点,DE ⊥AC ,交直线AC 下方的抛物线于点E ,EG ⊥x 轴于点G ,交AC 于点F ,请求出DF 长的最大值;(3)设抛物线对称轴与x 轴相交于点H ,点P 是射线CH 上的一个动点,当△ABP 是直角三角形时,请直接写出点P 的坐标.【参考答案】一、选择题1.D2.B3.C4.A5.C6.B7.B 8.D二、填空题9. 4 10. 80 11. y1>y2>y312. 3413. 514. 94π15. 2,3-三、解答题16. 化简=2ab,当11a b==,时,原式=217.(1)50,500,0.2;(2)30,108(3)成绩在90分及以上的学生大约有1 200名.18.(1)证明略(2)①30;②22.519.(1)m>-3且m≠-2;(2)1 3 -20.EF的高度为15.6米21.(1)当0≤x≤200时,y1=x;当x>200时,y1=0.7x+60(2)C(950,725)(3)当0≤x≤200或x=950时,选择甲、乙两点付费相同;当200<x<950时,选择甲店购物更优惠;当x>950时,选择乙店购物更优惠.22.(1)AG=CE,AG⊥CE;(2)AG12=CE,AG⊥CE,理由略;(3)1,323.(1)213222y x x=--(2)5(3)(0,-2),(3,2),(4,10 3)。
2019年河南省安阳市中考数学一模试卷一、选择题(每小题3分,共30分)1.(3分)下列各数中最小的数是()A.﹣B.﹣1C.D.02.(3分)2019年春节联欢晚会在某网站取得了同时在线人数超34200000惊人成绩创下了全球单平台网络直招记录,将数34200000科学记数法表示为()A.0.342×108B.3.42×107C.3.42×108D.34.2×1063.(3分)下列运算正确的是()A.3a+4b=7ab B.a3•a2=a6C.2a3÷a2=2a D.(﹣3a)3=﹣9a34.(3分)不等式组的解集在数轴上表示为()A.B.C.D.5.(3分)某中学为了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如表所示:平均每月阅读本数45678人数26543这些同学平均每月阅读课外书籍本数的中位数和众数为()A.5,5B.6,6C.5,6D.6,56.(3分)如图,矩形ABCD中,AB=7,BC=4,按以下步骤作图:以点B为圆心,适当长为半径画弧,交AB,BC于点E,F;再分别以点E,F为圆心,大于EF的长为半径画弧,两弧在∠ABC内部相交于点H,作射线BH,交DC于点G,则DG的长为()A.2B.3C.4D.57.(3分)有大小、形状、颜色完全相同的四个乒乓球,球上分别标有数字2,3,5,6四个球放入不透明的袋中搅匀,不放回地从中随机连续抽取两个,则这两个球上的数字之积为奇数的概率是()A.B.C.D.8.(3分)如图,△ABD是⊙O的内接三角形,AB是直径,点C在⊙O上,且∠ABD=56°,则∠BCD等于()A.32°B.34°C.56°D.66°9.(3分)已知关于x的一元二次方程x2﹣x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值为()A.﹣1B.0C.2D.110.(3分)如图,在四边形ABCD中,AD∥BC,DC⊥BC,DC=4cm,BC=6cm,AD=3cm,动点P,Q同时从点B出发,点P以2cm/s的速度沿折线BA﹣AD﹣DC运动到点C,点Q以1cm/s的速度沿BC运动到点C,设P,Q同时出发xs时,△BPQ的面积为ycm2.则y与x的函数图象大致是()A.B.C.D.二、填空题(每小题3分,共15分)11.(3分)计算=.12.(3分)一元二次方程x2+2x﹣4=0的解是.13.(3分)如图,DE为△ABC的中位线,点F在DE上,且∠AFC为直角,若AC=6cm,BC=8cm,则DF的长为.14.(3分)如图,在正方形ABCD中,AD=3,将线段AB绕点B逆时针旋转90°得到线段BE,将线段AC绕点C逆时针旋转90°得到线段CF,连接EF,则图中阴影部分的面积是.15.(3分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=4,点D是AC的中点,点F是边AB上一动点,沿DF所在直线把△ADF翻折到△A′DF的位置,若线段A′D 交AB于点E,且△BA′E为直角三角形,则BF的长为.三、解答题(本题共8个题目,满分75分)16.(8分)先化简代数式(﹣)÷,再从0≤x≤3的范围内选择一个合适的整数代入求值.17.(9分)为了解学生对博鳌论坛会的了解情况,某中学的机抽取了部分学生进行问卷调查,将调查结果记作“A非常了解,B了解.C了解较少,D不了解”四类分别统计,并绘制了下列两统计图(不完整).请根据图中信息,解答下列问题.(1)此次共调查了名学生:扇形统计图中D所在的扇形的圆心角度数为;(2)将条形统计图补充完整;(3)若该校共有1600名学生,请你估计对博鳌论坛会的了解情况为“非常了解”的学生约有多少人?18.(9分)如图,在平面直角坐标系中,反比例函数y=(k≠0)与一次函数y=ax+b(a≠0)交于第二、四象限的A,B两点,过点A作AD⊥y轴于点D,OD=3,S△AOD =3,点B的坐标为(n,﹣1).(1)求反比例函数和一次函数的解析式.(2)请根据图象直接写出ax+b≥的自变量x的取值范围.19.(9分)如图,在△ABC中,AB=AC=4,以AB为直径的⊙O交BC于点D,交AC 于点E,点P是AB的延长线上一点,且∠PDB=∠A,连接DE、OE.(1)求证:PD是⊙O的切线;(2)填空:①当∠P的度数为时,四边形OBDE是菱形;②当∠BAC=45°时,△CDE的面积为.20.(9分)某校数学兴趣小组的同学测量一架无入飞机P的高度,如图A,B两个观测点相距300m,在A处测得P在北偏东71°方向上,同时在B处测得P在北偏东35°方向上.求无人飞机P离地面的高度(结果精确到1米)(参考数据:sin35°≈0.57,tan35°≈0.70,smn71°≈0.95,tan71°≈2.90)21.(10分)某校计划购进甲、乙两种规格的书架,经市场调查发现有线上和线下两种购买方式,具体情况如表:规格线下线上单价(元/个)运费(元/个)单价(元/个)运费(元/个)甲240021020乙300025030(1)如果在线下购买甲、乙两种书架30个,共花费8280元,求甲、乙两种书架各购买了多少个?(2)如果在线上购买甲、乙两种书架30个,且购买乙种书架的数量不少于甲种书架的3倍,请求出花费最少的购买方案及花费.22.(10分)(1)问题发现:如图1,在等边△ABC中,点D为BC边上一动点,DE∥AB交AC于点E,将AD绕点D顺时针旋转60°得到DF,连接CF.则AE与FC的数量关系是;∠ACF的度数为.(2)拓展探究:如图2,在Rt△ABC中,∠ABC=90°,∠ACB=60°,点D为BC边上一动点,DE∥AB交AC于点E,当∠ADF=∠ACF=90°时,求的值.(3)解决问题:如图3,在△ABC中,BC:AB=m,点D为BC的延长线上一点过点D 作DE∥AB交AC的延长线于点E,直接写出当∠ADF=∠ACF=∠ABC时,的值.23.(11分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0),B(4,0),与直线y=x﹣3交于点C(0,﹣3),直线y=x﹣3与x轴交于点D.(1)求该抛物线的解析式(2)点P是抛物线上第四象限上的一个动点连接PC,PD,当△PCD的面积最大时,求点P的坐标;(3)将抛物线的对称轴向左平移3个长度单位得到直线l,点E是直线l上一点,连接OE,BE,若直线l上存在使sin∠BEO最大的点E,请直接写出满足条件的点E的坐标;若不存在,请说明理由.2019年河南省安阳市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列各数中最小的数是()A.﹣B.﹣1C.D.0【分析】先比较各个数的大小,再求出各数中最小的数即可.【解答】解:∵﹣<﹣1<﹣<0,∴最小的数是﹣.故选:A.【点评】本题考查了有理数的大小比较的应用,注意:正数都大于0,负数都小于0,两个负数比较大小,其绝对值大的反而小.2.(3分)2019年春节联欢晚会在某网站取得了同时在线人数超34200000惊人成绩创下了全球单平台网络直招记录,将数34200000科学记数法表示为()A.0.342×108B.3.42×107C.3.42×108D.34.2×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将34200000用科学记数法表示为:3.42×107.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列运算正确的是()A.3a+4b=7ab B.a3•a2=a6C.2a3÷a2=2a D.(﹣3a)3=﹣9a3【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=a5,不符合题意;C、原式=2a,符合题意;D、原式=﹣27a3,不符合题意,故选:C.【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.4.(3分)不等式组的解集在数轴上表示为()A.B.C.D.【分析】先解不等式组,然后根据不等式组的解集判断即可.【解答】解:由①,得x>1,由②,得x≤2,∴不等式组的解集为1<x≤2,故选:C.【点评】本题考查了不等式的解集,熟练掌握解不等式组是解题的关键.5.(3分)某中学为了解同学们平均每月阅读课外书籍的情况,在某年级随机抽查了20名同学,结果如表所示:平均每月阅读本数45678人数26543这些同学平均每月阅读课外书籍本数的中位数和众数为()A.5,5B.6,6C.5,6D.6,5【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列中间的两个数都是6,则这组数据的中位数是6;5出现了6次,出现的次数最多,则众数是5.故选:D.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.(3分)如图,矩形ABCD中,AB=7,BC=4,按以下步骤作图:以点B为圆心,适当长为半径画弧,交AB,BC于点E,F;再分别以点E,F为圆心,大于EF的长为半径画弧,两弧在∠ABC内部相交于点H,作射线BH,交DC于点G,则DG的长为()A.2B.3C.4D.5【分析】利用基本作图得到BG平分∠ABC,再证明△BCG为等腰直角三角形得到GC =CB=4,从而计算CD﹣CG即可得到DG的长.【解答】解:由作法得BG平分∠ABC,∵四边形ABCD为矩形,CD=AB=7,∴∠ABC=∠B=90°,∴∠CBG=45°,∴△BCG为等腰直角三角形,∴GC=CB=4,∴DG=CD﹣CG=7﹣4=3.故选:B.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).7.(3分)有大小、形状、颜色完全相同的四个乒乓球,球上分别标有数字2,3,5,6四个球放入不透明的袋中搅匀,不放回地从中随机连续抽取两个,则这两个球上的数字之积为奇数的概率是()A.B.C.D.【分析】根据题意先画出树状图,得出所有等可能的情况数和两个球上的数字之积为奇数的情况数,然后根据概率公式即可得出答案.【解答】解:根据题意画树状图如下:∵一共有12种等可能的情况数,这两个球上的数字之积为奇数的有2种情况,∴这两个球上的数字之积为奇数的概率是=.故选:A.【点评】此题考查的是树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8.(3分)如图,△ABD是⊙O的内接三角形,AB是直径,点C在⊙O上,且∠ABD=56°,则∠BCD等于()A.32°B.34°C.56°D.66°【分析】根据圆周角定理得到∠ADB=90°,利用互余计算出∠A=34°,然后根据圆周角定理得到∠BCD的度数.【解答】解:∵AB是直径,∴∠ADB=90°,∴∠A=90°﹣∠ABD=90°﹣56°=34°,∴∠BCD=∠A=34°.故选:B.【点评】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理.9.(3分)已知关于x的一元二次方程x2﹣x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值为()A.﹣1B.0C.2D.1【分析】根据根的判别式即可求出a的范围.【解答】解:由题意可知:△>0,∴1﹣4(﹣a+)>0,解得:a>故满足条件的最小整数a的值是1,故选:D.【点评】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.10.(3分)如图,在四边形ABCD中,AD∥BC,DC⊥BC,DC=4cm,BC=6cm,AD=3cm,动点P,Q同时从点B出发,点P以2cm/s的速度沿折线BA﹣AD﹣DC运动到点C,点Q以1cm/s的速度沿BC运动到点C,设P,Q同时出发xs时,△BPQ的面积为ycm2.则y与x的函数图象大致是()A.B.C.D.【分析】根据y随x的变化而变化的趋势,即可得出图中能正确表示整个运动中y关于t 的函数关系的大致图象.【解答】解:作AE⊥BC于E,根据已知可得,AB2=42+(6﹣3)2,解得,AB=5cm.当0≤x≤2.5时:P点由B到A,△BPQ的面积从小到大,且达到最大此时面积=×2.5×4=5cm2.当2.5≤x≤4时,即P点在AD上时,,且增大值为:;当4≤x≤6时,即P点从D到C时,y==﹣x2+6x.故符合y与x的函数图象大致是B.故选:B.【点评】此题考查了函数的图象,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题(每小题3分,共15分)11.(3分)计算=2.【分析】本题涉及零指数幂、绝对值、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+3﹣2=2,故答案为:2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.12.(3分)一元二次方程x2+2x﹣4=0的解是﹣1.【分析】配方法求解可得.【解答】解:∵x2+2x=4,∴x2+2x+1=4+1,即(x+1)2=5,则x+1=,即x=﹣1,故答案为:﹣1.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.13.(3分)如图,DE为△ABC的中位线,点F在DE上,且∠AFC为直角,若AC=6cm,BC=8cm,则DF的长为1cm.【分析】根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,结合图形计算即可.【解答】解:∵DE为△ABC的中位线,∴DE=BC=4(cm),∵∠AFC为直角,E为AC的中点,∴FE=AC=3(cm),∴DF=DE﹣FE=1(cm),故答案为:1cm.【点评】本题考查的是三角形中位线定理,直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.14.(3分)如图,在正方形ABCD中,AD=3,将线段AB绕点B逆时针旋转90°得到线段BE,将线段AC绕点C逆时针旋转90°得到线段CF,连接EF,则图中阴影部分的面积是.【分析】根据勾股定理求出AC,根据扇形面积公式、三角形的面积公式计算分别求出△BCD、△BEF、扇形DBF、扇形DCE的面积,即可得出答案.【解答】解:在Rt△ABC中,,图中阴影部分的面积=△ABC的面积+扇形ABE的面积+△CEF的面积﹣扇形ACF的面积=,=,故答案为:.【点评】本题考查了旋转的性质,解直角三角形,正方形的性质,扇形的面积计算等知识点,能求出各个部分的面积是解此题的关键.15.(3分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=4,点D是AC的中点,点F是边AB上一动点,沿DF所在直线把△ADF翻折到△A′DF的位置,若线段A′D 交AB于点E,且△BA′E为直角三角形,则BF的长为6或.【分析】由三角函数得出∠A=30°,由直角三角形的性质得出AB=2BC=8,由折叠的性质得出DA=DC=2,FA′=FA,∠DA′F=∠A=30°,设BF=x,则AF=8﹣x,FA′=8﹣x,①当∠BEA′=90°时,由三角函数得出AE=3,得出EF=3﹣(8﹣x)=x﹣5,由直角三角形的性质得出方程,解方程即可;②当∠BA'E=90°时,作FH⊥BA',交BA'的延长线于H,连接BD,证明Rt△BDA'≌Rt△BDC,得出BA′=BC=4,求出∠FA'H=60°,在Rt△BFH中,由勾股定理得出方程,解方程即可.【解答】解:∵∠C=90°,AC=4,BC=4,∴tan A===,∴∠A=30°,∴AB=2BC=8,∵点D是AC的中点,沿DF所在直线把△ADF翻折到△A′DF的位置,线段A′D交AB于点E,∴DA=DC=2,FA′=FA,∠DA′F=∠A=30°,设BF=x,则AF=8﹣x,FA′=8﹣x,①当∠BEA′=90°时,在Rt△ADE中,cos A=,∴AE=2×cos30°=3,∴EF=3﹣(8﹣x)=x﹣5,在Rt△A'FE中,∵∠FA'E=30°,∴FA'=2FE,即8﹣x=2(x﹣5),解得x=6,即BF=6;②当∠BA'E=90°时,作FH⊥BA',交BA'的延长线于H,连接BD,如图所示:在Rt△BDA'和△BDC中,,∴Rt△BDA'≌Rt△BDC(HL),∴BA′=BC=4,∵∠BA'F=∠BA'E+∠FA'E=90°+30°=120°,∴∠FA'H=60°,在Rt△FHA'中,A′H=A′F=(8﹣x),FH=A′H=(8﹣x),在Rt△BFH中,∵FH2+BH2=BF2,∴(8﹣x)2+[(8﹣x)+4]2=x2,解得:x=,即BF=.综上所述,BF的长为6或.故答案为:6或.【点评】本题考查翻折变换、勾股定理、解直角三角形、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.三、解答题(本题共8个题目,满分75分)16.(8分)先化简代数式(﹣)÷,再从0≤x≤3的范围内选择一个合适的整数代入求值.【分析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.【解答】解:原式=[﹣]÷=•=,∵x≠±3且x≠1,∴在0≤x≤3可取x=0或x=2,当x=0时,原式=﹣1.当x=2时,原式=1.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.17.(9分)为了解学生对博鳌论坛会的了解情况,某中学的机抽取了部分学生进行问卷调查,将调查结果记作“A非常了解,B了解.C了解较少,D不了解”四类分别统计,并绘制了下列两统计图(不完整).请根据图中信息,解答下列问题.(1)此次共调查了120名学生:扇形统计图中D所在的扇形的圆心角度数为54°;(2)将条形统计图补充完整;(3)若该校共有1600名学生,请你估计对博鳌论坛会的了解情况为“非常了解”的学生约有多少人?【分析】(1)由B类别人数及其所占百分比可得;用总人数乘以D类别人数占总人数的比例即可得;(2)先用总人数乘以C类别的百分比求得其人数,再根据各类别百分比之和等于总人数求得A的人数即可补全图形;(3)用总人数乘以样本中A类别的人数所占比例即可得.【解答】解:(1)本次调查的总人数为48÷40%=120(名),扇形统计图中D所在的扇形的圆心角为360°×=54°,故答案为:120;54°;(2)C类别人数为120×20%=24(人),则A类别人数为120﹣(48+24+18)=30(人),补全条形图如下:(3)估计对文明城市的了解情况为“非常了解”的学生的人数为1600×=400(人).答:该校对博鳌论坛会的了解情况为“非常了解”的学生约有400人.【点评】此题主要考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,在平面直角坐标系中,反比例函数y=(k≠0)与一次函数y=ax+b(a≠0)交于第二、四象限的A,B两点,过点A作AD⊥y轴于点D,OD=3,S△AOD =3,点B的坐标为(n,﹣1).(1)求反比例函数和一次函数的解析式.(2)请根据图象直接写出ax+b≥的自变量x的取值范围.【分析】(1)根据S=3可得AD=2,根据反比例函数的特点k=xy为定值,列出△AOD方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B点的坐标,用待定系数法便可求出一次函数的解析式.(2)根据函数图象可直接解答.【解答】解:(1)∵AD⊥y轴于点D,OD=3,∴S=OD=3,△AOD∴AD=2.即A(﹣2,3),将A点坐标代入y=(k≠0),得k=﹣2×3=﹣6.反比例函数的解析式为y=﹣.将B点坐标代入y=﹣中,得﹣1=﹣,解得n=6.即B(6,﹣1),将A、B两点坐标代入y=ax+b,得,解得.所以一次函数的解析式为y=﹣x+2.(2)ax+b≥的自变量x的取值范围是x≤﹣2或0<x≤6.【点评】此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式,比较简单.19.(9分)如图,在△ABC中,AB=AC=4,以AB为直径的⊙O交BC于点D,交AC 于点E,点P是AB的延长线上一点,且∠PDB=∠A,连接DE、OE.(1)求证:PD是⊙O的切线;(2)填空:①当∠P的度数30°为时,四边形OBDE是菱形;②当∠BAC=45°时,△CDE的面积为.【分析】(1)按照切线定理和已知的2倍角关系,证明∠ODP为直角(2)当四边形OBDE为菱形时,△OBD为等边三角形,则∠P为30°(3)连接AD,过点E作BC的垂线,通过平行相似得到a、b的第一种关系,根据勾股定理得到a、b的第二种关系,用a、b表示出△CDE的面积,再代入a与b的关系,获得面积值.【解答】解:(1)如图,连接OD∵OB=OD,∠PDB=∠A∴∠ODB=∠ABD=90°﹣∠A=90°﹣∠PDB∴∠ODB+∠PDB=90°∴∠ODP=90°又∵OD是⊙O的半径∴PD是⊙O的切线(2)①30°若四边形OBDE为菱形,则OB=BD=DE=EO=OD ∴△OBD为等边三角形∴∠ABD=∠A=60°∴∠PDB=30°∴∠P=30°即当∠P为30°时,四边形OBDE为菱形②如图所示∵AO=OE=2,∠AOE=90°∴AE=∴EC=4﹣∵∠BAC=45°∴∠EDB=135°∴∠EDC=45°设DF=EF=b,FC=a∵△EFC∽△ADC∴∴∵a2+b2=(4﹣)2解得a=()b,b2=4﹣2S===b2=△CDE【点评】本题考查了圆的基本性质,菱形的性质,(3)是本题的难点,需要以相似和勾股的关系建立方程并表示出关于面积的代数式.20.(9分)某校数学兴趣小组的同学测量一架无入飞机P的高度,如图A,B两个观测点相距300m,在A处测得P在北偏东71°方向上,同时在B处测得P在北偏东35°方向上.求无人飞机P离地面的高度(结果精确到1米)(参考数据:sin35°≈0.57,tan35°≈0.70,smn71°≈0.95,tan71°≈2.90)【分析】过点P作PC⊥AB交AB的延长线于点C,根据直角三角形的三角函数解答即可.【解答】解:过点P作PC⊥AB交AB的延长线于点C ,根据题意,得AB=300m,∠APC=71°,∠BPC=35°,设PC=xm,在Rt△PBC中,BC=CP×tan35°≈0.70x(m),在Rt△PAC中,AC=CP×tan71°≈2.90x(m),∴300+0.70x=2.90x,∴x =,答:无人飞机P离地面的高度约为136米.【点评】此题考查的是直角三角形的性质,解答此题的关键是构造出两个直角三角形,再利用三角函数值解答.21.(10分)某校计划购进甲、乙两种规格的书架,经市场调查发现有线上和线下两种购买方式,具体情况如表:规格线下线上单价(元/个)运费(元/个)单价(元/个)运费(元/个)甲240021020乙300025030(1)如果在线下购买甲、乙两种书架30个,共花费8280元,求甲、乙两种书架各购买了多少个?(2)如果在线上购买甲、乙两种书架30个,且购买乙种书架的数量不少于甲种书架的3倍,请求出花费最少的购买方案及花费.【分析】(1)设线下购买甲种书架x个,购买乙种书架y个,根据在线下购买甲、乙两种书架30个共花费8280元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设线上购买总花费为w元,购买甲种书架m个,则购买乙种书架(30﹣m)个,根据总价=单价×数量可得出w关于m的函数关系式,由购买乙种书架的数量不少于甲种书架的3倍可得出关于m的一元一次不等式,解之即可得出m的取值范围,再利用一次函数的性质结合m为整数即可解决最值问题.【解答】解:(1)设线下购买甲种书架x个,购买乙种书架y个,依题意,得:,解得:.答:甲种书架购买了12个,乙种书架购买了18个.(2)设线上购买总花费为w元,购买甲种书架m个,则购买乙种书架(30﹣m)个,依题意,得:w=(210+20)m+(250+30)(30﹣m)=﹣50a+8400.∵买乙种书架的数量不少于甲种书架的3倍,∴30﹣m≥3m,解得:m≤7.∵m为整数,∴m≤7.∵﹣50<0,∴w值随m值的增大而减小,∴当m=7时,总花费最小,最少费用为8050,此时30﹣m=23.答:当线上购买7个甲种书架、23个乙种书架时总花费最少,最少费用为8050元.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的最值,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)由总价=单价×数量,找出w关于m的函数关系式.22.(10分)(1)问题发现:如图1,在等边△ABC中,点D为BC边上一动点,DE∥AB交AC于点E,将AD绕点D顺时针旋转60°得到DF,连接CF.则AE与FC的数量关系是AE=CF;∠ACF的度数为60°.(2)拓展探究:如图2,在Rt△ABC中,∠ABC=90°,∠ACB=60°,点D为BC边上一动点,DE∥AB交AC于点E,当∠ADF=∠ACF=90°时,求的值.(3)解决问题:如图3,在△ABC中,BC:AB=m,点D为BC的延长线上一点过点D 作DE∥AB交AC的延长线于点E,直接写出当∠ADF=∠ACF=∠ABC时,的值.【分析】(1)由题意可证△DEC是等边三角形,∠AED=120°,可得DE=DC,由旋转性质可得∠ADF=60°=∠EDC,AD=DF,由“SAS”可证△ADE≌△FDC,可得AE =CF,∠AED=∠DCF=120°,可得∠ACF=60°;(2)通过证明△DAE∽△DFC,可得,通过证明△EDC∽△ABC,可得,即可求求的值;(3)通过证明△DAE∽△DFC,可得,通过证明△EDC∽△ABC,可得,即可求求的值;【解答】解:(1)∵DE∥AB∴∠ABC=∠EDC=60°,∠BAC=∠DEC=60°∴△DEC是等边三角形,∠AED=120°∴DE=DC,∵将AD绕点D顺时针旋转60°得到DF,∴∠ADF=60°=∠EDC,AD=DF∴∠ADE=∠FDC,且CD=DE,AD=DF∴△ADE≌△FDC(SAS)∴AE=CF,∠AED=∠DCF=120°∴∠ACF=60°,故答案为:AE=CF,60°(2)∵∠ABC=90°,∠ACB=60°,∴∠BAC=30°∴tan∠BAC==∵DE∥AB∴∠EDC=∠ABC=90°∵∠ADF=90°,∴∠ADE=∠FDC∵∠ACF=90°,∠AED=∠EDC+∠ACB,∠FCD=∠ACF+∠ACB ∴∠AED=∠FCD,且∠ADE=∠FDC∴△DAE∽△DFC∴∵DE∥AB∴△EDC∽△ABC∴∴(3)∵AB∥DE∴∠ABC=∠BDE=∠ADF,∠BAC=∠E∴∠BDE+∠ADB=∠ADF+∠ADB∴∠ADE=∠CDF,∵∠ACD=∠ABC+∠BAC=∠ACF+∠DCF,且∠ACF=∠ABC∴∠BAC=∠DCF=∠E,且∠ADE=∠CDF∴△ADE∽△FDC∴∵AB∥DE∴△ABC∽△EDC∴,且BC:AB=m,∴【点评】本题是相似形综合题,考查了全等三角形的判定和性质,旋转的性质,相似三角形的判定和性质,证明△ADE ∽△FDC 是本题的关键.23.(11分)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (﹣2,0),B (4,0),与直线y =x ﹣3交于点C (0,﹣3),直线y =x ﹣3与x 轴交于点D .(1)求该抛物线的解析式(2)点P 是抛物线上第四象限上的一个动点连接PC ,PD ,当△PCD 的面积最大时,求点P 的坐标;(3)将抛物线的对称轴向左平移3个长度单位得到直线l ,点E 是直线l 上一点,连接OE ,BE ,若直线l 上存在使sin ∠BEO 最大的点E ,请直接写出满足条件的点E 的坐标;若不存在,请说明理由.【分析】(1)用交点式函数表达式得:y =a (x +2)(x ﹣4)=a (x 2﹣2x ﹣8),即可求解;(2)由S △PCD =S △PDO +S △PCO ﹣S △OCD ,即可求解;(3)如图,经过点O 、B 的圆F 与直线l 相切于点E ,此时,sin ∠BEO 最大,即可求解. 【解答】解:(1)用交点式函数表达式得:y =a (x +2)(x ﹣4)=a (x 2﹣2x ﹣8), 即﹣8a =﹣3,解得:a =,则函数的表达式为:y =x 2﹣x ﹣3;(2)y =x ﹣3,令y =0,则x =2,即点D (2,0),连接OP ,设点P (x , x 2﹣x ﹣3), S △PCD =S △PDO +S △PCO ﹣S △OCD =×2(﹣x 2+x +3)+×3×x ﹣=﹣(x ﹣3)2+,∵﹣<0,∴S △PCD 有最大值, 此时点P (3,﹣);(3)如图,经过点O 、B 的圆F 与直线l 相切于点E ,此时,sin ∠BEO 最大,过圆心F 作HF ⊥x 轴于点H ,则OH =OB =2=OA ,OF =EF =4, ∴HF =2,过点E 的坐标为(﹣2,﹣2);同样当点E 在x 轴的上方时,其坐标为(﹣2,2);故点E 的坐标为(﹣2,2)或(﹣2,﹣2).【点评】本题考查的是二次函数综合运用,涉及到一次函数、圆的基本知识,三角函数等,其中(3),正确确定点E 的位置,是本题的难点.。
河南省安阳市2019年中考数学一模试卷(解析版)一.选择题1.﹣3的绝对值是()A. ﹣3B. 3C. ±3D. ﹣2.如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是()A. B. C. D.3.下列计算正确的是()A. x2•x3=x6B. (x2)3=x5C. x2+x3=x5D. x6÷x3=x34.关于x的一元二次方程ax2﹣3x+3=0有两个不等实根,则a的取值范围是()A. a<且a≠0B. a>﹣且a≠0C. a>﹣D. a<5.3月1日,河南省统计局、国家统计局河南调查总队联合公布《2019年河南省国民经济和社会发展统计公报》,《公报》显示,到2019年年末,河南省总人口为10788万人,常住人口9532万人,数据“9532万”用科学记数法可表示为()A. 95.32×106B. 9.532×107C. 9532×104D. 0.9532×1086.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()阅读量(单位:本/周) 0 1 2 3 4人数(单位:人) 1 4 6 2 2A. 中位数是2B. 平均数是2C. 众数是2D. 极差是27.多项式m2﹣m与多项式2m2﹣4m+2的公因式是()A. m﹣1B. m+1C. m2﹣1D. (m﹣1)28.如图所示的是A,B,C,D三点,按如下步骤作图:①先分别以A,B两点为圆心,以大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN;②再分别以B,C两点为圆心,以大于的长为半径作弧,两弧相交于G,H两点,作直线GH,GH与MN交于点P,若∠BAC=66°,则∠BPC等于()A. 100°B. 120°C. 132°D. 140°9.若二次函数y=﹣x2+4x+c的图象经过A(1,y1),B(﹣1,y2),C(2+ ,y3)三点,则y1、y2、y3的大小关系是()A. y1<y2<y3B. y1<y3<y2C. y2<y3<y1D. y2<y1<y310.在平面直角坐标系中,已知点A(﹣2,4),点B在直线OA上,且OA=2OB,则点B的坐标是()A. (﹣1,2)B. (1,﹣2)C. (﹣4,8)D. (﹣1,2)或(1,﹣2)二.填空题11.计算:=________.12.一个不透明的袋子中装有3个红球和2个白球共5个球,这些球除颜色不同外,其余均相同,从中任意摸出一个球,这个球是白球的概率为________.13.如图,在菱形ABCD中,∠BAD=100°,点E为AC上一点,若∠CBE=20°,则∠AED=________°.14.如图所示,格点△ABC绕点B逆时针旋转得到△EBD,图中每个小正方形的边长是1,则图中阴影部分的面积为________.15.如图,在矩形ABCD中,AB=3,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD、AD上,则AP+PQ最小值为________.三.解答题16.先化简:(x﹣1﹣),然后从满足﹣2<x≤2的整数值中选择一个你喜欢的数代入求值.17.某中学为了搞好对“传统文化学习”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,x表示测试成绩).通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)参加调查测试的学生为________人;(2)将条形统计图补充完整;(3)本次调查测试成绩中的中位数落在________组内;(4)若测试成绩在80分以上(含80分)为优秀,该中学共有学生2600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.18.如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,过点C作CE⊥DB交DB 的延长线于点E,直线AB与CE相交于点F.(1)求证:CF为⊙O的切线;(2)填空:当∠CAB的度数为________时,四边形ACFD是菱形.19.某校兴趣小组想测量一座大楼AB的高度.如图,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)20.如图,在平面直角坐标系中,一次函数y1=kx+b的图象分别交x轴,y轴于A、B两点,与反比例函数y2= 的图象交于C、D两点,已知点C的坐标为(﹣4,﹣1),点D的横坐标为2.(1)求反比例函数与一次函数的解析式;(2)直接写出当x为何值时,y1>y2?(3)点P是反比例函数在第一象限的图象上的点,且点P的横坐标大于2,过点P做x轴的垂线,垂足为点E,当△APE的面积为3时,求点P的坐标.21.某市决定购买A、B两种树苗对某段道路进行绿化改造,已知购买A种树苗9棵,B种树苗4棵,需要700元;购买A种树苗3棵,B种树苗5棵,则需要380元.(1)求购买A、B两种树苗每颗各需多少元?(2)考虑到绿化效果和资金周转,购进A种树苗不能少于60棵,且用于购买这两种树苗的资金不能超过5260元.若购进这两种树苗共100棵,则有哪几种购买方案?哪种方案最省钱?22.已知∠ACD=90°,AC=DC,MN是过点A的直线,过点D作DB⊥MN于点B,连接CB.(1)问题发现如图(1),过点C作CE⊥CB,与MN交于点E,则易发现BD和EA之间的数量关系为________,BD、AB、CB之间的数量关系为________.(2)拓展探究当MN绕点A旋转到如图(2)位置时,BD、AB、CB之间满足怎样的数量关系?请写出你的猜想,并给予证明.(3)解决问题当MN绕点A旋转到如图(3)位置时(点C、D在直线MN两侧),若此时∠BCD=30°,BD=2时,CB=________.23.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图所示,直线BC下方的抛物线上有一点P,过点p作PE⊥BC于点E,作PF平行于x轴交直线BC 于点F,求△PEF周长的最大值;(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P的横坐标;若不存在,说明理由.答案解析部分一.<b >选择题</b>1.【答案】B【考点】绝对值【解析】【解答】解:根据负数的绝对值是它的相反数,得|﹣3|=3.故答案为:B.【分析】任何数的绝对值都是非负数。
2019年河南省中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)﹣8的相反数是()A.﹣8B.C.8D.﹣2.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010 3.(3分)如图所示的几何体的主视图是()A.B.C.D.4.(3分)下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b25.(3分)若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1B.0C.1D.26.(3分)为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AC交BC于点E.若∠BCD =80°,则∠AEC的度数为()A.80°B.100°C.120°D.140°8.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°9.(3分)如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)10.(3分)如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t的函数图象大致为()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)=.12.(3分)将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:13.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是.14.(3分)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.15.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(8分)先化简,再求值:,其中x=4|cos30°|+317.(9分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?18.(9分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.19.(9分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.20.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)21.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元.(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?22.(10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.23.(11分)如图,在平面直角坐标系中,二次函数y=ax2+bx﹣3交x轴于点A(﹣3,0)、B(1,0),在y轴上有一点E(0,1),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由.2019年河南省中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(3分)﹣8的相反数是()A.﹣8B.C.8D.﹣【解答】解:﹣8的相反数是8,故选:C.2.(3分)中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口44亿,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×1010【解答】解:44亿=4.4×109.故选:B.3.(3分)如图所示的几何体的主视图是()A.B.C.D.【解答】解:从正面看第一层是两个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.4.(3分)下列各运算中,计算正确的是()A.2a•3a=6a B.(3a2)3=27a6C.a4÷a2=2a D.(a+b)2=a2+ab+b2【解答】解:A、原式=6a2,不符合题意;B、原式=27a6,符合题意;C、原式=a2,不符合题意;D、原式=a2+2ab+b2;不符合题意;故选:B.5.(3分)若关于x的方程x2+x﹣a+=0有两个不相等的实数根,则满足条件的最小整数a的值是()A.﹣1B.0C.1D.2【解答】解:由题意可知:△>0,∴1﹣4(﹣a+)>0,解得:a>1故满足条件的最小整数a的值是2,故选:D.6.(3分)为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定【解答】解:∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选:A.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AC交BC于点E.若∠BCD =80°,则∠AEC的度数为()A.80°B.100°C.120°D.140°【解答】解:∵四边形ABCD为平行四边形,∴∠BAD=∠BCD=80°,AD∥BC,由作法得AE平分∠BAD,∴∠F AE=∠BAD=40°,∵AF∥BE,∴∠AEB=∠F AE=40°,∴∠AEC=180°﹣40°=140°.故选:D.8.(3分)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、BD、OD、OC,若∠ABD=15°,且AD∥OC,则∠BOC的度数为()A.120°B.105°C.100°D.110°【解答】解:∵AB是⊙O的直径,∠ABD=15°,∴∠ADB=90°,∴∠A=75°,∵AD∥OC,∴∠AOC=75°,∴∠BOC=180°﹣75°=105°,故选:B.9.(3分)如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为()A.(,)B.(,)C.(,)D.(,)【解答】解:连结EF,作GH⊥x轴于H,如图,∵四边形ABOD为矩形,∴AB=OD=OF+FD=1+2=3,∵△ABE沿BE折叠后得到△GBE,∴BA=BG=3,EA=EG,∠BGE=∠A=90°,∵点E为AD的中点,∴AE=DE,∴GE=DE,在Rt△DEF和Rt△GEF中,∴Rt△DEF≌Rt△GEF(HL),∴FD=FG=2,∴BF=BG+GF=3+2=5,在Rt△OBF中,OF=1,BF=5,∴OB==2,∵GH∥OB,∴△FGH∽△FBO,∴==,即==,∴GH=,FH=,∴OH=OF﹣HF=1﹣=,∴G点坐标为(,).故选:B.10.(3分)如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t的函数图象大致为()A.B.C.D.【解答】解:∵PQ⊥BQ∴在P、Q运动过程中△BPQ始终是直角三角形.∴S△BPQ=PQ•BQ,①当点P在BD上,Q在BC上时(即0s≤t≤2s),BP=t,BQ=PQ•cos60°=t,PQ=BP•sin60°=t,∴S△BPQ=PQ•BQ=•t•t=t2此时S△BPQ的图象是关于t(0s≤t≤2s)的二次函数.∵>0,∴抛物线开口向上;②当P在DE上,Q在BC上时(即2s<t≤4s),PQ=BD•sin60°=×2=,BQ=BD•cos60°+(t﹣2)=t﹣1,∴S△BPQ=PQ•BQ=••(t﹣1)=t﹣;此时S△BPQ的图象是关于t(2s<t≤4s)的一次函数.∵斜率>0∴S△BPQ随t的增大而增大,直线由左向右依次上升.③P在EC上时,由∠C=45°易求得EC=•=(即4s<t≤4+s)PQ=﹣(t﹣4)(4s<t≤4+s),BQ=3+(t﹣4),∴S△BPQ=PQ•BQ=﹣(t﹣4)2﹣(t﹣4)+3,∴抛物线开口向下.故选:D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)=2.【解答】解:原式=2﹣4+4=2,故答案为:2.12.(3分)将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:y=﹣5x2﹣50x﹣128【解答】解:∵抛物线y=﹣5x2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(﹣5,﹣3),∴所得到的新的抛物线的解析式为y=﹣5(x+5)2﹣3,即y=﹣5x2﹣50x﹣128,故答案为y=﹣5x2﹣50x﹣128.13.(3分)一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是.【解答】解:画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之和为偶数的结果数为8,所以两次抽取的卡片上数字之和为偶数的概率为=,故答案为:.14.(3分)如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.若的长为,则图中阴影部分的面积为.【解答】解:连接AC,∵DC是⊙A的切线,∴AC⊥CD,又∵AB=AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CAD=∠ACB=45°,又∵AB=AC,∴∠ACB=∠B=45°,∴∠F AD=∠B=45°,∵的长为,∴,解得:r=2,∴S阴影=S△ACD﹣S扇形ACE=.故答案为:.15.(3分)如图,矩形ABCD中,AB=4,AD=6,点E为AD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CE,CF,当△ECF为直角三角形时,AP的长为或1.【解答】解:如图所示,当∠CFE=90°时,△ECF是直角三角形,由折叠可得,∠PFE=∠A=90°,AE=FE=DE,∴∠CFP=180°,即点P,F,C在一条直线上,在Rt△CDE和Rt△CFE中,,∴Rt△CDE≌Rt△CFE(HL),∴CF=CD=4,设AP=FP=x,则BP=4﹣x,CP=x+4,在Rt△BCP中,BP2+BC2=PC2,即(4﹣x)2+62=(x+4)2,解得x=,即AP=;如图所示,当∠CEF=90°时,△ECF是直角三角形,过F作FH⊥AB于H,作FQ⊥AD于Q,则∠FQE=∠D=90°,又∵∠FEQ+∠CED=90°=∠ECD+∠CED,∴∠FEQ=∠ECD,∴△FEQ∽△ECD,∴==,即==,解得FQ=,QE=,∴AQ=HF=,AH=,设AP=FP=x,则HP=﹣x,∵Rt△PFH中,HP2+HF2=PF2,即(﹣x)2+()2=x2,解得x=1,即AP=1.综上所述,AP的长为1或.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(8分)先化简,再求值:,其中x=4|cos30°|+3【解答】解:原式=÷=•=,当x=4|cos30°|+3=4×+3=2+3时,原式==.17.(9分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是117度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在B等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?【解答】解:(1)∵总人数为18÷45%=40人,∴C等级人数为40﹣(4+18+5)=13人,则C对应的扇形的圆心角是360°×=117°,故答案为:117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.18.(9分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=.(1)求该反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.【解答】解:(1)如图,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=,考点:n=3×(﹣2)=﹣6,所以反比例函数解析式为:y=﹣,把B(m,﹣1)代入y=﹣,得:m=6,把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:,解得:,所以一次函数解析式为:y=﹣x+2;(2)当y=0时,﹣x+2=0,解得:x=4,则C(4,0),所以;(3)当OE3=OE2=AO=,即E2(﹣,0),E3(,0);当OA=AE1=时,得到OE1=2OD=4,即E1(﹣4,0);当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1,1.5),令y=0,得到y=﹣,即E4(﹣,0),综上,当点E(﹣4,0)或(,0)或(﹣,0)或(﹣,0)时,△AOE是等腰三角形.19.(9分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.【解答】解:(1)如图,连接OD,∵BC是⊙O的直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半径,∴PD是⊙O的切线;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP,(3)∵BC是⊙O的直径,∴∠BDC=∠BAC=90°,在Rt△ABC中,BC==13cm,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BC=CD=BC=,∵△ABD∽△DCP,∴,∴,∴CP=16.9cm.20.(9分)某数学活动小组实地测量湛河两岸互相平行的一段东西走向的河的宽度,在河的北岸边点A处,测得河的南岸边点B处在其南偏东45°方向,然后向北走20米到达点C处,测得点B在点C的南偏东33°方向,求出这段河的宽度.(结果精确到1米,参考数据:sin33°=0.54,cos33°≈0.84,tan33°=0.65,≈1.41)【解答】解:如图,延长CA交BE于点D,则CD⊥BE,由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴≈0.65,解得x≈37,答:这段河的宽约为37米.21.(10分)某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期30天的试销售,售价为8元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成如图所示的图象,图中的折线ODE表示日销售量y (件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是330件,日销售利润是660元.(2)求线段DE所对应的函数关系式.(不要求写出自变量的取值范围)(3)通过计算说明试销售期间第几天的日销售量最大?最大日销售量是多少?【解答】解:(1)340﹣(24﹣22)×5=330(件),330×(8﹣6)=660(元).故答案为:330;660.(2)线段DE所表示的y与x之间的函数关系式为y=340﹣5(x﹣22)=﹣5x+450;(3)设线段OD所表示的y与x之间的函数关系式为y=kx,将(17,340)代入y=kx中,340=17k,解得:k=20,∴线段OD所表示的y与x之间的函数关系式为y=20x.联立两线段所表示的函数关系式成方程组,得,解得:,∴交点D的坐标为(18,360),∵点D的坐标为(18,360),∴试销售期间第18天的日销售量最大,最大日销售量是360件.22.(10分)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C 重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD的长.【解答】解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.23.(11分)如图,在平面直角坐标系中,二次函数y=ax2+bx﹣3交x轴于点A(﹣3,0)、B(1,0),在y轴上有一点E(0,1),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴下方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标;若不存在,请说明理由.【解答】解:(1)∵二次函数y=ax2+bx﹣3经过点A(﹣3,0)、B(1,0),∴,解得:,∴二次函数解析式为y=x2+2x﹣3;(2)设直线AE的解析式为y=kx+b,∵过点A(﹣3,0),E(0,1),∴,解得:,∴直线AE解析式为y=x+1,如图,过点D作DG⊥x轴于点G,延长DG交AE于点F,设D(m,m2+2m﹣3),则F(m,m+1),∴DF=﹣m2﹣2m+3+m+1=﹣m2﹣m+4,∴S△ADE=S△ADF+S△DEF=×DF×AG+DF×OG=×DF×(AG+OG)=×3×DF=(﹣m2﹣m+4)=﹣m2﹣m+6=﹣(m+)2+,∴当m=﹣时,△ADE的面积取得最大值为.(3)∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为直线x=﹣1,设P(﹣1,n),∵A(﹣3,0),E(0,1),∴AP2=(﹣1+3)2+(n﹣0)2=4+n2,AE2=(0+3)2+(1﹣0)2=10,PE2=(0+1)2+(1﹣n)2=(n﹣1)2+1,①若AP=AE,则AP2=AE2,即4+n2=10,解得n=±,∴点P(﹣1,)或(﹣1,﹣);②若AP=PE,则AP2=PE2,即4+n2=(n﹣1)2+1,解得n=﹣1,∴P(﹣1,﹣1);③若AE=PE,则AE2=PE2,即10=(n﹣1)2+1,解得n=﹣2或n=4,∴P(﹣1,﹣2)或(﹣1,4);综上,点P的坐标为(﹣1,)或(﹣1,﹣)或(﹣1,﹣1)或(﹣1,﹣2)或(﹣1,4).。
2019年河南省中考数学模试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1.﹣3的绝对值是()A.﹣3 B.3 C.D.2.中国的陆地面积和领水面积共约9970000km2,9970000这个数用科学记数法可表示为()A.9.97×105B.99.7×105C.9.97×106D.0.997×1073.如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为1的正方体的个数是()A.9 B.8 C.7 D.64.一次函数y=﹣3x+b和y=kx+1的图象如图所示,其交点为P(3,4),则不等式kx+1≥﹣3x+b的解集在数轴上表示正确的是()A. B.C.D.5.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁6.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45° B.50° C.55° D.60°7.如图,菱形OABC的一边OA在x轴上,将菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,若OB=,∠C=120°,则点B′的坐标为()A.(3,)B.(3,)C.(,)D.(,)8.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF:S△AOB的值为()A.1:3 B.1:5 C.1:6 D.1:119.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为,则a、b的值分别为()A.,B.,﹣C.,﹣D.﹣,10.在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017 D2017的边长是()A.()2016B.()2017C.()2016D.()2017二、填空题(本小题共5小题,每小题3分,共15分)11.计算: +(π﹣2)0+(﹣1)2017= .12.已知关于x的一元二次方程ax2﹣(a+2)x+2=0有两个不相等的正整数根时,整数a的值是.13.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,tanA=,则k的值为.14.如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为.15.如图,在矩形ABCD中,AB=5,BC=3,点E为射线BC上一动点,将△ABE沿AE折叠,得到△AB′E.若B′恰好落在射线CD上,则BE的长为.三、解答题(本题共8小题,共75分.)16.先化简,再求值:÷,其中m是方程x2+2x﹣3=0的根.17.在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分.某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图.已知A,B两组户数频数直方图的高度比为1:5.月信息消费额分组统计表请结合图表中相关数据解答下列问题:(1)这次接受调查的有户;(2)在扇形统计图中,“E”所对应的圆心角的度数是;(3)请你补全频数直方图;(4)若该社区有2000户住户,请估计月信息消费额不少于200元的户数是多少?18.如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD、PO.(1)求证:△CDP≌△POB;(2)填空:①若AB=4,则四边形AOPD的最大面积为;②连接OD,当∠PBA的度数为时,四边形BPDO是菱形.19.如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号)20.同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?21.根据下列要求,解答相关问题:(1)请补全以下求不等式﹣2x2﹣4x≥0的解集的过程①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;抛物线的对称轴x=﹣1,开口向下,顶点(﹣1,2)与x轴的交点是(0,0),(﹣2,0),用三点法画出二次函数y=﹣2x2﹣4x的图象如图1所示;②数形结合,求得界点:当y=0时,求得方程﹣2x2﹣4x=0的解为;③借助图象,写出解集:由图象可得不等式﹣2x2﹣4x≥0的解集为.(2)利用(1)中求不等式解集的方法步骤,求不等式x2﹣2x+1<4的解集.①构造函数,画出图象;②数形结合,求得界点;③借助图象,写出解集.(3)参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于x 的不等式ax2+bx+c>0(a>0)的解集.22.(1)问题发现:(1)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC,请判断:FG与CE的数量关系是,位置关系是.(2)拓展探究:如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断予以证明;(3)类比延伸:如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.23.如图,二次函数y=ax2+bx+c的图象与x轴的交点为A、D(A在D的右侧),与y轴的交点为C,且A(4,0),C(0,﹣3),对称轴是直线x=1.(1)求二次函数的解析式;(2)若M是第四象限抛物线上一动点,且横坐标为m,设四边形OCMA的面积为s.请写出s与m之间的函数关系式,并求出当m为何值时,四边形OCMA的面积最大;(3)设点B是x轴上的点,P是抛物线上的点,是否存在点P,使得以A,B、C,P四点为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣3的绝对值是()A.﹣3 B.3 C.D.【考点】15:绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣3|=3.故﹣3的绝对值是3.故选:B.2.中国的陆地面积和领水面积共约9970000km2,9970000这个数用科学记数法可表示为()A.9.97×105B.99.7×105C.9.97×106D.0.997×107【考点】科学计数法.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9970000=9.97×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为1的正方体的个数是()A.9 B.8 C.7 D.6【考点】U3:由三视图判断几何体.【分析】易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.【解答】解:由俯视图易得最底层有6个正方体,第二层有2个正方体,那么共有6+2=8个正方体组成,故选B.4.一次函数y=﹣3x+b和y=kx+1的图象如图所示,其交点为P(3,4),则不等式kx+1≥﹣3x+b的解集在数轴上表示正确的是()A. B.C.D.【考点】FD:一次函数与一元一次不等式;C4:在数轴上表示不等式的解集.【分析】观察图象,直线y=kx+1落在直线y=﹣3x+b上方的部分对应的x的取值范围即为所求.【解答】解:∵一次函数y=﹣3x+b和y=kx+1的图象交点为P(3,4),∴当x≥3时,kx+1≥﹣3x+b,∴不等式kx+1≥﹣3x+b的解集为x≥3,在数轴上表示为:故选B.5.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁【考点】W7:方差;W1:算术平均数.【分析】根据方差的计算公式求出丁的成绩的方差,根据方差的性质解答即可.【解答】解:由图可知丁射击10次的成绩为:8、8、9、7、8、8、9、7、8、8,则丁的成绩的平均数为:×(8+8+9+7+8+8+9+7+8+8)=8,丁的成绩的方差为:×[(8﹣8)2+(8﹣8)2+(8﹣9)2+(8﹣7)2+(8﹣8)2+(8﹣8)2+(8﹣9)2+(8﹣7)2+(8﹣8)2+(8﹣8)2]=0.4,∵丁的成绩的方差最小,∴丁的成绩最稳定,∴参赛选手应选丁,故选:D.6.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45° B.50° C.55° D.60°【考点】M6:圆内接四边形的性质;M4:圆心角、弧、弦的关系.【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.故选B.7.如图,菱形OABC的一边OA在x轴上,将菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,若OB=,∠C=120°,则点B′的坐标为()A.(3,)B.(3,)C.(,)D.(,)【考点】R7:坐标与图形变化﹣旋转;L8:菱形的性质.【分析】首先根据菱形的性质,即可求得∠AOB的度数,又由将菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,可求得∠B′OA的度数,然后在Rt△B′OF中,利用三角函数即可求得OF与B′F的长,则可得点B′的坐标.【解答】解:过点B作BE⊥OA于E,过点B′作B′F⊥OA于F,∴∠BE0=∠B′FO=90°,∵四边形OABC是菱形,∴OA∥BC,∠AOB=∠AOC,∴∠AOC+∠C=180°,∵∠C=120°,∴∠AOC=60°,∴∠AOB=30°,∵菱形OABC绕原点O顺时针旋转75°至OA′B′C′的位置,∴∠BOB′=75°,OB′=OB=2,∴∠B′OF=45°,在Rt△B′OF中,OF=OB′•cos45°=2×=,∴B′F=,∴点B′的坐标为:(,﹣).故选D.8.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF:S△AOB的值为()A.1:3 B.1:5 C.1:6 D.1:11【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】根据平行四边形的性质可知BO=DO,又因为E为OD的中点,所以DE:BE=1:3,根据相似三角形的性质可求出S△DEF:S△BAE.然后根据=,即可得到结论.【解答】解:∵O为平行四边形ABCD对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,∴DE:EB=1:3,又∵AB∥DC,∴△DFE∽△BAE,∴=()2=,∴S△DEF=S△BAE,∵=,∴S△AOB=S△BAE,∴S△DEF:S△AOB==1:6,故选C.9.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为,则a、b的值分别为()A.,B.,﹣C.,﹣D.﹣,【考点】H6:二次函数图象与几何变换.【分析】确定出抛物线y=ax2+bx的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.【解答】解:如图,∵y=ax2+bx=x2+bx=(x+)2﹣,∴平移后抛物线的顶点坐标为(﹣,﹣),对称轴为直线x=﹣,当x=﹣时,y=,∴平移后阴影部分的面积等于如图三角形的面积,×(+)×(﹣)=.解得b=﹣,故选:C.10.在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017 D2017的边长是()A.()2016B.()2017C.()2016D.()2017【考点】D2:规律型:点的坐标.【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】解:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2===()1,同理可得:B3C3==()2,故正方形A n B n C n D n的边长是:()n﹣1,则正方形A2017B2017C2017D2017的边长为:()2016,故选:C.二、填空题(本小题共5小题,每小题3分,共15分)11.计算: +(π﹣2)0+(﹣1)2017= ﹣2 .【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用零指数幂的性质以及立方根的定义分别化简进而求出答案.【解答】原式=﹣2+1﹣1=﹣2.故答案为:﹣2.12.已知关于x的一元二次方程ax2﹣(a+2)x+2=0有两个不相等的正整数根时,整数a的值是a=1 .【考点】AA:根的判别式.【分析】由一元二次方程的定义可得出a≠0,再利用根的判别式△=b2﹣4ac,套入数据即可得出△=(a﹣2)2≥0,可得出a≠2且a≠0,设方程的两个根分别为x1、x2,利用根与系数的关系可得出x1•x2=,再根据x1、x2均为正整数,a为整数,即可得出结论.【解答】解:∵方程ax2﹣(a+2)x+2=0是关于x的一元二次方程,∴a≠0.∵△=(a+2)2﹣4a×2=(a﹣2)2≥0,∴当a=2时,方程有两个相等的实数根,当a≠2且a≠0时,方程有两个不相等的实数根.∵方程有两个不相等的正整数根,∴a≠2且a≠0.设方程的两个根分别为x1、x2,∴x1•x2=,∵x1、x2均为正整数,∴为正整数,∵a为整数,a≠2且a≠0,∴a=1,故答案为:a=1.13.如图,已知第一象限内的点A在反比例函数y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,tanA=,则k的值为﹣.【考点】G6:反比例函数图象上点的坐标特征.【分析】作AC⊥x轴于点C,作BD⊥x轴于点D,易证△OBD∽△AOC,则面积的比等于相似比的平方,即tanA的平方,然后根据反比例函数中比例系数k的几何意义即可求解.【解答】解:作AC⊥x轴于点C,作BD⊥x轴于点D.则∠BDO=∠ACO=90°,则∠BOD+∠OBD=90°,∵OA⊥OB,∴∠BOD+∠AOC=90°,∴∠BOD=∠AOC,∴△OBD∽△AOC,∴=()2=(tanA)2=,又∵S△AOC=×2=1,∴S△OBD=,∴k=﹣.故答案为:﹣.14.如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为2π﹣4 .【考点】MO:扇形面积的计算;H7:二次函数的最值;KQ:勾股定理.【分析】由OC=4,点C在上,CD⊥OA,求得DC==,运用S△OCD=OD•,求得OD=2时△OCD的面积最大,运用阴影部分的面积=扇形AOC的面积﹣△OCD的面积求解.【解答】解:∵OC=4,点C在上,CD⊥OA,∴DC==∴S△OCD=OD•∴=OD2•(16﹣OD2)=﹣OD4+4OD2=﹣(OD2﹣8)2+16∴当OD2=8,即OD=2时△OCD的面积最大,∴DC===2,∴∠COA=45°,∴阴影部分的面积=扇形AOC的面积﹣△OCD的面积=﹣×2×2=2π﹣4,故答案为:2π﹣4.15.如图,在矩形ABCD中,AB=5,BC=3,点E为射线BC上一动点,将△ABE沿AE折叠,得到△AB′E.若B′恰好落在射线CD上,则BE的长为或15 .【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】如图1,根据折叠的性质得到AB′=AB=5,B′E=BE,根据勾股定理得到BE2=(3﹣BE)2+12,于是得到BE=,如图2,根据折叠的性质得到AB′=AB=5,求得AB=BF=5,根据勾股定理得到CF=4根据相似三角形的性质列方程得到CE=12,即可得到结论.【解答】解:如图1,∵将△ABE沿AE折叠,得到△AB′E,∴AB′=AB=5,B′E=BE,∴CE=3﹣BE,∵AD=3,∴DB′=4,∴B′C=1,∵B′E2=CE2+B′C2,∴BE2=(3﹣BE)2+12,∴BE=,如图2,∵将△ABE沿AE折叠,得到△AB′E,∴AB′=AB=5,∵CD∥AB,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∵AE垂直平分BB′,∴AB=BF=5,∴CF=4,∵CF∥AB,∴△CEF∽△ABE,∴,即=,∴CE=12,∴BE=15,综上所述:BE的长为:或15,故答案为:或15.三、解答题(本题共8小题,共75分.)16.先化简,再求值:÷,其中m是方程x2+2x﹣3=0的根.【考点】6D:分式的化简求值;A8:解一元二次方程﹣因式分解法.【分析】首先根据运算顺序和分式的化简方法,化简÷,然后应用因数分解法解一元二次方程,求出m的值是多少;最后把求出的m的值代入化简后的算式,求出算式÷的值是多少即可.【解答】解:÷==∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,解得x1=﹣3,x2=1,∵m是方程x2+2x﹣3=0的根,∴m1=﹣3,m2=1,∵m+3≠0,∴m≠﹣3,∴m=1,所以原式===17.在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分.某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图.已知A,B两组户数频数直方图的高度比为1:5.月信息消费额分组统计表请结合图表中相关数据解答下列问题:(1)这次接受调查的有50 户;(2)在扇形统计图中,“E”所对应的圆心角的度数是28.8°;(3)请你补全频数直方图;(4)若该社区有2000户住户,请估计月信息消费额不少于200元的户数是多少?【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表;V8:频数(率)分布直方图.【分析】(1)根据A、B两组户数直方图的高度比为1:5,即两组的频数的比是1:5,据此即可求得A组的频数;利用A和B两组的频数的和除以两组所占的百分比即可求得总数;(2)用“E”组百分比乘以360°可得;(3)利用总数乘以百分比即可求得C组的频数,从而补全统计图;(4)利用总数2000乘以C、D、E的百分比即可.【解答】解:(1)A组的频数是:10×=2;∴这次接受调查的有(2+10)÷(1﹣8%﹣28%﹣40%)=50(户),故答案为:50;(2)“E”所对应的圆心角的度数是360°×8%=28.8°,故答案为:28.8°;(3)C组的频数是:50×40%=20,如图,(4)2000×(28%+8%+40%)=1520(户),答:估计月信息消费额不少于200元的约有1520户.18.如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD、PO.(1)求证:△CDP≌△POB;(2)填空:①若AB=4,则四边形AOPD的最大面积为 4 ;②连接OD,当∠PBA的度数为60°时,四边形BPDO是菱形.【考点】L9:菱形的判定;KD:全等三角形的判定与性质.【分析】(1)根据中位线的性质得到DP∥AB,DP=AB,由SAS可证△CDP≌△POB;(2)①当四边形AOPD的AO边上的高等于半径时有最大面积,依此即可求解;②根据有一组对应边平行且相等的四边形是平行四边形,可得四边形BPDO是平行四边形,再根据邻边相等的平行四边形是菱形,以及等边三角形的判定和性质即可求解.【解答】(1)证明:∵PC=PB,D是AC的中点,∴DP∥AB,∴DP=AB,∠CPD=∠PBO,∵BO=AB,∴DP=BO,在△CDP与△POB中,∴△CDP≌△POB(SAS);(2)解:①当四边形AOPD的AO边上的高等于半径时有最大面积,(4÷2)×(4÷2)=2×2=4;②如图:∵DP∥AB,DP=BO,∴四边形BPDO是平行四边形,∵四边形BPDO是菱形,∴PB=BO,∵PO=BO,∴PB=BO=PO,∴△PBO是等边三角形,∴∠PBA的度数为60°.故答案为:4;60°.19.如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号)【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.【分析】(1)在直角三角形DCE中,利用锐角三角函数定义求出DE的长即可;(2)过D作DF垂直于AB,交AB于点F,可得出三角形BDF为等腰直角三角形,设BF=DF=x,表示出BC,BD,DC,由题意得到三角形BCD为直角三角形,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出AB的长.【解答】解:(1)在Rt△DCE中,DC=4米,∠DCE=30°,∠DEC=90°,∴DE=DC=2米;(2)过D作DF⊥AB,交AB于点F,∵∠BFD=90°,∠BDF=45°,∴∠BFD=45°,即△BFD为等腰直角三角形,设BF=DF=x米,∵四边形DEAF为矩形,∴AF=DE=2米,即AB=(x+2)米,在Rt△ABC中,∠ABC=30°,∴BC====米,BD=BF=x米,DC=4米,∵∠DCE=30°,∠ACB=60°,∴∠DCB=90°,在Rt△BCD中,根据勾股定理得:2x2=+16,解得:x=4+4,则AB=(6+4)米.20.同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据同庆中学的实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)根据费用可得等量关系为:购买3个足球和2个篮球共需310元;购买2个足球和5个篮球共需500元,把相关数值代入可得一个足球、一个篮球的单价;(2)不等关系为:购买足球和篮球的总费用不超过5720元,列式求得解集后得到相应整数解,从而求解.【解答】(1)解:设购买一个足球需要x元,购买一个篮球需要y元,根据题意得,解得,∴购买一个足球需要50元,购买一个篮球需要80元.(2)方法一:解:设购买a个篮球,则购买(96﹣a)个足球.80a+50(96﹣a)≤5720,a≤30.∵a为正整数,∴a最多可以购买30个篮球.∴这所学校最多可以购买30个篮球.方法二:解:设购买n个足球,则购买(96﹣n)个篮球.50n+80(96﹣n)≤5720,n≥65∵n为整数,∴n最少是6696﹣66=30个.∴这所学校最多可以购买30个篮球.21.根据下列要求,解答相关问题:(1)请补全以下求不等式﹣2x2﹣4x≥0的解集的过程①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;抛物线的对称轴x=﹣1,开口向下,顶点(﹣1,2)与x轴的交点是(0,0),(﹣2,0),用三点法画出二次函数y=﹣2x2﹣4x的图象如图1所示;②数形结合,求得界点:当y=0时,求得方程﹣2x2﹣4x=0的解为x1=0,x2=﹣2 ;③借助图象,写出解集:由图象可得不等式﹣2x2﹣4x≥0的解集为﹣2≤x≤0 .(2)利用(1)中求不等式解集的方法步骤,求不等式x2﹣2x+1<4的解集.①构造函数,画出图象;②数形结合,求得界点;③借助图象,写出解集.(3)参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于x 的不等式ax2+bx+c>0(a>0)的解集.【考点】HC:二次函数与不等式(组);H2:二次函数的图象;H3:二次函数的性质.【分析】(1)直接解方程进而利用函数图象得出不等式﹣2x2﹣4x≥0的解集;(2)首先画出y=x2﹣2x+1的函数图象,再利用当y=4时,方程x2﹣2x+1=4的解,得出不等式x2﹣2x+1<4的解集;(3)利用ax2+bx+c=0的解集,利用函数图象分析得出答案.【解答】解:(1)②方程﹣2x2﹣4x=0的解为:x1=0,x2=﹣2;③不等式﹣2x2﹣4x≥0的解集为:﹣2≤x≤0;(2)①构造函数,画出图象,如图2,:构造函数y=x2﹣2x+1,抛物线的对称轴x=1,且开口向上,顶点坐标(1,0),关于对称轴x=1对称的一对点(0,1),(2,1),用三点法画出图象如图2所示:;②数形结合,求得界点:当y=4时,方程x2﹣2x+1=4的解为:x1=﹣1,x2=3;③借助图象,写出解集:由图2知,不等式x2﹣2x+1<4的解集是:﹣1<x<3;(3)解:①当b2﹣4ac>0时,关于x的不等式ax2+bx+c>0(a>0)的解集是x>或x<.当b2﹣4ac=0时,关于x的不等式ax2+bx+c>0(a>0)的解集是:x≠﹣;当b2﹣4ac<0时,关于x的不等式ax2+bx+c>0(a>0)的解集是全体实数.22.(1)问题发现:(1)如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF,连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC,请判断:FG与CE的数量关系是FG=CE ,位置关系是FG∥CE .(2)拓展探究:如图2,若点E、F分别是CB、BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请出判断判断予以证明;(3)类比延伸:如图3,若点E、F分别是BC、AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断.【考点】LO:四边形综合题.【分析】(1)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=CE,FG∥CE;(2)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=CE,FG∥CE;(3)证明△CBF≌△DCE,即可证明四边形CEGF是平行四边形,即可得出结论.【解答】解:(1)FG=CE,FG∥CE;理由如下:过点G作GH⊥CB的延长线于点H,如图1所示:则GH∥BF,∠GHE=90°,∵EG⊥DE,∴∠GEH+∠DEC=90°,∵∠GEH+∠HGE=90°,∴∠DEC=∠HGE,在△HGE与△CED中,,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD,∵CE=BF,∴GH=BF,∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH∴FG∥CE,∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;故答案为:FG=CE,FG∥CE;(2)FG=CE,FG∥CE仍然成立;理由如下:过点G作GH⊥CB的延长线于点H,如图2所示:∵EG⊥DE,∴∠GEH+∠DEC=90°,∵∠GEH+∠HGE=90°,∴∠DEC=∠HGE,在△HGE与△CED中,,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD,∵CE=BF,∴GH=BF,∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH∴FG∥CE,∵四边形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;(3)FG=CE,FG∥CE仍然成立.理由如下:∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°,在△CBF与△DCE中,,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE,∵EG=DE,∴CF=EG,∵DE⊥EG∴∠DEC+∠CEG=90°∵∠CDE+∠DEC=90°∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF平行四边形,∴FG∥CE,FG=CE.23.如图,二次函数y=ax2+bx+c的图象与x轴的交点为A、D(A在D的右侧),与y轴的交点为C,且A(4,0),C(0,﹣3),对称轴是直线x=1.(1)求二次函数的解析式;(2)若M是第四象限抛物线上一动点,且横坐标为m,设四边形OCMA的面积为s.请写出s与m之间的函数关系式,并求出当m为何值时,四边形OCMA的面积最大;(3)设点B是x轴上的点,P是抛物线上的点,是否存在点P,使得以A,B、C,P四点为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)利用抛物线的对称性可得到点D的总表,然后将A、C、D的坐标代入抛物线的解析式可求得a、b、c的值,从而可得到二次函数的解析式;(2)设M(m, x2﹣x﹣3),|y M|=﹣m2+m+3,由S=S△ACM+S△OAM可得到S与m的函数关系式,然后利用配方法可求得S的最大值;(3)当AB为平行四边形的边时,则AB∥PC,则点P的纵坐标为﹣3,将y=﹣3代入抛物线的解析式可求得点P的横坐标;当AB为对角线时,AB与CP互相平分,则点P的纵坐标为3,把y=3代入抛物线的解析式可求得点P的横坐标.【解答】解:(1)∵A(4,0),对称轴是直线x=l,∴D(﹣2,0).又∵C(0,﹣3)∴解得.a=,b=﹣,c=﹣3,∴二次函数解析式为:y=x 2﹣x ﹣3.(2)如图1所示:设M (m , x 2﹣x ﹣3),|y M |=﹣m 2+m+3,∵S=S △ACM +S △OAM∴S=×OC ×m+×OA ×|y M |=×3×m+×4×(﹣m 2+m+3)=﹣m 2+3m+6=﹣(m ﹣2)2+9,当m=2时,s 最大是9.(3)当AB 为平行四边形的边时,则AB ∥PC ,∴PC ∥x 轴.∴点P 的纵坐标为﹣3.将y=﹣3代入得: x 2﹣x ﹣3=﹣3,解得:x=0或x=2. ∴点P 的坐标为(2,﹣3).当AB 为对角线时.∵ABCP 为平行四边形,∴AB 与CP 互相平分,∴点P 的纵坐标为3.把y=3代入得: x 2﹣x ﹣3=3,整理得:x 2﹣2x ﹣16=0,解得:x=1+或x=1﹣.综上所述,存在点P(2,﹣3)或P(1+,3)或P(1﹣,3)使得以A,B、C,P 四点为顶点的四边形为平行四边形.。
河南省安阳市2019届中考数学一模试卷(解析版)一.选择题1.﹣3的绝对值是()A. ﹣3B. 3C. ±3D. ﹣2.如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是()A. B. C. D.3.下列计算正确的是()A. x2•x3=x6B. (x2)3=x5C. x2+x3=x5D. x6÷x3=x34.关于x的一元二次方程ax2﹣3x+3=0有两个不等实根,则a的取值范围是()A. a<且a≠0B. a>﹣且a≠0C. a>﹣D. a<5.3月1日,河南省统计局、国家统计局河南调查总队联合公布《2016年河南省国民经济和社会发展统计公报》,《公报》显示,到2016年年末,河南省总人口为10788万人,常住人口9532万人,数据“9532万”用科学记数法可表示为()A. 95.32×106B. 9.532×107C. 9532×104D. 0.9532×1086.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()A. 中位数是2B. 平均数是2C. 众数是2D. 极差是27.多项式m2﹣m与多项式2m2﹣4m+2的公因式是()A. m﹣1B. m+1C. m2﹣1D. (m﹣1)28.如图所示的是A,B,C,D三点,按如下步骤作图:①先分别以A,B两点为圆心,以大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN;②再分别以B,C两点为圆心,以大于的长为半径作弧,两弧相交于G,H两点,作直线GH,GH与MN交于点P,若∠BAC=66°,则∠BPC等于()A. 100°B. 120°C. 132°D. 140°9.若二次函数y=﹣x2+4x+c的图象经过A(1,y1),B(﹣1,y2),C(2+ ,y3)三点,则y1、y2、y3的大小关系是()A. y1<y2<y3B. y1<y3<y2C. y2<y3<y1D. y2<y1<y310.在平面直角坐标系中,已知点A(﹣2,4),点B在直线OA上,且OA=2OB,则点B的坐标是()A. (﹣1,2)B. (1,﹣2)C. (﹣4,8)D. (﹣1,2)或(1,﹣2)二.填空题11.计算:=________.12.一个不透明的袋子中装有3个红球和2个白球共5个球,这些球除颜色不同外,其余均相同,从中任意摸出一个球,这个球是白球的概率为________.13.如图,在菱形ABCD中,∠BAD=100°,点E为AC上一点,若∠CBE=20°,则∠AED=________°.14.如图所示,格点△ABC绕点B逆时针旋转得到△EBD,图中每个小正方形的边长是1,则图中阴影部分的面积为________.15.如图,在矩形ABCD中,AB=3,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD、AD上,则AP+PQ最小值为________.三.解答题16.先化简:(x﹣1﹣),然后从满足﹣2<x≤2的整数值中选择一个你喜欢的数代入求值.17.某中学为了搞好对“传统文化学习”的宣传活动,对本校部分学生(随机抽查)进行了一次相关知识了解程度的调查测试(成绩分为A、B、C、D、E五个组,x表示测试成绩).通过对测试成绩的分析,得到如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)参加调查测试的学生为________人;(2)将条形统计图补充完整;(3)本次调查测试成绩中的中位数落在________组内;(4)若测试成绩在80分以上(含80分)为优秀,该中学共有学生2600人,请你根据样本数据估计全校学生测试成绩为优秀的总人数.18.如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,过点C作CE⊥DB交DB的延长线于点E,直线AB与CE相交于点F.(1)求证:CF为⊙O的切线;(2)填空:当∠CAB的度数为________时,四边形ACFD是菱形.19.某校兴趣小组想测量一座大楼AB的高度.如图,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)20.如图,在平面直角坐标系中,一次函数y1=kx+b的图象分别交x轴,y轴于A、B两点,与反比例函数y2=的图象交于C、D两点,已知点C的坐标为(﹣4,﹣1),点D的横坐标为2.(1)求反比例函数与一次函数的解析式;(2)直接写出当x为何值时,y1>y2?(3)点P是反比例函数在第一象限的图象上的点,且点P的横坐标大于2,过点P做x轴的垂线,垂足为点E,当△APE的面积为3时,求点P的坐标.21.某市决定购买A、B两种树苗对某段道路进行绿化改造,已知购买A种树苗9棵,B种树苗4棵,需要700元;购买A种树苗3棵,B种树苗5棵,则需要380元.(1)求购买A、B两种树苗每颗各需多少元?(2)考虑到绿化效果和资金周转,购进A种树苗不能少于60棵,且用于购买这两种树苗的资金不能超过5260元.若购进这两种树苗共100棵,则有哪几种购买方案?哪种方案最省钱?22.已知∠ACD=90°,AC=DC,MN是过点A的直线,过点D作DB⊥MN于点B,连接CB.(1)问题发现如图(1),过点C作CE⊥CB,与MN交于点E,则易发现BD和EA之间的数量关系为________,BD、AB、CB 之间的数量关系为________.(2)拓展探究当MN绕点A旋转到如图(2)位置时,BD、AB、CB之间满足怎样的数量关系?请写出你的猜想,并给予证明.(3)解决问题当MN绕点A旋转到如图(3)位置时(点C、D在直线MN两侧),若此时∠BCD=30°,BD=2时,CB=________.23.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)如图所示,直线BC下方的抛物线上有一点P,过点p作PE⊥BC于点E,作PF平行于x轴交直线BC于点F,求△PEF周长的最大值;(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P的横坐标;若不存在,说明理由.答案解析部分一.<b >选择题</b>1.【答案】B【考点】绝对值【解析】【解答】解:根据负数的绝对值是它的相反数,得|﹣3|=3.故答案为:B.【分析】任何数的绝对值都是非负数。
2019年安阳市数学中考模拟试题(含答案)一、选择题1.如图,菱形ABCD 的一边中点M 到对角线交点O 的距离为5cm ,则菱形ABCD 的周长为( )A .5cmB .10cmC .20cmD .40cm 2.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+ 3.如果一组数据6、7、x 、9、5的平均数是2x ,那么这组数据的方差为( )A .4B .3C .2D .1 4.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45° 5.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣16.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为( )A .25B .4C .213D .4.8 7.如图,菱形ABCD 的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD 的周长是( )A .24B .16C .413D .238.分式方程()()31112x x x x -=--+的解为( )A .1x =B .2x =C .1x =-D .无解9.已知直线//m n ,将一块含30角的直角三角板ABC 按如图方式放置(30ABC ∠=︒),其中A ,B 两点分别落在直线m ,n 上,若140∠=︒,则2∠的度数为( )A .10︒B .20︒C .30D .40︒10.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折 11.51-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请51的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间 12.今年我市工业试验区投资50760万元开发了多个项目,今后还将投资106960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x 万元,那么下列方程符合题意的是( )A .1069605076020500x x -=+B .5076010696020500x x -=+C .1069605076050020x x -=+D .5076010696050020x x -=+ 二、填空题13.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________14.如图,Rt AOB ∆中,90AOB ∠=︒,顶点A ,B 分别在反比例函数()10y x x=>与()50y x x-=<的图象上,则tan BAO ∠的值为_____.15.如图,⊙O 的半径为6cm ,直线AB 是⊙O 的切线,切点为点B ,弦BC ∥AO ,若∠A=30°,则劣弧BC 的长为 cm .16.已知扇形AOB 的半径为4cm ,圆心角∠AOB 的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm17.分式方程32xx 2--+22x-=1的解为________. 18.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)19.已知M 、N 两点关于y 轴对称,且点M 在双曲线12y x=上,点N 在直线y=﹣x+3上,设点M 坐标为(a ,b ),则y=﹣abx 2+(a+b )x 的顶点坐标为 . 20.若关于x 的一元二次方程kx 2+2(k+1)x+k -1=0有两个实数根,则k 的取值范围是三、解答题21.计算:103212sin45(2π)-+--+-.22.(问题背景)如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,点E 、F 分别是边BC 、CD 上的点,且∠EAF =60°,试探究图中线段BE 、EF 、FD 之间的数量关系.小王同学探究此问题的方法是:延长FD 到点G ,使GD =BE ,连结AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是 . (探索延伸)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°,点E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD ,上述结论是否仍然成立,并说明理由.(学以致用)如图3,在四边形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC =6,E 是边AB 上一点,当∠DCE =45°,BE =2时,则DE 的长为 .23.如图,在Rt△ACB 中,∠C=90°,AC=3cm ,BC=4cm ,以BC 为直径作⊙O 交AB 于点D .(1)求线段AD 的长度;(2)点E 是线段AC 上的一点,试问:当点E 在什么位置时,直线ED 与⊙O 相切?请说明理由.24.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A ,B ,C ,D 四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A 小区的概率是多少;(2)请用列表或画树状图的方法求甲组抽到A 小区,同时乙组抽到C 小区的概率.25.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,O 为AB 上一点,经过点A ,D 的⊙O 分别交AB ,AC 于点E ,F ,连接OF 交AD 于点G .(1)求证:BC 是⊙O 的切线;(2)设AB =x ,AF =y ,试用含x ,y 的代数式表示线段AD 的长;(3)若BE =8,sinB =513,求DG 的长,【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD ,AO=OC ,根据三角形的中位线求出BC ,即可得出答案.【详解】∵四边形ABCD 是菱形,∴AB=BC=CD=AD ,AO=OC ,∵AM=BM ,∴BC=2MO=2×5cm=10cm , 即AB=BC=CD=AD=10cm ,即菱形ABCD 的周长为40cm ,故选D .【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC 是解此题的关键.2.D解析:D【解析】试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则0122a xb y ++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.3.A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.详解:根据题意,得:67955x++++=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选A.点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.4.A解析:A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.5.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-=21xx-故选B.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.6.C解析:C【解析】先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到142CD AD AC ===,然后利用勾股定理计算BD 的长. 【详解】 ∵AB 为直径,∴90ACB ︒∠=,∴6BC ==,∵OD AC ⊥, ∴142CD AD AC ===,在Rt CBD ∆中,BD ==故选C .【点睛】 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.7.C解析:C【解析】【分析】由菱形ABCD 的两条对角线相交于O ,AC=6,BD=4,即可得AC ⊥BD ,求得OA 与OB 的长,然后利用勾股定理,求得AB 的长,继而求得答案.【详解】∵四边形ABCD 是菱形,AC=6,BD=4,∴AC ⊥BD , OA=12AC=3, OB=12BD=2, AB=BC=CD=AD ,∴在Rt △AOB 中,∴菱形的周长为故选C .8.D解析:D【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.详解:去分母得:x 2+2x ﹣x 2﹣x +2=3,解得:x =1,经检验x =1是增根,分式方程无解. 故选D .点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.9.B解析:B【解析】【分析】根据平行线的性质判断即可得出结论.【详解】 解:直线//m n ,21180ABC BAC ∴∠+∠∠+∠=+︒,30ABC =︒∠,90BAC ∠=︒,140∠=︒,218030904020∴∠=---︒︒=︒︒︒,故选:B .【点睛】本题考查的是平行线的性质,熟练掌握平行线的性质是解题的关键.10.B解析:B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 11.B解析:B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴,∴1.2<5-1<1.3,故选B.【点睛】本题考查了估算无理数的大小,利用5≈2.236是解题关键.12.A解析:A【解析】试题分析:∵今后项目的数量﹣今年的数量=20,∴1069605076020500x x-=+.故选A.考点:由实际问题抽象出分式方程.二、填空题13.<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a>−设f(x)=ax2-3x-1如图∵实数根都在-1解析:94-<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a-<0,∴a<−32,且有f(-1)<0,f(0)<0,即f (-1)=a×(-1)2-3×(-1)-1<0,f (0)=-1<0,解得:a <-2,∴−94<a <-2, 故答案为−94<a <-2. 14.【解析】【分析】过作轴过作轴于于是得到根据反比例函数的性质得到根据相似三角形的性质得到求得根据三角函数的定义即可得到结论【详解】过作轴过作轴于则∵顶点分别在反比例函数与的图象上∴∵∴∴∴∴∴∴故答案【解析】【分析】过A 作AC x ⊥轴,过B 作BD x ⊥轴于D ,于是得到90BDO ACO ∠=∠=︒,根据反比例函数的性质得到52BDO S ∆=,12AOC S ∆=,根据相似三角形的性质得到25BOD OAC S OB S OA ∆∆⎛⎫== ⎪⎝⎭,求得OB OA = 【详解】过A 作AC x ⊥轴,过B 作BD x ⊥轴于,则90BDO ACO ∠=∠=︒,∵顶点A ,B 分别在反比例函数()10y x x =>与()50y x x -=<的图象上, ∴52BDO S ∆=,12AOC S ∆=, ∵90AOB ∠=︒,∴90BOD DBO BOD AOC ∠+∠=∠+∠=︒,∴DBO AOC ∠=∠,∴BDO OCA ∆∆, ∴252512BOD OACS OB S OA ∆∆⎛⎫=== ⎪⎝⎭,∴OB OA=∴tan OB BAO OA ∠==,【点睛】本题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.15.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦BC∥AO及OB=OC可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B解析:2π.【解析】根据切线的性质可得出OB⊥AB,从而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC的度数,代入弧长公式即可得出∵直线AB是⊙O的切线,∴OB⊥AB(切线的性质).又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).∵弦BC∥AO,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).又∵OB=OC,∴△OBC是等边三角形(等边三角形的判定).∴∠BOC=60°(等边三角形的每个内角等于60°).又∵⊙O的半径为6cm,∴劣弧BC的长=606=2180ππ⋅⋅(cm).16.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=904180π⨯,解得r=1.故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分解析:x 1=【解析】【分析】根据解分式方程的步骤,即可解答.【详解】方程两边都乘以x 2-,得:32x 2x 2--=-,解得:x 1=,检验:当x 1=时,x 21210-=-=-≠,所以分式方程的解为x 1=,故答案为x 1=.【点睛】考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.18.【解析】【分析】根据甲乙两车单独运这批货物分别用2a 次a 次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合 解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a 次、a 次能运完”甲的效率应该为12a ,乙的效率应该为1a ,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T 吨,甲车每次运t 甲吨,乙车每次运t 乙吨,∵2a ⋅t 甲=T ,a ⋅t 乙=T ,∴t 甲:t 乙=1:2, 由题意列方程:180270180270T T t t --=甲乙, t 乙=2t 甲, ∴180270180135T T --=, 解得T =540. ∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍, ∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.19.(±)【解析】【详解】∵MN 两点关于y 轴对称∴M 坐标为(ab )N 为(-ab )分别代入相应的函数中得b=①a+3=b②∴ab=(a+b )2=(a-b )2+4ab=11a+b=∴y=-x2x ∴顶点坐标为解析:(±11 ,112). 【解析】 【详解】 ∵M 、N 两点关于y 轴对称,∴M 坐标为(a ,b ),N 为(-a ,b ),分别代入相应的函数中得,b=12a ①,a+3=b ②, ∴ab=12,(a+b )2=(a-b )2+4ab=11,a+b=11±, ∴y=-12x 211±x , ∴顶点坐标为(2b a -=11±,244ac b a -=112),即(11±,112). 点睛:主要考查了二次函数的性质,函数图象上点的特征和关于坐标轴对称的点的特点.解决本题的关键是掌握好对称点的坐标规律.20.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式解析:k≥,且k≠0【解析】试题解析:∵a=k ,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥0,解得:k≥-,∵原方程是一元二次方程,∴k ≠0.考点:根的判别式. 三、解答题21.13【解析】根据负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质分别化简各项后,再合并即可解答.【详解】原式112132=+-⨯+=111313=.【点睛】本题主要考查了实数运算,利用负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质正确化简各数是解题关键.22.【问题背景】:EF=BE+FD;【探索延伸】:结论EF=BE+DF仍然成立,见解析;【学以致用】:5.【解析】【分析】[问题背景]延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE =AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;[探索延伸]延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE =AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;[学以致用]过点C作CG⊥AD交AD的延长线于点G,利用勾股定理求得DE的长.【详解】[问题背景】解:如图1,在△ABE和△ADG中,∵DG BEB ADGAB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAFAF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;故答案为:EF=BE+FD.[探索延伸]解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,∵DG BEB ADG AB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+FD,∴EF=BE+FD;[学以致用]如图3,过点C作CG⊥AD,交AD的延长线于点G,由【探索延伸】和题设知:DE=DG+BE,设DG=x,则AD=6﹣x,DE=x+3,在Rt△ADE中,由勾股定理得:AD2+AE2=DE2,∴(6﹣x)2+32=(x+3)2,解得x=2.∴DE=2+3=5.故答案是:5.【点睛】此题是一道把等腰三角形的判定、勾股定理、全等三角形的判定结合求解的综合题.考查学生综合运用数学知识的能力,解决问题的关键是在直角三角形中运用勾股定理列方程求解.23.(1)AD=95;(2)当点E是AC的中点时,ED与⊙O相切;理由见解析.【解析】【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与 O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE 即可.【详解】(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键.24.(1)甲组抽到A小区的概率是14;(2)甲组抽到A小区,同时乙组抽到C小区的概率为1 12.【解析】【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,根据概率公式求解可得.【详解】(1)甲组抽到A小区的概率是14,故答案为:14.(2)画树状图为:共有12种等可能的结果数,其中甲组抽到A小区,同时乙组抽到C小区的结果数为1,∴甲组抽到A小区,同时乙组抽到C小区的概率为1 12.此题考查列表法与树状图法,解题关键在于根据题意画出树状图.25.(1)证明见解析;(3)DG=23. 【解析】【分析】(1)连接OD ,由AD 为角平分线得到一对角相等,再由等边对等角得到一对角相等,等量代换得到内错角相等,进而得到OD 与AC 平行,得到OD 与BC 垂直,即可得证; (2)连接DF ,由(1)得到BC 为圆O 的切线,由弦切角等于夹弧所对的圆周角,进而得到三角形ABD 与三角形ADF 相似,由相似得比例,即可表示出AD ;(3)连接EF ,设圆的半径为r ,由sinB 的值,利用锐角三角函数定义求出r 的值,由直径所对的圆周角为直角,得到EF 与BC 平行,得到sin ∠AEF=sinB ,进而求出DG 的长即可.【详解】(1)如图,连接OD ,∵AD 为∠BAC 的角平分线,∴∠BAD=∠CAD ,∵OA=OD ,∴∠ODA=∠OAD ,∴∠ODA=∠CAD ,∴OD ∥AC ,∵∠C=90°,∴∠ODC=90°,∴OD ⊥BC ,∴BC 为圆O 的切线;(2)连接DF ,由(1)知BC 为圆O 的切线,∴∠FDC=∠DAF ,∴∠CDA=∠CFD ,∴∠AFD=∠ADB ,∵∠BAD=∠DAF ,∴△ABD ∽△ADF , ∴AB AD AD AF=,即AD 2=AB•AF=xy ,则;(3)连接EF ,在Rt △BOD 中,sinB=513OD OB =, 设圆的半径为r ,可得5813r r =+,∴AE=10,AB=18,∵AE是直径,∴∠AFE=∠C=90°,∴EF∥BC,∴∠AEF=∠B,∴sin∠AEF=513 AFAE=,∴AF=AE•sin∠AEF=10×513=50 13,∵AF∥OD,∴501013513AG AFDG OD===,即DG=1323AD,∴AD=503013·181313AB AF=⨯=,则DG=133033013 231323⨯=.【点睛】圆的综合题,涉及的知识有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.。
2019届河南省中考模拟(一)数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. ﹣3的绝对值是()A. ﹣3B. 3C. ﹣3﹣1D. 3﹣1二、选择题2. 如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()A. B. C. D.3. 地球的表面积约为510000000km2,将510000000用科学记数法表示为()A.0.51×109 B.5.1×109 C.5.1×108 D.0.51×1074. 如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()A.70° B.60° C.50° D.40°5. 分式方程的解是()A.x=﹣2 B.x=2 C.x=1 D.x=1或x=26. 下列调查适合抽样调查的是()A.审核书稿中的错别字B.对某社区的卫生死角进行调查C.对八名同学的身高情况进行调查D.对中学生目前的睡眠情况进行调查7. 如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE8. 在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,) B.(2n﹣1,)C.(4n+1,) D.(2n+1,)三、填空题9. 在实数﹣2、0、﹣1、2、﹣中,最小的是_______________.10. 如图,已知矩形ABCD的对角线长为8cm,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH的周长等于_______cm.11. 如图,点A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点C、D在x轴上,且BC∥AD,四边形ABCD的面积为3,则这个反比例函数的解析式为______________.12. 已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:13. x…﹣10123…y…105212…t d14. 一个不透明的布袋里装有5个球,其中4个红球和1个白球,它们除颜色外其余都相同,现将n个白球放入布袋,搅匀后,使摸出1个球是红球的概率为,则n=____________.15. 如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为_____________.16. 如图,四边形ABCD为矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=4.设AB=x,AD=y,则x2+(y﹣4)2的值为____________.四、解答题17. 先化简,再求值:1﹣,其中x、y满足|x﹣2|+(2x﹣y﹣3)2=0.18. (1)如图1,纸片▱ABCD中,AD=5,S▱ABCD=15,过点A作AE⊥BC,垂足为E,沿AE 剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为________.A.平行四边形 B.菱形 C.矩形 D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形.②求四边形AFF′D的两条对角线的长.19. “热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.20. 已知关于x的一元二次方程mx2+mx+m﹣1=0有两个相等的实数根.(1)求m的值;(2)解原方程.21. 如图1是“东方之星”救援打捞现场图,小红据此构造出一个如图2所示的数学模型,已知:A、B、D三点在同一水平线上,CD⊥AD,∠A=30°,∠CBD=75°,AB=60m.(1)求点B到AC的距离;(2)求线段CD的长度.22. 某校一课外小组准备进行“绿色环保”的宣传活动,需要制作宣传单,校园附近有甲、乙两家印刷社,制作此种宣传单的收费标准如下:甲印刷社收费y(元)与印制数x(张)的函数关系如下表:23. 印制x(张)…100200300…收费y(元)…153045…td24. 问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足________________关系时,仍有EF=BE+FD.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整数,参考数据: =1.41, =1.73)25. 如图,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.(1)求该抛物线的解析式;(2)在(1)中位于第一象限内的抛物线上是否存在点D,使得△BCD的面积最大?若存在,求出D点坐标及△BCD面积的最大值;若不存在,请说明理由.(3)在(1)中的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案及解析第1题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】。
河南省安阳市2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算3a2-a2的结果是()A.4a2B.3a2C.2a2D.32.已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2 B.2 C.3 D.﹣33.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE= 1316,其中正确结论的个数是()A.1 B.2 C.3 D.44.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.5.如图,等腰三角形ABC底边BC的长为4 cm,面积为12 cm2,腰AB的垂直平分线EF交AB于点E,交AC于点F,若D为BC边上的中点,M为线段EF上一点,则△BDM的周长最小值为( )A.5 cm B.6 cm C.8 cm D.10 cm6.实数﹣5.22的绝对值是()A.5.22 B.﹣5.22 C.±5.22 D 5.227.-3的相反数是()A.13B.3 C.13-D.-38.实数a,b,c在数轴上对应点的位置大致如图所示,O为原点,则下列关系式正确的是()A.a﹣c<b﹣c B.|a﹣b|=a﹣b C.ac>bc D.﹣b<﹣c9.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长32m,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到AC'的位置,此时露在水面上的鱼线B′C′为33m,则鱼竿转过的角度是()A.60°B.45°C.15°D.90°10.如果m的倒数是﹣1,那么m2018等于()A.1 B.﹣1 C.2018 D.﹣201811.近似数25.010⨯精确到()A.十分位B.个位C.十位D.百位12.将2001×1999变形正确的是()A.20002﹣1 B.20002+1 C.20002+2×2000+1 D.20002﹣2×2000+1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成一个圆锥,则圆锥的高为______.14.如图,在同一平面内,将边长相等的正三角形和正六边形的一条边重合并叠在一起,则∠1的度数为_____.15.在Rt△ABC纸片上剪出7个如图所示的正方形,点E,F落在AB边上,每个正方形的边长为1,则Rt△ABC的面积为_____.16.甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8;x x =甲乙 =8,则这两人5次射击命中的环数的方差S 甲2_____S 乙2(填“>”“<”或“=”).17.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是 .18.如图,正比例函数y 1=k 1x 和反比例函数y 2=2k x的图象交于A (﹣1,2),B (1,﹣2)两点,若y 1>y 2,则x 的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系h =10t ﹣5t 1.小球飞行时间是多少时,小球最高?最大高度是多少?小球飞行时间t 在什么范围时,飞行高度不低于15m ?20.(6分)先化简,再求值:先化简22211x x x -+-÷(11x x -+﹣x+1),然后从﹣2<x <5的范围内选取一个合适的整数作为x 的值代入求值.21.(6分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P 作坐标轴的平行线PM 和PN ,分别交x 轴和y 轴于点M ,N .点M 、N 在x 轴和y 轴上所对应的数分别叫做P 点的x 坐标和y 坐标,有序实数对(x ,y )称为点P 的斜坐标,记为P (x ,y ).(1)如图2,ω=45°,矩形OAB C 中的一边OA 在x 轴上,BC 与y 轴交于点D ,OA =2,OC =l .①点A、B、C在此斜坐标系内的坐标分别为A,B,C.②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为.③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为.(2)若ω=120°,O为坐标原点.①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=43,求圆M的半径及圆心M的斜坐标.②如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是.22.(8分)(1)问题发现如图1,在Rt△ABC中,∠A=90°,ABAC=1,点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD.(1)①求PBCD的值;②求∠ACD的度数.(2)拓展探究如图2,在Rt△ABC中,∠A=90°,ABAC=k.点P是边BC上一动点(不与点B重合),∠PAD=90°,∠APD=∠B,连接CD,请判断∠ACD与∠B 的数量关系以及PB与CD之间的数量关系,并说明理由.(3)解决问题如图3,在△ABC中,∠B=45°,2,BC=12,P 是边BC上一动点(不与点B重合),∠PAD=∠BAC,∠APD=∠B,连接CD.若PA=5,请直接写出CD的长.23.(8分)如图,在规格为8×8的边长为1个单位的正方形网格中(每个小正方形的边长为1),△ABC 的三个顶点都在格点上,且直线m 、n 互相垂直.(1)画出△ABC 关于直线n 的对称图形△A′B′C′;(2)直线m 上存在一点P ,使△APB 的周长最小;①在直线m 上作出该点P ;(保留画图痕迹)②△APB 的周长的最小值为 .(直接写出结果)24.(10分)观察规律并填空.21133(1)2224-=⨯=221113242(1)(1)2322333--=⨯⨯⨯=2221111324355(1)(1)(1)2342233448---=⨯⨯⨯⨯⨯= ⋯⋯2222211111(1)(1)(1)(1)(1)2345n -----=L L ______(用含n 的代数式表示,n 是正整数,且 n ≥ 2) 25.(10分)某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“足球”所对应的圆心角的度数;(3)该校共有3000名学生,请估计全校学生喜欢足球运动的人数.(4)甲乙两名学生各选一项球类运动,请求出甲乙两人选同一项球类运动的概率.26.(12分)如图,抛物线y=-x2+bx+c与x轴交于A、B两点,且B点的坐标为(3,0),经过A点的直线交抛物线于点D (2,3).求抛物线的解析式和直线AD的解析式;过x轴上的点E (a,0) 作直线EF∥AD,交抛物线于点F,是否存在实数a,使得以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.27.(12分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.直接写出甲投放的垃圾恰好是A类的概率;求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据合并同类项法则进行计算即可得.【详解】3a2-a2=(3-1)a2=2a2,故选C.【点睛】本题考查了合并同类项,熟记合并同类项的法则是解题的关键.合并同类项就是把同类项的系数相加减,字母和字母的指数不变. 2.B【解析】【详解】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.3.C【解析】∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,AD ABDAP ABQ AP BQ=⎧⎪∠=∠⎨⎪=⎩,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴AO OP OD OA=,∴AO2=OD•OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP;故②错误;在△CQF与△BPE中FCQ EBPQ PCQ BP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,AD CDADC DCE DF CE=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴43 PB PAEB DA==,∴BE=34,∴QE=134,∵△QOE∽△PAD,∴1345 QO OE QEPA AD PD===,∴QO=135,OE=3920,∴AO=5﹣QO=125,∴tan∠OAE=OEOA=1316,故④正确,故选C.点睛:本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.4.D【解析】试题分析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.考点:轴对称图形.5.C【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【详解】如图,连接AD.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC•AD=12×4×AD=12,解得:AD=6(cm).∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+12BC=6+12×4=6+2=8(cm).故选C.【点睛】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.6.A【解析】【分析】根据绝对值的性质进行解答即可.【详解】实数﹣5.1的绝对值是5.1.故选A.【点睛】本题考查的是实数的性质,熟知绝对值的性质是解答此题的关键. 7.B【解析】【分析】根据相反数的定义与方法解答.【详解】解:-3的相反数为()33--=.故选:B.【点睛】本题考查相反数的定义与求法,熟练掌握方法是关键.8.A【解析】【分析】根据数轴上点的位置确定出a ,b ,c 的范围,判断即可.【详解】由数轴上点的位置得:a <b <0<c ,∴ac <bc ,|a ﹣b|=b ﹣a ,﹣b >﹣c ,a ﹣c <b ﹣c.故选A .【点睛】考查了实数与数轴,弄清数轴上点表示的数是解本题的关键. 9.C【解析】试题解析:∵sin ∠CAB=62BC AC == ∴∠CAB=45°.∵B C sin C AB AC '''∠===' ∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,鱼竿转过的角度是15°.故选C .考点:解直角三角形的应用.10.A【解析】【分析】因为两个数相乘之积为1,则这两个数互为倒数, 如果m的倒数是﹣1,则m=-1,然后再代入m2018计算即可.【详解】因为m的倒数是﹣1,所以m=-1,所以m2018=(-1)2018=1,故选A.【点睛】本题主要考查倒数的概念和乘方运算,解决本题的关键是要熟练掌握倒数的概念和乘方运算法则. 11.C【解析】【分析】【详解】根据近似数的精确度:近似数5.0×102精确到十位.故选C.考点:近似数和有效数字12.A【解析】【分析】原式变形后,利用平方差公式计算即可得出答案.【详解】解:原式=(2000+1)×(2000-1)=20002-1,故选A.【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13cm【解析】【分析】利用已知得出底面圆的半径为:1cm,周长为2πcm,进而得出母线长,即可得出答案.【详解】∵半径为1cm的圆形,∴底面圆的半径为:1cm,周长为2πcm,扇形弧长为:2π=90180R π⨯,∴R=4,即母线为4cm,∴圆锥的高为:16115-=(cm).故答案为15cm.【点睛】此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键.14.60°【解析】【分析】先根据多边形的内角和公式求出正六边形每个内角的度数,然后用正六边形内角的度数减去正三角形内角的度数即可.【详解】(6-2)×180°÷6=120°,∠1=120°-60°=60°.故答案为:60°.【点睛】题考查了多边形的内角和公式,熟记多边形的内角和公式为(n-2) ×180°是解答本题的关键.15.49 4【解析】【分析】如图,设AH=x,GB=y,利用平行线分线段成比例定理,构建方程组求出x,y即可解决问题.【详解】解:如图,设AH=x,GB=y,∵EH∥BC,AH EH AC BC∴=, 135x x y∴=++① ∵FG ∥AC ,FG BG AC BC∴= 135y x y=++②, 由①②可得x =12,y =2, ∴AC =72,BC =7, ∴S △ABC =494, 故答案为494. 【点睛】本题考查图形的相似,平行线分线段成比例定理,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型.16.>【解析】【分析】分别根据方差公式计算出甲、乙两人的方差,再比较大小.【详解】 ∵x x =甲乙=8,∴2S 甲=15[(7﹣8)2+(9﹣8)2+(8﹣8)2+(6﹣8)2+(10﹣8)2]=15(1+1+0+4+4)=2,2S 乙=15[(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=15(1+0+1+0+0)=0.4,∴2S 甲>2S 乙. 故答案为:>.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.17.10%.【解析】【分析】设平均每次降价的百分率为x ,那么第一次降价后的售价是原来的()1x -,那么第二次降价后的售价是原来的()21x -,根据题意列方程解答即可.【详解】设平均每次降价的百分率为x ,根据题意列方程得, ()2100181x ⨯-=,解得10.110%x ==,2 1.9x =(不符合题意,舍去),答:这个百分率是10%.故答案为10%.【点睛】本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为()21a x b ±=.18.x <﹣2或0<x <2【解析】【分析】仔细观察图像,图像在上面的函数值大,图像在下面的函数值小,当y 2>y 2,即正比例函数的图像在上,反比例函数的图像在下时,根据图像写出x 的取值范围即可.【详解】解:如图,结合图象可得:①当x <﹣2时,y 2>y 2;②当﹣2<x <0时,y 2<y 2;③当0<x <2时,y 2>y 2;④当x >2时,y 2<y 2. 综上所述:若y 2>y 2,则x 的取值范围是x <﹣2或0<x <2.故答案为x <﹣2或0<x <2.【点睛】本题考查了图像法解不等式,解题的关键是仔细观察图像,全面写出符合条件的x 的取值范围.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)小球飞行时间是1s 时,小球最高为10m ;(1) 1≤t≤3.【解析】【分析】(1)将函数解析式配方成顶点式可得最值;(1)画图象可得t的取值.【详解】(1)∵h=﹣5t1+10t=﹣5(t﹣1)1+10,∴当t=1时,h取得最大值10米;答:小球飞行时间是1s时,小球最高为10m;(1)如图,由题意得:15=10t﹣5t1,解得:t1=1,t1=3,由图象得:当1≤t≤3时,h≥15,则小球飞行时间1≤t≤3时,飞行高度不低于15m.【点睛】本题考查了二次函数的应用,主要考查了二次函数的最值问题,以及利用二次函数图象求不等式,并熟练掌握二次函数的性质是解题的关键.20.﹣1x,﹣12.【解析】【分析】根据分式的减法和除法可以化简题目中的式子,然后在-2<x5中选取一个使得原分式有意义的整数值代入化简后的式子即可求出最后答案,值得注意的是,本题答案不唯一,x的值可以取-2、2中的任意一个.【详解】原式=2x-11(1)(1) x+1(1)1x x xx x---+÷-+()()=2x-1x+1x+1x-1-x+1⋅=x-1-x x-1()=1x-,∵-2<x5(x为整数)且分式要有意义,所以x+1≠0,x-1≠0,x≠0,即x≠-1,1,0,因此可以选取x=2时,此时原式=-1 2 .【点睛】本题主要考查了求代数式的值,解本题的要点在于在化解过程中,求得x的取值范围,从而再选取x=2得到答案.21.(1)①(2,0),(1,2),(﹣1,2);②y=2x;③ y=2x,y=﹣22x+2;(2)①半径为4,M(83,43);②3﹣1<r<3+1.【解析】【分析】(1)①如图2-1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2-2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3-3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M 的半径即可解决问题.【详解】(1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F,由题意OC=CD=1,OA=BC=2,∴BD=OE=1,2∴A(2,0),B(12),C(﹣12,故答案为(2,0),(12),(﹣12);②如图2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M,∵OD∥BE,OD∥PM,∴BE∥PM,∴BEPM=OEOM,∴21y x=,∴y=2x;③如图2﹣3中,作QM∥OA交OD于M,则有MQ DM OA DO=,∴222x y-=,∴y=﹣22x+2,故答案为y=2x,y=﹣22x+2;(2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N,∵ω=120°,OM⊥y轴,∴∠MOA=30°,∵MF⊥OA,OA=43,∴OF=FA=23,∴FM=2,OM=2FM=4,∵MN∥y轴,∴MN⊥OM,∴MN=433,ON=2MN=833,∴M(83,43);②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.∵MK∥x轴,ω=120°,∴∠MKO=60°,∵MK=OK=2,∴△MKO是等边三角形,∴3当FN=1时,31,当EN=1时,3,观察图象可知当⊙M的半径r31<r3.3﹣1<r3.【点睛】本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面直角坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.22.(1)1,45°;(2)∠ACD=∠B,PB ABCD AC=k;(3710.【解析】【分析】(1)根据已知条件推出△ABP ≌△ACD ,根据全等三角形的性质得到PB=CD ,∠ACD=∠B=45°,于是得到 1;PB CD= ()2根据已知条件得到△ABC ∽△APD ,由相似三角形的性质得到AB AP k AC AD ==,得到 ABP ∽△CAD ,根据相似三角形的性质得到结论;()3过A 作AH ⊥BC 于 H ,得到△ABH 是等腰直角三角形,求得 AH=BH=4, 根据勾股定理得到3,AC PH ====根据相似三角形的性质得到AB AP AC AD=,推出△ABP ∽△CAD ,根据相似三角形的性质即可得到结论.【详解】(1)∵∠A=90°, 1,AB AC= ∴AB=AC ,∴∠B=45°,∵∠PAD=90°,∠APD=∠B=45°,∴AP=AD ,∴∠BAP=∠CAD ,在△ABP 与△ACD 中,AB=AC, ∠BAP=∠CAD ,AP=AD,∴△ABP ≌△ACD ,∴PB=CD ,∠ACD=∠B=45°, ∴PB CD=1, (2),PB AB ACD B k CD AC ,∠=∠== ∵∠BAC=∠PAD=90°,∠B=∠APD ,∴△ABC ∽△APD ,AB AP k AC AD==Q ∵∠BAP+∠PAC=∠PAC+∠CAD=90°, ∴∠BAP=∠CAD ,∴△ABP ∽△CAD ,∴∠ACD=∠B ,,PB AB k CD AC== (3)过 A 作 AH ⊥BC 于 H ,∵∠B=45°,∴△ABH 是等腰直角三角形, ∵42AB =,∴AH=BH=4,∵BC=12, ∴CH=8,∴2245,AC AH CH =+= ∴22PA AH -, ∴PB=1,∵∠BAC=∠PAD=,∠B=∠APD , ∴△ABC ∽△APD ,∴AB AP AC AD =,∵∠BAP+∠PAC=∠PAC+∠CAD ,∴∠BAP=∠CAD ,∴△ABP ∽△CAD , ∴,AB PB AC CD =即421,45CD = ∴102CD =. 过 A 作 AH ⊥BC 于 H ,∵∠B=45°, ∴△ABH 是等腰直角三角形,∵42AB =,∴AH=BH=4,∵BC=12,∴CH=8,∴2245,AC AH CH =+=∴22PA AH -,∴PB=7,∵∠BAC=∠PAD=,∠B=∠APD ,∴△ABC ∽△APD ,∴AB AP AC AD =, ∵∠BAP+∠PAC=∠PAC+∠CAD ,∴∠BAP=∠CAD ,∴△ABP ∽△CAD ,∴,AB PB AC CD =即427,45CD= ∴710CD =. 【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.23.(1)详见解析;(2)①详见解析;②1032+.【解析】【分析】(1)根据轴对称的性质,可作出△ABC 关于直线n 的对称图形△A′B′C′;(2)①作点B 关于直线m 的对称点B'',连接B''A 与x 轴的交点为点P ;②由△ABP 的周长=AB+AP+BP=AB+AP+B''P ,则当AP 与PB''共线时,△APB 的周长有最小值.【详解】解:(1)如图△A′B′C′为所求图形.(2)①如图:点P 为所求点.②∵△ABP 的周长=AB+AP+BP=AB+AP+B''P∴当AP 与PB''共线时,△APB 的周长有最小值.∴△APB 的周长的最小值【点睛】本题考查轴对称变换,勾股定理,最短路径问题,解题关键是熟练掌握轴对称的性质.24.12n n+ 【解析】【分析】由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣12)和(1+1n )相乘得出结果. 【详解】 2222211111111112345n -----L L ()()()()() =1111111111111111223344n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+⨯⨯-⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L =132431...22334n n+⨯⨯⨯⨯⨯⨯ =12n n+. 故答案为:12n n+. 【点睛】本题考查了算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.25.(1)1;(2)详见解析;(3)750;(4)15. 【解析】【分析】(1)用排球的人数÷排球所占的百分比,即可求出抽取学生的人数;(2)足球人数=学生总人数-篮球的人数-排球人数-羽毛球人数-乒乓球人数,即可补全条形统计图; (3)计算足球的百分比,根据样本估计总体,即可解答;(4)利用概率公式计算即可.【详解】(1)30÷15%=1(人).答:共抽取1名学生进行问卷调查;故答案为1.(2)足球的人数为:1﹣60﹣30﹣24﹣36=50(人),“足球球”所对应的圆心角的度数为360°×0.25=90°.如图所示:(3)3000×0.25=750(人).答:全校学生喜欢足球运动的人数为750人.(4)画树状图为:(用A、B、C、D、E分别表示篮球、足球、排球、羽毛球、乒乓球的五张卡片)共有25种等可能的结果数,选同一项目的结果数为5,所以甲乙两人中有且选同一项目的概率P(A)=15.【点睛】本题主要考查了条形统计图,扇形统计图以及用样本估计总体的应用,解题时注意:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.26.(1)y=-x2+2x+3;y=x+1;(2)a的值为-3或47【解析】【分析】(1)把点B和D的坐标代入抛物线y=-x2+bx+c得出方程组,解方程组即可;由抛物线解析式求出点A 的坐标,设直线AD的解析式为y=kx+a,把A和D的坐标代入得出方程组,解方程组即可;(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,得出F(0,3),由AE=-1-a=2,求出a的值;②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,设F (a-3,-3),代入抛物线解析式,即可得出结果.【详解】解:(1)把点B和D的坐标代入抛物线y=-x2+bx+c得:930 423b cb c-++=⎧⎨-++=⎩解得:b=2,c=3,∴抛物线的解析式为y=-x2+2x+3;当y=0时,-x2+2x+3=0,解得:x=3,或x=-1,∵B(3,0),∴A(-1,0);设直线AD的解析式为y=kx+a,把A和D的坐标代入得:0 23k ak a-+=⎧⎨+=⎩解得:k=1,a=1,∴直线AD的解析式为y=x+1;(2)分两种情况:①当a<-1时,DF∥AE且DF=AE,则F点即为(0,3),∵AE=-1-a=2,∴a=-3;②当a>-1时,显然F应在x轴下方,EF∥AD且EF=AD,设F (a-3,-3),由-(a-3)2+2(a-3)+3=-3,解得:a=4±综上所述,满足条件的a的值为-3或4【点睛】本题考查抛物线与x轴的交点;二次函数的性质;待定系数法求二次函数解析式及平行四边形的判定,综合性较强.27.(1)13(2)23.【解析】【分析】(1)根据总共三种,A只有一种可直接求概率;(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.【详解】解:(1)甲投放的垃圾恰好是A类的概率是13.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)122 183 ==.即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是23.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知m =12+,n =12-,则代数式223m n mn +-的值为 ( )A .±3B .3C .5D .92.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为A .2B .3C .4D .53.已知5a =,27b =,且a b a b +=+,则-a b 的值为( )A .2或12B .2或12-C .2-或12D .2-或12-4.如果关于x 的一元二次方程k 2x 2-(2k+1)x+1=0有两个不相等的实数根,那么k 的取值范围是( ) A .k>-14 B .k>-14且0k ≠ C .k<-14 D .k ≥-14且0k ≠ 5.如图,在平面直角坐标系中,已知点A (―3,6)、B (―9,一3),以原点O 为位似中心,相似比为,把△ABO 缩小,则点A 的对应点A′的坐标是( )A .(―1,2)B .(―9,18)C .(―9,18)或(9,―18)D .(―1,2)或(1,―2)6.如图,A 、B 两点在双曲线y=4x上,分别经过A 、B 两点向轴作垂线段,已知S 阴影=1,则S 1+S 2=( )A .3B .4C .5D .67.甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:次序 第一次 第二次 第三次 第四次 第五次 甲命中的环数(环)6 7 8 6 8 乙命中的环数(环) 5 10 7 6 7 根据以上数据,下列说法正确的是( )A .甲的平均成绩大于乙B .甲、乙成绩的中位数不同C .甲、乙成绩的众数相同D .甲的成绩更稳定8.某广场上有一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB ∥EF ∥DC ,BC ∥GH ∥AD ,那么下列说法错误的是( )A .红花、绿花种植面积一定相等B .紫花、橙花种植面积一定相等C .红花、蓝花种植面积一定相等D .蓝花、黄花种植面积一定相等9.若△ABC ∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于( )A .30°B .50°C .40°D .70°10.在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④11.关于反比例函数4y x=-,下列说法正确的是( ) A .函数图像经过点(2,2);B .函数图像位于第一、三象限;C .当0x >时,函数值y 随着x 的增大而增大;D .当1x >时,4y <-.12.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D′处.若AB=3,AD=4,则ED 的长为A .32B .3C .1D .43二、填空题:(本大题共6个小题,每小题4分,共24分.)13.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律.已知21i =-,那么(1)(1)i i +⋅-=________. 14.△ABC 的顶点都在方格纸的格点上,则sinA =_ ▲ .15.在Rt △ABC 纸片上剪出7个如图所示的正方形,点E ,F 落在AB 边上,每个正方形的边长为1,则Rt △ABC 的面积为_____.16.定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若()P 1,1-,()Q 2,3,则P ,Q 的“实际距离”为5,即PS SQ 5+=或PT TQ 5.+=环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B 两个小区的坐标分别为()A 3,1,()B 5,3-,若点()M 6,m 表示单车停放点,且满足M 到A ,B 的“实际距离”相等,则m =______.17.如图,在平面直角坐标系中,直线y =﹣3x+3与x 轴、y 轴分别交于A 、B 两点,以AB 为边在第一象限作正方形,点D 恰好在双曲线上k y x=,则k 值为_____.18.如图,六边形ABCDEF 的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.求出y与x的函数关系式;当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?20.(6分)从广州去某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.求普通列车的行驶路程;若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.21.(6分)我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=12(m2﹣n2),b=mn,c=12(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.22.(8分)如图,直线y=kx+b(k≠0)与双曲线y=mx(m≠0)交于点A(﹣12,2),B(n,﹣1).求直线与双曲线的解析式.点P在x轴上,如果S△ABP=3,求点P的坐标.23.(8分)已知关于x的方程x1+(1k﹣1)x+k1﹣1=0有两个实数根x1,x1.求实数k的取值范围;若x1,x1满足x11+x11=16+x1x1,求实数k的值.24.(10分)如图,已知AB 是⊙O 上的点,C 是⊙O 上的点,点D 在AB 的延长线上,∠BCD=∠BAC .求证:CD 是⊙O 的切线;若∠D=30°,BD=2,求图中阴影部分的面积.25.(10分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想--转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2-2x=0,可以通过因式分解把它转化为x(x 2+x-2)=0,解方程x=0和x 2+x-2=0,可得方程x 3+x 2-2x=0的解.问题:方程x 3+x 2-2x=0的解是x 1=0,x 2= ,x 3= ;拓展:用“转化”思想求方程23x x +=的解;应用:如图,已知矩形草坪ABCD 的长AD=8m ,宽AB=3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求AP 的长.26.(12分)如图,一次函数y =kx+b 的图象与坐标轴分别交于A 、B 两点,与反比例函数y =m x的图象在第一象限的交点为C ,CD ⊥x 轴于D ,若OB =1,OD =6,△AOB 的面积为1.求一次函数与反比例函数的表达式;当x >0时,比较kx+b 与m x的大小.27.(12分)如图,已知在Rt △ABC 中,∠ACB=90°,AC >BC ,CD 是Rt △ABC 的高,E 是AC 的中点,ED 的延长线与CB 的延长线相交于点F .求证:DF 是BF 和CF 的比例中项;在AB 上取一点G ,如果AE•AC=AG•AD ,求证:EG•CF=ED•DF .。