人教版-高中数学选修1-1_椭圆
- 格式:ppt
- 大小:363.01 KB
- 文档页数:18
椭圆的定义例题解析例1过椭圆4x2+y2=1的一个焦点F1的直线与椭圆交于A、B两点,则A、B与椭圆的另一个焦点F2构成△ABF2的周长是[ ]略解:∵|AF1|+|AF2|=2,|BF1|+|BF2|=2,∴|AF1|+|BF1|+|AF2|+|BF2|=4,即|AB|+|AF2|+|BF2|=4.∴选B.评注:此题明是求周长,实际上是用椭圆的定义.题中提现了转化的思想.例2M点为椭圆上一点,椭圆两焦点为F1,F2.且2a=10,2c=6,点I为△MF1F2解:如图,I为△MF1F2的内心,∴∠1=∠2,比较①、②,并应用等比定理,得评注:此题三步用到了椭圆的定义,内角平分线定理,等比定理.等比定理是桥梁把内角平分线分线段比与椭圆的第一定义联系起来.例3已知椭圆两焦点为F1,F2,M点为椭圆上一点(不在直线F1F2上),∠F1MF2=θ,|F1F2|=2c,|MF1|+|MF2|=2a.求△MF1F2的面积.解:由余弦定理,得(2c)2=|F1F2|2=|MF1|2+|MF2|2-2|MF1|·|MF2|cos∠F1MF2=(|MF1|+|MF2|)2-2|MF1|·|MF2|(1+cosθ)=(2a)2-2|MF1|·|MF2|(1+cosθ)评注:例4已知方程2(k2-2)x2+k2y2+k2-k-6=0表示椭圆,求实数k的取值范围.解:按题意,得评注:解这种类型的题目,要注意椭圆的两种类型,同时要注意椭圆与圆的区别.例5解:设所求椭圆方程为Ax2+By2=k,①评注:此题不知道椭圆的类型,因此采取这种“模糊”的设法,简化了计算.例6分析:解:设|PF1|=m,|PF2|=n,m+n=20,即m2+n2-mn=144.(1) ∴(m+n)2-3mn=144.评注:在上述方法中运用了椭圆的定义和余弦定理,这是解决椭圆中三角形问题时常求|PF1|·|PF2|的最大值.解:∵a=10,∴|PF1|+|PF2|=20.当且仅当|PF1|=|PF2|时“=”号成立,∴|PF1|·|PF2|的最大值为100.例7证在椭圆外,(1)∵P在椭圆内,(2)∵P评注:1.本题涉及的知识点是椭圆方程与坐标概念.2.这是常用的知识点,了解坐标概念和曲线方程概念即不难证明.例8时,求|AM|+2|MF|的最小值,并求此时点M的坐标.解析:本题按常规思路,设M(x,y),则又M在椭圆上,y可用x表示,这样|AM|+2|MF|可表示为x的一元函数,再求此函数的最小值.虽说此法看上去可行,但实际操作起来十分困难,但我们可以由椭圆的第二定义,转化到点到直线的距离来求,如图.∴|AM|+2|MF|=|AM|+d由于点A在椭圆内,过A作AK⊥l,K为垂足,易证|AK|即为|AM|+d的最小值,其值为8-(-2)=10例9[ ]A.椭圆 B.双曲线C.线段 D.抛物线略解:即点P(x,y)到定点F(1,1)的距离与到定直线l:x+y+2=0的距离的比值∴点P的轨迹是椭圆,故选A.评注:此题很妙:妙在利用椭圆的第二定义,定义不能直接运用,必须进行变形后,才知答案.若利用两边平方解会很麻烦的.例10离为[ ] A.8略解:如图|PF1|+|PF2|=2a=10,∴|PF1|=2.∴|PF2|=10-|PF1|=10-2=8.选A.评注:此题是椭圆第一定义与第二定义的综合运用.例11如图椭圆中心为O,F是焦点,A为顶点,准线l交OA延长线于B,P、Q在椭圆上,且PD⊥l于D,QF⊥OA于F,则椭圆离心率为[ ] A.0 B.2C.2 D.5答案:D.评注:此题灵活利用离心率、深化对椭圆第二定义的理解.例12则有|PF1|=a+ex,|PF2|=a-ex.证明:由椭圆第二定义,得评注:有的书中把上述结论叫做焦半径公式.按照人民教育出版社出版的教材要求这样做是不科学的,容易陷入单纯记忆公式,忽视椭圆第二定义的理解和应用.由于叙述的方便,后面我们还是采用焦半径的提法.但是要注重理解.实际上,上述结论是椭圆第二定义的延伸,抓住椭圆第二定义,及点与直线位置关系极易推导和记住,使用时,前面冠以“根据椭圆第二定义,得”即可应用.|PF1|=a+ex,|PF2|=a-ex,例13分析:只要解方程组即可.此种方法,思路自然,但计算量较大,需要换一个角度,寻求新的解法.解:由椭圆第二定义,得评注:充分理解椭圆第二定义,可记忆有关结论.。
2.1.1 椭圆及其标准方程问题导学一、椭圆的定义及应用活动与探究1(1)椭圆x 225+y 29=1上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( )A .5B .6C .4D .10(2)已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点,在△AF 1B中,若有两边之和是10,则第三边的长度为______.迁移与应用 设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列,则|AB |=______.椭圆的定义能够对一些距离进行相互转化,简化解题过程.因此,解题过程中遇到涉及曲线上的点到焦点的距离问题时,应先考虑是否能够利用椭圆的定义求解.椭圆上一点P 与椭圆的两焦点F 1,F 2构成的△F 1PF 2称为焦点三角形,解关于椭圆中的焦点三角形问题时要充分利用椭圆的定义、三角形中的正弦定理、余弦定理等知识,对于求焦点三角形的面积,若已知∠F 1PF 2,可利用S =12ab sin C 把|PF 1||PF 2|看成一个整体,运用公式|PF 1|2+|PF 2|2=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|及余弦定理求出|PF 1||PF 2|,而无需单独求出,这样可以减少运算量.二、椭圆的标准方程及应用活动与探究2求适合下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为F 1(-4,0),F 2(4,0),并且椭圆上一点P 与两焦点的距离的和等于10;(2)焦点分别为(0,-2),(0,2),经过点(4,32); (3)经过两点(2,-2),⎝⎛⎭⎫-1,142.迁移与应用1.若方程x 25-k +y 2k -3=1表示焦点在x 轴上的椭圆,则k 的取值范围是__________.2.两焦点坐标分别为(3,0)和(-3,0)且经过点(5,0)的椭圆的标准方程为__________.(1)利用待定系数法求椭圆的标准方程的步骤可总结如下:①由焦点坐标确定方程是x 2a 2+y 2b 2=1(a >b >0),还是y 2a 2+x 2b2=1(a >b >0);②运用定义、平方关系等求出a ,b . (2)当焦点不确定时,可设方程为Ax 2+By 2=1(A >0,B >0,且A ≠B ),这样可以避免讨论.三、焦点三角形问题活动与探究3如图所示,已知椭圆的方程为x 24+y 23=1,若点P 在第二象限,且∠PF 1F 2=120°,求△PF 1F 2的面积.迁移与应用已知P 是椭圆x 225+y 29=1上一点,F 1,F 2是椭圆的两个焦点,∠F 1PF 2=60°,求△F 1PF 2的面积.四、与椭圆有关的轨迹问题活动与探究4(1)已知圆x 2+y 2=9,从这个圆上任意一点P 向x 轴作垂线段PP ′,点M 在PP ′上,并且PM →=2MP ′→,求点M 的轨迹.(2)已知在△ABC 中,|BC |=6,周长为16,那么顶点A 在怎样的曲线上运动?迁移与应用如图,在圆C :(x +1)2+y 2=25内有一点A (1,0),Q 为圆C 上一点,AQ 的垂直平分线与C ,Q 的连线交于点M ,求点M 的轨迹方程.解决与椭圆有关的轨迹问题,一般有两种方法: (1)定义法用定义法求椭圆方程的思路是:先观察、分析已知条件,看所求动点轨迹是否符合椭圆的定义.若符合椭圆的定义,则用待定系数法求解即可.(2)相关点法有些问题中的动点轨迹是由另一动点按照某种规律运动而形成的,只要把所求动点的坐标“转移”到另一个动点在运动中所遵循的条件中去,即可解决问题,这种方法称为相关点法.用相关点法求轨迹方程的步骤:①设所求轨迹上的动点P (x ,y ),再设具有某种运动规律f (x ,y )=0上的动点Q (x ′,y ′);②找出P ,Q 之间坐标的关系,并表示为⎩⎪⎨⎪⎧x ′=φ1x ,y ,y ′=φ2x ,y ;③将x ′,y ′代入f (x ,y )=0, 即得所求轨迹方程. 答案: 课前·预习导学 【预习导引】1.距离之和 常数 两个定点 两焦点间的距离 |MF 1|+|MF 2|=2a预习交流1 (1)提示:当2a =|F 1F 2|时,点M 的轨迹是线段F 1F 2;当2a <|F 1F 2|时,点M 的轨迹不存在.(2)提示:B2.x 2a 2+y 2b 2=1(a >b >0) y 2a 2+x 2b2=1(a >b >0) F 1(-c,0),F 2(c,0) F 1(0,-c ),F 2(0,c )a2=b2+c2预习交流2(1)提示:相同点:它们都有a>b>0,a2=b2+c2,焦距都是2c,椭圆上的点到两焦点距离的和均为2a.方程右边为1,左边是两个非负分式的和,并且分母不相等.不同点:两类椭圆的焦点位置不同,即焦点所在坐标轴不同,因此焦点坐标也不相同,焦点在x轴上的椭圆两焦点坐标分别为(-c,0)和(c,0),焦点在y轴上的椭圆两焦点坐标分别为(0,-c)和(0,c).当椭圆焦点在x轴上时,含x2项的分母大;当椭圆焦点在y轴上时,含y2项的分母大.(2)提示:534(4,0),(-4,0)课堂·合作探究【问题导学】活动与探究1(1)思路分析:求出a→|PF1|+|PF2|=2a>|F1F2|→求出P到另一个焦点的距离A解析:点P到椭圆的两个焦点的距离之和为2a=10,10-5=5.(2)思路分析:结合图形,利用定义求第三边.6解析:由已知a2=16,a=4.从而由椭圆定义得|AF1|+|AF2|=2a=8,|BF1|+|BF2|=2a=8,∴△AF1B的周长为|AF1|+|AB|+|BF1|=16.又知三角形有两边之和为10,∴第三边的长度为6.迁移与应用43解析:由椭圆定义知|AF2|+|AB|+|BF2|=4,又2|AB|=|AF2|+|BF2|,所以|AB|=43.活动与探究2思路分析:(1)由已知可得a,c的值,由b2=a2-c2可求出b,再根据焦点位置写出椭圆的方程.(2)利用两点间的距离公式求出2a ,再写方程;也可用待定系数法.(3)利用待定系数法,但需讨论焦点的位置.也可利用椭圆的一般方程Ax 2+By 2=1(A >0,B >0, A ≠B )直接求A ,B 得方程.解:(1)由题意可知椭圆的焦点在x 轴上,且c =4,2a =10, 所以a =5,b =a 2-c 2=25-16=3.所以椭圆的标准方程为x 225+y 29=1.(2)(方法一)因为椭圆的焦点在y 轴上, 所以可设它的标准方程为y 2a 2+x 2b 2=1(a >b >0).由椭圆的定义知2a =(4-0)2+(32+2)2+(4-0)2+(32-2)2=12,所以a =6. 又c =2,所以b =a 2-c 2=42. 所以椭圆的标准方程为y 236+x 232=1.(方法二)因为椭圆的焦点在y 轴上, 所以可设其标准方程为y 2a 2+x 2b 2=1(a >b >0).由题意得⎩⎪⎨⎪⎧18a 2+16b 2=1,a 2=b 2+4,解得⎩⎪⎨⎪⎧a 2=36,b 2=32.所以椭圆的标准方程为y 236+x 232=1.(3)(方法一)若椭圆的焦点在x 轴上, 设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).由已知条件得⎩⎨⎧4a 2+2b 2=1,1a 2+144b 2=1,解得⎩⎨⎧1a 2=18,1b 2=14.所以所求椭圆的标准方程为x 28+y 24=1.同理可得:焦点在y 轴上的椭圆不存在.综上,所求椭圆的标准方程为x 28+y 24=1.(方法二)设椭圆的一般方程为Ax 2+By 2=1(A >0,B >0,A ≠B ). 将两点(2,-2),⎝⎛⎭⎫-1,142代入, 得⎩⎪⎨⎪⎧4A +2B =1,A +144B =1,解得⎩⎨⎧A =18,B =14,所以所求椭圆的标准方程为x 28+y 24=1.迁移与应用1.(3,4) 解析:由已知得⎩⎪⎨⎪⎧5-k >k -3,k -3>0,解得3<k <4.2.x 225+y 216=1 解析:易知c =3,a =5,则b 2=a 2-c 2=16. 又椭圆的焦点在x 轴上, ∴所求椭圆的方程为x 225+y 216=1.活动与探究3 思路分析:由余弦定理和椭圆定义分别建立|PF 1|,|PF 2|的方程,求出|PF 1|,|PF 2|后,再求△PF 1F 2的面积.解:由已知a =2,b =3, 所以c =a 2-b 2=4-3=1,|F 1F 2|=2c =2,在△PF 1F 2中,由余弦定理,得|PF 2|2=|PF 1|2+|F 1F 2|2-2|PF 1||F 1F 2|cos 120°, 即|PF 2|2=|PF 1|2+4+2|PF 1|,① 由椭圆定义,得|PF 1|+|PF 2|=4, 即|PF 2|=4-|PF 1|,② 将②代入①解得|PF 1|=65.∴12PF F S ∆=12|PF 1|·|F 1F 2|·sin 120°=12×65×2×32=335,即△PF1F2的面积是353.迁移与应用解:在椭圆x225+y29=1中,a=5,b=3,c=4,则|F1F2|=8,|PF1|+|PF2|=10.①由余弦定理,得|PF1|2+|PF2|2-2|PF1||PF2|·cos 60°=64.②①2-②得|PF1||PF2|=12.∴S=12|PF1|·|PF2|·sin 60°=12×12×32=33.活动与探究4(1)思路分析:先设出M的坐标(x,y),用x,y表示出点P的坐标代入圆方程即可.解:设点M的坐标为(x,y),点P的坐标为(x0,y0),则x0=x,y0=3y.因为P(x0,y0)在圆x2+y2=9上,所以x20+y20=9.将x0=x,y0=3y代入圆方程,得x2+9y2=9.即x29+y2=1.又y≠0,所以点M的轨迹是一个椭圆,且除去(3,0)和(-3,0)两点.(2)思路分析:利用椭圆的定义解决,最后要注意检验.解:由|AB|+|BC|+|AC|=16,|BC|=6,可得|AB|+|AC|=10>6=|BC|,故顶点A在以B,C为焦点,到两焦点距离的和等于10的一个椭圆上运动,且除去BC 直线与椭圆的两个交点.迁移与应用解:由题意知M 在线段CQ 上,从而有|CQ |=|MQ |+|MC |. 又M 在AQ 的垂直平分线上,连接AM ,则|MA |=|MQ |, ∴|MA |+|MC |=|CQ |=5>|AC |=2.∴M 的轨迹是以C (-1,0),A (1,0)为焦点的椭圆,且2a =5, ∴a =52,c =1,b 2=a 2-c 2=214.∴M 的轨迹方程为x 2254+y 2214=1,即4x 225+4y 221=1.当堂检测1.设P 是椭圆22=12516x y +上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( ) A .4 B .5 C .8 D .10 答案:D 解析:由椭圆定义知|PF 1|+|PF 2|=2a . ∵a 2=25,∴2a =10. ∴|PF 1|+|PF 2|=10.2.椭圆22=1167x y +的焦点坐标为( ) A .(-4,0)和(4,0) B .(0,)和(0) C .(-3,0)和(3,0) D .(0,-9)和(0,9)答案:C 解析:由已知椭圆的焦点在x 轴上,且a 2=16,b 2=7, ∴c 2=9,c =3.∴椭圆的焦点坐标为(-3,0)和(3,0).3.已知椭圆的焦点是F 1,F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A .圆B .椭圆C .抛物线D .无法确定答案:A解析:由题意得|PF1|+|PF2|=2a(a为大于零的常数,且2a>|F1F2|),|PQ|=|PF2|,∴|PF1|+|PF2|=|PF1|+|PQ|=2a,即|F1Q|=2a.∴动点Q到定点F1的距离等于定长2a,故动点Q的轨迹是圆.4.已知P是椭圆22=12516x y+上一点,F1,F2为焦点,且∠F1PF2=90°,则△PF1F2的面积是______.答案:16解析:由椭圆定义知:|PF1|+|PF2|=2a=10,①又∵∠F1PF2=90°,∴|PF1|2+|PF2|2=|F1F2|2=4c2=36.②①2-②得|PF1|·|PF2|=32.∴S=12|PF1|·|PF2|=16.5.已知椭圆22=1259x y+上一点M到左焦点F1的距离为6,N是MF1的中点,则|ON|=______.答案:2解析:设右焦点为F2,连接F2M,∵O为F1F2的中点,N是MF1的中点,∴|ON|=12|MF2|.又∵|MF1|+|MF2|=2a=10,|MF1|=6,∴|MF2|=4,∴|ON|=2.。
椭圆及标准方程、几何性质一、椭圆定义及标准方程【知识要点】 1. 椭圆的定义第一定义:平面内,到两定点21,F F 距离之和等于定长(大于21F F )的点的轨迹叫椭圆. 第二定义:平面内与一定点F 和一条定直线)(l F l ∉的距离之比是常数))1,0((∈e e 的点的轨迹叫椭圆. 2. 椭圆的方程(1)标准方程: )0(12222>>=+b a b y a x 或 )0(12222>>=+b a by a y(2)一般方程:),0,0(122B A B A By Ax ≠>>=+ 【基础训练】1.已知点)2,0(1-F ,)2,0(2F ,动点P 满足621=+PF PF ,则动点P 的轨迹是( ) A.椭圆B.双曲线C.线段D.射线2.已知椭圆192522=+y x 上一点P 到椭圆一个焦点的距离为5,则P 到另一个焦点的距离为( ) A.2B.3C.4D.53.到两定点)0,2(),0,2(B A -的距离之和为8的动点的轨迹方程为 。
4.两个焦点的坐标分别为)0,2(),0,2(-,并且经过)3,2(的椭圆的标准方程是 。
【典例精析】例1.【标准方程的识别】方程13522=++-my m x 表示焦点在y 轴上的椭圆,则m 的范围是( )A.53<<-mB.51<<mC.13<<-mD.43<<-m 例2.【求标准方程】根据下列条件分别求出椭圆的的方程. (1)和椭圆364922=+y x 有相同的焦点,经过点)3,2(-Q .(2)中心在原点,焦点在x 轴上,从一个焦点看短轴的两端点的视角为直角且这个焦点到长轴上较近的顶点的距离为510-.例3.(2011全国)在平面直角坐标系中,椭圆C 的中心为原点,焦点21,F F 在x 轴上,离心率为22 过点1F 的直线l 交C 于B A ,两点,且2ABF ∆的周长为16,那么C 的方程为 。
高中数学选修1,1《椭圆》教案高中数学选修1-1《椭圆》教案【一】一、教材分析(一)教材的地位和作用本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。
椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。
因此这节课有承前启后的作用,是本章和本节的重点内容之一。
(二)教学重点、难点1.教学重点:椭圆的定义及其标准方程2.教学难点:椭圆标准方程的推导(三)三维目标1.知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。
2.过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、类比、归纳问题的能力。
3.情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。
二、教学方法和手段采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。
“授人以鱼,不如授人以渔。
”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。
三、教学程序1.创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。
2.画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。
3.教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。
4.椭圆定义:注意定义中的三个条件,使学生更好地把握定义。
5.推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在y轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。
6.例题讲解:通过例题规范学生的解题过程。
7.巩固练习:以多种题型巩固本节课的教学内容。
8.归纳小结:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养学生的概括能力。