动力气象学 静力不稳定
- 格式:ppt
- 大小:578.00 KB
- 文档页数:11
大气的静力稳定度
大气的静力稳定度是指大气对垂直运动的抑制能力。
当大气处于静力平衡状态时,一个气块受到的空气浮力和自身重力相等,则会在垂直方向上处于一个平衡位置。
当受到外力(动力或热力)的作用,气块会偏离平衡位置产生向上或向下的垂直运动。
这种偏离平衡位置的垂直运动能否继续发展,是由大气温度和湿度的垂直分布所决定的。
大气的静力稳定度有三种状态:不稳定、稳定和中性。
当气温垂直递减率γ>-1℃/100m时,大气呈不稳定状态,空气微团容易上升;当γ=-1℃/100m 时,大气呈中性状态,空气微团可以上下自由运动;当γ< -1℃/100m时,大气呈稳定状态,空气微团不易上升。
大气的静力稳定度对天气变化和气候的形成有重要影响。
例如,在早晨或晚上地面气温较低时,大气的静力稳定度较大,空气不易上升,因此污染物不易扩散;而在中午或下午地面气温较高时,大气的静力稳定度较小,空气容易上升,污染物容易扩散。
此外,大气的静力稳定度也会影响降水、雷暴等天气现象的发生和发展。
总之,大气的静力稳定度是大气的一个重要的特征参数,它对气象学研究和气象预报具有重要意义。
动力气象学习题集一、名词解释1. 地转平衡:2. f 平面近似:3. 地转偏差:4. 尺度分析法:5. 梯度风:6. 地转风:7. 正压大气:8. 斜压大气:9. 大气行星边界层:10. 旋转减弱:11. 埃克曼抽吸:12. 波包迹:13. 环流:14. 环流定理:15. 埃克曼螺线:16. 梯度风高度:17. 非频散波:18. 微扰法(小扰动法)19. 声波:20. 重力外波:21. Boussinesq 近似:22. 正压不稳定:23. 斜压不稳定:二、判断题1. 中纬度地转运动准水平的原因之一是重力场的作用使大气质量向靠近地球固定边界一薄层中堆积,从而制约了铅直气压梯度,限制了大气运动的铅直尺度。
2. 等压面图上,闭合高值等高线区域,等压面是下凹的,在闭合低值等高线区域,等压面是上凸的。
3. 小尺度运动不满足静力平衡条件,但仍然可以用p 坐标系运动方程组描述他们的运动规律。
4. 压高公式说明,气层厚度正比于平均温度,气压随高度按指数单调递减,且平均温度愈低,气压随高度递减愈慢,反之亦然。
5. 如果运动是绝热、无摩擦和定常运动,且周围无水汽交换,那么单位质量湿空气的显热能、位能、动能、潜热能之和守恒。
6. 有效位能是动能唯一的“源”,但不是唯一的“汇”。
7. 风随高度分布的对数定律是指在不稳定条件下,近地面层的风速分布特征。
8. 不规则湍涡运动会引起动量和其它物理量的输送,它的最小单位是分子。
9. 动力气象学是流体力学的一个分支。
10. 物理量的空间分布称为物理量场。
11. 气压梯度力反比于气压梯度。
12. 速度散度代表物质体积元的体积在运动中的相对膨胀率。
13. 笛卡尔坐标系中的三个基本方向在空间中是固定的,球坐标系中的三个基本方向随空间点是变化的。
14. 大气运动被分成大、中、小尺度是按照时间尺度划分的。
15. 当f处于系数地位不被微商时,取f=f o;当f处于对y求微商地位时,取df/dy=常数,此种处理方法称为B平面近似。
中国科学院海洋研究所硕士研究生入学考试《动力气象学》考试大纲本《动力气象学》考试大纲不仅适用于中国科学院海洋研究所气象学专业的硕士研究生入学考试,也适应于中国科学院研究生院气象学等相关专业的硕士研究生入学考试。
动力气象学是大气科学的重要分支,是相关学科专业(包括海洋气象学)的基础理论课程,它的主要内容包括大气运动的基本方程组和基本动力特征、涡旋运动与准地转模式、大气中的波动、大气不稳定理论、热带大气动力学以及大气环流及其数值模拟。
要求考生对其基本概念有较深入和清楚的了解,能够系统地掌握大气运动的基本理论和方法,理解天气系统演变的基本规律和机理,特别是海洋过程在全球天气系统变化中的作用机理。
掌握大气运动基本方程及其变形,掌握大气中的主要波动类型和小扰动方法,掌握大气中存在的主要的不稳定现象及其产生的条件,掌握热带大气动力学的特征及其与中、高纬度的差异,熟悉大气环流的主要特征并了解大气环流的数值模拟,并具有综合运用所学知识分析问题和解决问题的能力。
一、考试内容(一)大气运动的基本方程组1.地球和大气的基本特征2.运动方程3.连续性方程4.状态方程、热力学方程和水汽方程5.球坐标系中的大气运动方程组6.局地直角坐标系中的大气运动方程组7.β平面近似8. 能量守恒定律9. 尺度分析和基本方程组的简化10.地转风与热成风11.静力平衡(二)涡旋运动与准地转模式1.环流与环流定理2.涡度方程、位涡度方程3.浅水模型中的涡度方程4.散度方程与平衡方程5.准地转模式与准地转位涡度守衡定律6.准地转位势倾向方程和ω方程(三)大气中的波动1.小扰动的波动方程式2.声波3.重力波4.惯性内波与惯性振荡5.重力惯性外波和重力惯性内波6.罗斯贝波7.群速度和上游效应(四)不稳定理论1.不稳定的概念2.惯性不稳定3.正压不稳定4.斜压不稳定5.开尔文-赫姆霍兹不稳定(五)热带大气动力学1.热带大气运动的主要特征及其尺度分析2.混合罗斯贝-重力波和开尔文波3.积云对流加热参数化4.第二类条件不稳定(CISK)和台风的发展(六)大气环流1.大气环流2.角动量平衡和输送3.热量和水分平衡4.能量循环二、考试要求(一)大气运动的基本方程组1.熟悉并掌握地球自转角速度、地球的平均半径、标准大气压和标准大气密度的数值。
动力气象学总学时:128(其中自学96,面授24,实习8)教材版本:动力气象学教程(吕美仲、彭永清编著)教学目的和要求:动力气象学是在热力学和流体力学的基础上,系统地讲述大气的热力过程和大气运动的基本规律,并指出这些规律的实践意义的一门专业基础课。
具体地说,它是应用物理学定律研究大气运动的动力过程、热力过程以及它们之间的相互关系,从理论上探讨大气环流、天气系统演变和其它大气动力过程,因而,它是天气学、数值天气预报及大气环流等专业课程的理论基础。
本课程,通过教学,目的在于使学生能深入地理解大气动力学的基本理论,了解近代动力气象学的主要进展,掌握用动力学方法分析和预报天气的基本原理和技术,从而使学生具有一定的理论水平和科学研究的能力。
为将来从事天气预报的业务及研究工作打下基础。
为达到上述目的,在教学中要求:⑴努力贯彻理论联系实际的原则。
在教学内容和取材上,从现今国内外气象业务部门及科研单位所使用的有代表性的方法和理论为主体,讲课中以讲授基本原理为重点,在讲深讲透基本理论的基础上,让学生进行必要的课堂讨论和作练习,使学生既能掌握基本原理,又能利用基本原理去探讨和解决实际问题。
⑵注重理论的系统性。
本课程是一门理论性较强的课程,在努力贯彻理论联系实际的原则下,要突出本课程的特点,在教学中应该注意有系统、有条理地介绍它的内容,强调各部分内容之间的有机联系,以使学生能掌握得深透。
教学的主要内容及学时分配:总学时:128课时,其中面授24课时,课堂练习8学时,自学96课时。
每章自学10学时,5~10章每章讲授4学时,其余4学时供课堂练习和答疑。
第一章大气运动的基本方程组§1.1全导数和局地导数§1.2旋转参考系中运动方程的矢量形式§1.3质量守恒定律--连续方程§1.4状态方程、热力学方程、水汽方程§1.5球坐标系中基本方程组§1.6局地直角坐标系中基本方程组§1.7闭合运动方程组、初始条件和边界条件第二章尺度分析与基本方程组的简化§2.1尺度概念、大气运动的尺度分类§2.2基本方程组的尺度分析§2.3无量纲方程、动力学参数§2.4 平面近似§2.5静力平衡大气、P坐标系第三章自由大气中平衡流畅§3.1自然坐标系§3.2平衡流场的基本形式与性质§3.3地转风随高度的变化、热成风§3.4地转偏差第四章环流定理、涡度方程和散度方程§4.1环流与环流定理§4.2涡度与涡度矢量方程§4.3泰勒——普劳德曼定理§4.4铅直涡度方程§4.5P坐标系中的涡度方程和散度方程§4.6位势涡度方程第五章大气行星边界层§5.1大气运动的湍流特性和平均运动方程组§5.2大气行星边界层及其特征§5.3属性的湍流输送通量及其参数化§5.4湍流运动发展的判据§5.5近地面层风随高度的分布§5.6埃克曼层风随高度的分布§5.7埃克曼抽吸与旋转减弱第六章大气能量学§6.1大气能量的主要形式§6.2大气能量方程§6.3静力平衡条件下大气中的能量转换§6.4有效位能§6.5大气中动能的消耗§6.6实际大气中的能量循环§6.7能量的转换过程第七章大气中的基本波动§7.1波动的基本概念§7.2微扰动法、基本方程组的线性化§7.3声波和LAMB波§7.4重力外波、重力慣性外波§7.5重力内波、性内波、重力慣性内波§7.6 波§7.7噪音与滤波第八章地转适应过程与准地转演变过程§8.1大尺度运动过程的阶段性§8.2正压大气中的地转适应过程§8.3斜压大气中的地转适应过程§8.4准地转运动的分类§8.5准地转运动方程组§8.6准地转位势倾向方程组与方程§8.7Q矢量、非热成风产生的二级环流的诊断第九章大气运动的稳定性理论§9.1流体动力学稳定性概念§9.2慣性不稳定§9.3开尔文——赫姆霍茨不稳定§9.4正压不稳定§9.5斜压不稳定第十章低纬度热带大气动力学§10.1热带运动系统概述§10.2热带大气运动的尺度分析§10.3热带扰动的生成与发展§10.4台风的结构与发展§10.5热带行星尺度波动。
1 振幅:振动物体离开平衡位置的最大位移周期:空间固定位置上的点完成一次全振动所需时间波长L :相邻两个同位相点之间的距离波数k :2π距离内包含了多少个波长位相θ: 波在x 轴上各点各时刻的位置,α为初位相;相速c :位相相同的各点组成的面称为等位相面,等位相面的移速称为相速c横波:若质点振动方向与波的传播方向垂直,此种波动称为横波纵波:若质点振动方向与波的传播方向一致,此种波动称为纵波傅立叶原理:实际大气扰动不是单纯的简谐波,可以看成是各种不同频率、不同振幅的简谐波叠加在平均值上的结果,这就是傅立叶原理波群:实际大气中的扰动可以看成许多不同振幅、不同频率的简谐波叠加而成,这种合成波称为波群或波包群速:波群的传播速度(合成波振幅等位相面的传播速度)频散波:相速与波数有关的波称为频散波,否则称为非频散波。
由于考虑了地球大气的层结性和旋转效应,大气中的实际波动都是频散波频散关系式:表示频率和波数之间关系的式子小振幅波:振幅远小于波长的波动称为小振幅波,否则就称为有限振幅波。
小振幅波也称为线性波小扰动法:将描写大气运动和状态的物理量分解为已知的基本量和未知的小扰动量之和,从而可将非线性方程简化为线性方程的一种近似方法。
小扰动法只适用于天气系统发展的初始阶段,在发展旺盛期和后期锢囚阶段都不能使用;小扰动法只适用与小振幅波的讨论,对于有限振幅波此法失效标准波型法:P151-152滤波:为了防止所研究的特定尺度运动被“噪声”干扰,也为了数学处理方便,有必要在未积分基本方程组之前,通过某种途径把噪声从基本方程组中排除掉,使方程组只包含谐音,这就是气象上所谓的“滤波”。
声波:大气是可压缩流体,局地空气被压缩或膨胀时,周围空气会依次被压缩或膨胀,声音就是由于这种绝热膨胀或压缩形成的。
纯声波的相速决定于大气的热力性质,与波长无关——非频散波;纯声波双向传播,传播速度远大于空气运动速度——快波。
声波形成的内在条件: 大气可压缩性;声波形成的外部条件: 外界压缩引起空气压力和密度扰动。
气体动力学中的不稳定性和湍流气体动力学是研究气体流体运动和变化规律的科学领域。
在气体流体中,不稳定性和湍流现象是非常重要的研究方向。
本文将探讨气体动力学中的不稳定性和湍流,并分析其在工程和科学领域的应用。
一、不稳定性的概念和表现形式不稳定性是指系统状态对于微小扰动具有放大效应,进而导致系统发生相对剧烈的变化的特性。
在气体动力学中存在多种不稳定性现象,例如剪切不稳定性、对流不稳定性、热不稳定性等。
1. 剪切不稳定性剪切不稳定性是流体中速度梯度引起的不稳定现象。
当流体中存在速度剪切时,速度梯度会引起流体运动的不稳定性,形成涡旋。
这种不稳定性常见于气体流动中,如大气中的风切变现象。
2. 对流不稳定性对流不稳定性是指由密度梯度引起的不稳定现象。
当气体在密度不均匀的环境中上升或下降时,由于密度差异产生的压力梯度会引起流体的对流运动。
这种不稳定性在自然界中广泛存在,如大气中的对流云、液体中的热对流等。
3. 热不稳定性热不稳定性是指由温度梯度引起的不稳定现象。
当气体受到不均匀的加热或冷却时,温度梯度会引起气体流动的不稳定性。
这种不稳定性在天气系统中常见,如大气层中的热对流造成的气象现象。
二、湍流的特征和机制湍流是流体中的一种复杂流动状态,具有随机性、三维性和交错性等特征。
湍流的产生和演化是气体动力学中的重要问题,其机制主要包括层流不稳定性和湍流再生机制。
1. 层流不稳定性层流不稳定性是湍流形成的基础。
当气体流动呈现层流状态时,由于随机扰动的存在,可能引发层流的不稳定现象。
这种不稳定性会导致流体分层打破,形成涡旋,最终演化成湍流。
2. 湍流再生机制湍流再生机制是指湍流在流动中的自我维持和再生过程。
湍流是通过能量输入、能量传输和能量耗散等过程维持自身运动的。
这种机制源自于流体运动中潜在的非线性相互作用,使得湍流具有持续存在的能力。
三、不稳定性和湍流的应用不稳定性和湍流现象在工程和科学领域有着广泛的应用价值,涉及气体动力学、天气预报、空气动力学、火灾模拟等多个领域。
(四)不稳定理论核心内容:§1 波动稳定性的基本概念★★★★★1)扰动发展,(基本气流由层流变为湍流),即基本气流是不稳定,叠加在其上的扰动是不稳定;2)扰动减弱,或始终很小,则基本气流是稳定的,扰动也是稳定的。
如果波动或扰动能发展,这个波动就是不稳定的;如果波动或扰动不发展,即始终很小或衰减,这个波动就是稳定的。
§2 波动稳定性的数学表达 ★★★★★ 简谐波解 c 或ω可以是复数 记:重力内波、惯性波:受力机制很清楚;一般直接从振荡看是否稳定,由此,可以得到:静力稳定度、惯性稳定度。
而Rossby 波的产生机制是β-效应,从涡旋场(涡度方程)讨论Rossby 波,而没有具体讨论其振荡受力情况;一般从Ci 是否等于0判别其稳定性。
§3 静力稳定度★★★ 气块法()()ik x ct i kx t AeAeω--ψ==)()(t C x ik t kC t kC t C x ik i r r i i r e Ae e Ae iC C C --==ψ+=这样:()i kC tAeA t *⇒)(),()(*)(*t C x k t A e t A r t C x ik r -=ψ-位相为振幅为⎩⎨⎧⇒<>≠⇒⇒=*不稳定,还是,不论稳定常量,扰动始终很小=,则如果000A A 0i i C C讨论浮力振荡(层结)稳定性问题气块受扰离开平衡位置向上扰动。
因此:§4 惯性稳定度 ★★★↓↓↓⇒↓↓↓⇒)()()()()()()()()()(z z T z P z P z z T z P z z T z P ρρρ,=准静力过程绝热膨胀上升过程中,气块作干,,气块要素:,,环境要素:上升zP g dt dw ∂∂--=ρ1g zPρ+=∂∂-P P dw T TRT RT g g gP dt T RT ρρρ---⇒===0000()()()()d dTT T z z T z z dz TT T z z T z zz δγδδγδ=+=-∂=+=-∂()d dw g zdtT γγδ⇒=--2ln ()d g N g T zθγγ∂=-=∂2dwN z dt δ⇒=-222000N N N ⎧>⎪=⎨⎪<⎩,力作负功,扰动减弱,层结是稳定的;,力不作功,层结是中性的;,力作正功,扰动得到能量而增强,层结不稳定切变基流(实际大气)实际大气,振荡发生在基本气流下: 均匀基流:一边振荡,一边向下游运动;运动的性质不变 切变基流(实际大气):基本状态下地转平衡:★静力稳定度:层结大气中,垂直面内;考虑重力和垂直向的压力梯度力(浮力)的合力的方向,与位移的方向的关系。
《高等动力气象学》复习总结《高等动力气象学》复习总结一、名词解释56、微扰动:任一气象要素(变量),由已知基本量叠加上未知扰动量组成,即:s s s '+=且?<<'s s 微扰动,扰动量的二次及二次以上乘积项(非线性项),可作为高阶小量忽略。
57、>>微扰法(小扰动法):大气运动方程组是非线性的,直接求解非常困难。
因此,通常采用微扰法(小扰动法)将方程组线性化,从而可求得线形波动解。
58、*浮力振荡:在稳定层结中,当气团受到垂直扰动时,它要受到与位移相反的净浮力(回复力)作用而在平衡位置附近发生振荡,这种振荡称为浮力振荡。
(类比于弹性振荡)。
59、滤波:根据波动形为的物理机制而采用一定的假设条件,以消除气象意义不大的波动(称为“噪音”)而保留有气象意义波动的方法。
60、声波:由空气的可压缩性产生的振动在空气中的传播。
声波是快波,天气学意义不重要。
61、重力外波:是指处于大气上下边界的空气,受到垂直扰动后,偏离平衡位置以后,在重力作用下产生的波动,发生在边界面上,离扰动边界越远,波动越不显著。
快波,天气学意义不重要。
62、重力内波:是指在大气内部,由于层结作用和大气内部的不连续面上,受到重力扰动,偏离平衡位置,在重力下产生的波动。
重力内波与中,小尺度天气系统关系密切。
63、罗斯贝波是在准水平的大尺度运动中,由于β效应维持绝对涡度守恒而形成的波动。
它的传播速度与声波和重力波相比要慢很多,故为涡旋性慢波,同时由于它的水平尺度与地球半径相当,又称为行星波(大气长波)。
罗斯贝波是水平横波,单向波,慢波,对大尺度天气变化过程有重要意义。
64、波动稳定性:定常的基本气流u 上有小扰动产生,若扰动继续保持为小扰动或随时间衰减,则称波动是中性的或波动是稳定的;若扰动随时间增强,则称波动不稳定。
65、惯性稳定度:水平面内(南北向);考虑科氏力和南北向的压力梯度力的合力的方向,与位移的方向的关系。
中小尺度天气动力学第一章中尺度天气系统的特征1、中尺度天气系统:时间尺度和空间尺度比常规探测站网小,但比积云单体的生命周期及空间尺度大得多的一种尺度。
即水平尺度为几公里到几百公里,时间尺度由1 小时到十几小时。
2、划分依据及分类:1)早期的经验分类天气系统——大尺度、中尺度和小尺度空间尺度分别为:106m、105m 和104m 时间尺度对应为:105s、104s 和103s2)依据物理本质对天气系统进行分类(动力学分类方法)行星尺度、气旋尺度、中尺度、积云尺度、小尺度3)Orlanski 的综合分类(观测与理论分类)大尺度(a 3)中尺度(a、伙Y 小尺度3、中尺度大气运动的基本特征1)空间尺度范围广,生命周期跨度大;2)气象要素梯度大;3)散度、涡度与垂直速度;4)非地转平衡和非静力平衡;5)质量场和风场的适应;6)小概率和频谱宽、大振幅事件第二章地形性中尺度环流1、中尺度大气环流系统的分类:地形性环流系统、自由大气环流系统2、地形波的基本类型主要依赖风的不同类型(1)层状气流小风、层状气流。
平滑浅波,波动只发生在山脉上空的浅层,向上很快消失——山脉波(mountain wave)(2)驻涡气流:在山顶高度以上风速较大时,可能在山脉背风坡形成半永久性的涡动,上面则有气流的平滑浅波——驻涡(standing eddy)(3)波动气流当风速随高度增大时,在背风坡出现波动气流一一背风波(lee wave)。
背风波可以伸展到对流层上层和平流层。
(4)转子气流:在背风波出现时,当垂直方向有风速极大值出现时,则会形成转子气流(rotor streaming)。
驻涡和转子是背风波的特殊形式!3、背风波的形成、特征及大气条件背风波是地形波的一种类型,由于障碍物引起空气垂直振荡而造成的。
特征:波长:1.8〜70km之间,多为5〜20km左右。
波长一般随高度而变,高层较长,低层较短。
随风速而变,风速愈大,波长愈大。
《动力气象学》课程笔记绪论1. 动力气象学发展史1.1 重大理论发现动力气象学的早期发展主要基于对大气运动的观测和理论推测。
19世纪,科学家们开始系统地研究大气运动,并逐渐揭示了影响大气运动的一些关键因素。
这些因素包括:- 科里奥利力:由法国物理学家加斯帕尔·科里奥利首次提出,它解释了地球自转导致的风的偏转现象。
- 地转偏向力:由于地球自转,大气中的气流会相对于地面产生偏转,这个力就是地转偏向力。
- 大气压力和密度变化:大气压力和密度的变化会影响大气运动,这些变化与温度、湿度等因素有关。
1.2 数值天气预报20世纪中叶,随着计算机技术的发展,动力气象学进入了一个新的时代。
科学家们开始利用计算机来求解大气运动方程组,这种方法被称为数值天气预报。
数值天气预报的出现极大地提高了天气预报的准确性,使得气象学成为了一门更加精确的科学。
1.3 动力气象学发展新阶段近年来,动力气象学在气候变化研究中的应用变得越来越重要。
科学家们通过研究大气运动、能量转换和波动等现象,揭示了气候变化的原因和规律。
此外,动力气象学在防灾减灾、水资源管理等领域也发挥着重要作用。
2. 动力气象学的基本概念2.1 大气运动方程组大气运动方程组是描述大气运动的物理方程,包括连续性方程、动量方程和能量方程。
这些方程组基于质量守恒、牛顿第二定律和能量守恒等物理定律,为我们提供了研究大气运动的基本工具。
2.2 涡旋运动大气中的涡旋运动是天气系统和气候变化的重要因素。
涡旋运动包括环流、涡度和螺旋度等概念。
了解涡旋运动有助于我们预测天气变化和气候趋势。
2.3 准地转运动准地转运动是指大气中接近地转平衡状态的运动。
在这种状态下,大气运动主要受到地转偏向力和压力梯度力的作用。
准地转运动为我们提供了一个简化的大气运动模型,便于研究和预测天气。
2.4 大气波动大气波动是大气运动中的周期性变化,包括重力波、惯性重力波和Rossby 波等。
这些波动在天气系统和气候变化中起着关键作用,了解它们有助于我们预测天气和气候。
动力气象学名词解释及问答题总结1. 位温:气压为p ,温度为T 的干气块,干绝热膨胀或压缩到1000hPa 时所具有的温度。
θ=T (1000/p )R/Cp ,如果干绝热,位温守恒(∂θ/∂t=0)。
2. 尺度分析法:依据表征某类大气运动系统各变量的特征值来估计大气运动方程中各项量级的大小,判别各个因子的相对重要性,然后舍去次要因子而保留主要因子,使得物理特征突出,从而达到简化方程的一种方法。
3. 梯度风:水平科氏力、惯性离心力和水平气压梯度力三力达到平衡,此时空气微团运动4. 地转风:对于中纬度天气尺度的扰动,水平科氏力与水平气压梯度力接近平衡,这时空1g V k f ρ=-。
5. 惯性风:当气压水平分布均匀时,科氏力、惯性离心力相平衡时的空气流动。
表达式为:i T V f R =-。
6. 正压大气:大气密度的分布仅仅依赖于气压(),()p p ρρ=,等密度面,等温度面,等压面互相平行,包括等温大气,绝热大气。
7. 斜压大气:大气密度的空间分布依赖于气压(p )和温度(T )的大气,即:ρ=ρ (p , T )。
实际大气都是斜压大气,和正压大气不同,斜压大气中等压面、等比容面(或等密度面)和等温面是彼此相交的。
8. 环流:流体中任取一闭合曲线L ,曲线上每一点的速度大小和方向是不一样的,如果对各点的流体速度在曲线L 方向上的分量作线积分,则此积分定义为速度环流,简称环流。
9. 埃克曼螺线:行星边界层内的风场是水平气压梯度力、科氏力和粘性摩擦力三着之间的平衡结果。
若以u 为横坐标,v 为纵坐标,给出各个高度上风矢量,并投影在同一个平面内,则风矢量的端点迹线为一螺旋。
称为埃克曼螺线。
10. 梯度风高度:当z H =π/γ,γ=(2k /f )1/2时,行星边界层风向第一次与地转风重合,但是风速比地转风稍大,在此高度之上风速在地转风速率附近摆动,则此高度可视为行星边界层顶,也表示埃克曼厚度。
()122Kf De πγπ≡=11. Ekman 泵:在大气边界层中,大尺度大气运动主要是气压梯度力、科氏力和摩擦力三力的平衡。