高中数学 3.2.2函数模型的应用实例(第1课时)教学设计 新人教A版必修1
- 格式:doc
- 大小:116.00 KB
- 文档页数:6
函数模型的应用实例(第一课时)【教学设计】一、教学内容本课是普通高中课程标准实验教科书(人民教育出版社A版)数学1(必修),3.2.2 函数模型的应用实例的第一课时。
通过对例3,例4的教学让学生学习体会利用已知的函数模型解决问题和建立确定的函数模型解决实际问题,进而掌握建立数学模型解决实际问题的一般步骤。
二、教学目标知识与技能目标:1.能根据图象和表格提供的有关信息和数据,挖掘隐含条件,建立函数模型;2.体会分段函数模型的实际应用,规范分段函数的标准形式;3.掌握用待定系数法求解已知函数类型的函数模型;4.学会验证数学模型与实际情况是否吻合的方法及应用数学模型进行预测。
5.会利用建立的函数模型解决实际问题,掌握求解函数应用题的一般步骤;6.培养学生阅读理解、分析问题、数形结合、抽象概括、数据处理、数学建模等数学能力.过程与方法目标:1.通过实例分析,巩固练习,结合多媒体教学,培养学生读图的能力;2.通过实例使学生感受函数的广泛应用,体会建立函数模型解决实际问题的一般过程;3.渗透数形结合、转化与化归等数学思想方法.情感、态度与价值观目标:1.通过切身感受数学建模的过程,让学生体验数学在实际生活中的应用,体会数学来源于生活又服务于生活,体验数学在解决实际问题中的价值和作用,激发学习数学的兴趣与动力,增强学好数学的意识。
2.培养学生的应用意识、创新意识和勇于探索、勤于思考的精神,优化学生的理性思维和求真务实的科学态度。
三、教材分析本课时共有2个例题,其中例3是根据图形信息建立确定的函数模型解决实际问题;例4 是利用已知的确定的函数模型解决实际问题,并验证求解出的数学模型与实际情况的吻合程度及用数学模型进行预测。
分别在汽车和人口问题这两种不同应用情境中,引导学生自主建立函数模型来解决实际问题.教学重点1.根据图形信息建立函数模型解决实际问题.2.用待定系数法求解函数模型并应用.3.将实际问题转化为数学问题的过程。
3.2 函数模型及其应用[教学目标]1.利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.2.通过收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用.[教学要求]对于函数增长的比较,教科书分了三个层次:首先以实例为载体让学生切实感受不同函数模型间的增长差异,然后采用图、表两种方法比较三个函数(2x y =,x y 2=,x y 2log =)的增长差异,最后将结论推广到一般的指数函数、对数函数、幂函数间的增长差异.函数基本模型的应用是本章的重点内容之一.教科书用4个例题作示范,并配备了较多的实际问题让学生进行练习.在4个例题中,分别介绍了分段函数、指数型函数、二次函数的应用.在例4和例6中还渗透了函数拟合的基本思想.本章安排的实习作业主要是让学生收集现实生活中的一些函数实例,并运用已学习的函数知识解决一些问题,感受函数的广泛应用.课本对几种不同增长的函数模型的认识及应用,都是通过实例来实现的.这是因为函数模型本身就来源于现实,并用于解决实际问题.同时,这样做还能给学生提供更多的机会从实际问题中发现或建立数学模型,并体会数学在实际问题中的应用价值.[教学重点]认识指数函数、对数函数、幂函数等函数模型的增长差异,体会直线上升、指数爆炸与对数增长,应用函数模型解决简单问题.将实际问题转化为数学模型.[教学难点]学生对指数函数、对数函数、幂函数等的增长速度的认识还很少,因此让学生比较这几种函数的增长差异会有一定困难.如何选择适当的函数模型分析和解决实际问题是另一个困难.[教学时数]4课时[教学过程]第一课时3.2.1几类不同增长的函数模型(1)新课进展一、实例分析投资回报和选择奖励模型两个实例,让学生对直线上升、指数爆炸与对数增长有一个感性的认识,初步发现当自变量变得很大时,指数函数比一次函数增长得快,一次函数比对数函数增长得快.(底数0 a )例1(课本第95页例1)分析与解:课本第95——96页.关键:阅读、理解、审题重点:让学生体会指数爆炸问:在例1中,涉及哪些数量关系?如何用函数描述这些数量关系?根据例1表格中所提供的数据,你对三种方案分别表现出的回报资金的增长差异有什么认识?你能借助计算器做出函数图象,并通过图象描述一下三个方案的特点吗?由以上的分析,你认为应当如何做出选择?例2(课本第97页例2)本例将三个函数增长模型同时呈现给学生,主要目的是让学生感受它们增长速度的差异.教学时,除了用函数的图象直观展示这种增长差异外,还可以通过以下的表格让学生从另一个角度去认识.问:例2涉及了哪几类函数模型?本例的本质是什么?你能根据问题中的数据,判定所给的奖励模型是否符合公司要求吗?通过对三个函数模型增长差异的比较,你能写出例2的解答吗?本课小结通过师生交流进行小结:确定函数的模型——利用数据表格、函数图象讨论模型——体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.第二课时3.2.1几类不同增长的函数模型(2)新课进展二、三类函数增长差异的比较1.通过图、表比较2x y =,xy 2=两个函数的增长速度.2.探究2x y =,x y 2log =两个函数的增长速度.3.说说函数x y 2=,2x y =,x y 2log =的增长差异.在区间),0(+∞上,总有x x 22log >;当4>x 时,总有22x x >. 所以当4>x 时,总有x x x 22log 2>>.4.一般的,在区间),0(+∞上,尽管函数)1(>=a a y x ,)1(log >=a x y a 和)0(>=n x y n 都是增函数,但它们的增长速度不同,而且不在同一个‘档次’上,随着x 的增大,)1(>=a a y x 的增长速度越来越快,会超过并远远大于)0(>=n x y n的增长速度,而)1(log >=a x y a 的增长速度则会越来越慢.因此,总会存在一个0x ,当0x x >时,就有x n a a x x <<log . 探究(课本101页):x y x y y x 2121log ,,)21(===-的衰减情况. 通过观察获得这三个具体的函数的衰减情况,然后得出结论并推广到一般情况:存在一个0x ,当0x x >时,)10,0(log <<<>>a n x a x a x n .第三课时3.2.2函数模型的应用实例(1)复习导入问:对幂函数、指数函数、对数函数,你是否注意到函数变化的速度有什么不同? 结合上节课学习内容或者课本进行回答.新课进展一、例题及分析例3(课本第102页例3)本例所涉及的数学模型是确定的,需要我们利用问题中的数据及其蕴含的关系建立数学模型.此题的主要意图是让学生用函数模型(分段函数)刻画实际问题.(1)获得路程关于时间变化的函数解析式:⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤+-<≤+-<≤+-<≤+-<≤+=.54,2299)4(6543,2224)3(7532,2134)2(9021,2054)1(8010,200450t t t t t t t t t t s(2)根据解析式画出汽车行驶路程关于时间变化的图象.例4(课本第103页例4)本例中,数学模型n e y y 0=是指数型函数模型,它由0y 与r 两个参数决定,而0y 与r 的值不难得到.本题意在让学生验证问题中的数据与所提供的数学模型是否吻合,并用数学模型解释实际问题,并利用模型进行预测,这也是此题的难点.借助计算器做出函数图象,比较与实际的吻合度.课堂练习课本第98页练习第1、2题.布置作业课本第107页习题3.2A 组第1、2、3题第四课时3.2.2函数模型的应用举例(2)新课进展一、例题及分析续例5(课本第104页例5)课本第104页表3-9中数据的变化是有特定规律的,教学时应注意引导学生分析问题所提供的数据特点,由数据特点抽象出函数模型.同时,应注意变量的变化范围,并以此检验结果的合理性.例6(课本第105页例6)只给出了通过测量得到的统计数据表,要想由这些数据直接发现函数模型是困难的.思考:散点图与已知的哪个函数图象最接近,从而选择这个函数模型.课堂练习课本第106页练习第1、2题.二、例题的回顾与总结4个例题各有特点,例3、5是一类变量之间具有确定关系的问题,根据这个关系就可以建立函数模型解决问题;与例2、5不同的是,例4、6都是需要判断所选择的函数模型与问题所给数据的吻合程度,像例6用“当取表中不同的两组数据时,得到的函数解析式可能会不一样”这句话体现了这点不同;例4、6略有不同的是例4给出了函数模型,例6需要自己根据数据特点选择函数模型,这反映了一个较为完整的建立函数模型解决问题的过程,要让学生逐渐明确和感受这一点.例7 教师用书第107页第4题布置作业课本第107页习题3.2A组第4、5、6题.。
3.2.3 函数模型的应用实例(一)(一)教学目标1.知识与技能:初步掌握一次和二次函数模型的应用,会解决较简单的实际应用问题.2.过程与方法:经历运用一次和二次函数模型解决实际问题,提高学生的数学建模能力.3.情感、态度与价值观:了解数学知识来源于生活,又服务于实际,从而培养学生的应用意识,提高学习数学的兴趣.(二)教学重点、难点一次和二次函数模型的应用是本节的重点,数学建模是本节的难点.(三)教学方法本节内容主要是例题教学,因此采用学生探究解题方法,总结解题规律,教师启发诱导的方法进行教学.(四)教学过程教学环节教学内容师生互动设计意图复习引入回顾一次函数和二次函数的有关知识.教师提出问题,学生回答.师:一次函数、二次函数的解析式及图象与性质.生:回答上述问题.以旧引新,激发兴趣.应用举例1.一次函数模型的应用例1 某列火车从北京西站开往石家庄,全程277km.火车出发10min开出13km后,以120km/h的速度匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系,并求火车离开北京2h内行驶的路程.教师提出问题,让学生读题,找关键字句,联想学过的函数模型,求出函数关系式.学生根据要求,完成例1的解答.例1 解:因为火车匀速运动的时间为(200 – 13)÷120 =115(h),所以115t≤≤.因为火车匀速行驶时间t h所行驶路程为120t,所以,火车运行总路程S与匀速行驶时间t之间的关系是11130120(0).5S t t=+≤≤2h内火车行驶的路程11131206S=+⨯=233(km).通过此问题背景,让学生恰当选择相应一次函数模型解决问题,加深对函数概念本质的认识和理解.让学生体验解决实际问题的过程和方法.解题方法:1.读题,找关键点;2.抽象成数学模型;3.求出数学模型的解;4.做答.学生总结,教师完善.培养学生分析归纳、概括能力.从而初步体验解应用题的规律和方法.2.二次函数模型的应让学生自己读题,并回答下列问题:解应用题用例2 某农家旅游公司有客房300间,每间日房租20元,每天都客满.公司欲提高档次,并提高租金.如果每间客房每日增加2元,客房出租数就会减少10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?①题目求什么,应怎样设未知量;②每天客房的租金收入与每间客房的租金、客房的出租数有怎样的关系;③学生完成题目.法一:用列表法求解.此法可作为学生探求思路的方法,但由于运算比较繁琐,一般不用,应以法二求解为重点.对法二让学生读题,回答问题.教师指导,学生自己动手解题.师生合作由实际问题建模,让学生尝试解答.例2 解答:方法一依题意可列表如下:x y0 300×20 = 60001 (300 – 10×1)(20 + 2×1) = 63802 (300 – 10×2)(20 + 2×2) = 67203 (300 – 10×3)(20 + 2×3) = 70204 (300 – 10×4)(20 + 2×4) = 72805 (300 – 10×5)(20 + 2×5) = 75006 (300 – 10×6)(20 + 2×6) = 76807 (300 – 10×7)(20 + 2×7) = 78208 (300 – 10×8)(20 + 2×8) =79209 (300 – 10×9)(20 + 2×9) = 798010 (300 – 10×10)(20 + 2×10) = 800011 (300 – 10×11)(20 + 2×11) = 798012 (300 – 10×12)(20 + 2×12) = 792013 (300 – 10×13)(20 + 2×13) = 7820……由上表容易得到,当x = 10,即每天租金为40元时,能出租客房200间,此时每天总租金最高,为8000元.再提高租金,总收入就要小于8000元了.方法二设客房租金每间提高x个2元,则将有10x间客房空出,客房租金的总收入为y = (20 + 2x) (300 – 10x )= –20x2 + 600x– 200x + 6000= –20(x2– 20x + 100 – 100) + 6000= –20(x– 10)2 + 8000.首先要读懂题意,设计出问题指导学生审题,建立正确的数学模型.同时,培养学生独立解决问题的能力.由此得到,当x = 10时,y max = 8000.即每间租金为20 + 10×2 = 40(元)时,客房租金的总收入最高,每天为8000元.3.分将函数模型的应用例 3 一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立行驶这段路程时汽车里程表读数s km与时间t h的函数解析式,并作出相应的图象.生:解答:(1)阴影部分的面积为50×1+80×1+90×1+75×1+65×1=360.阴影部分的面积表示汽车在这5小时内行驶的路程为360km.(2)根据图,有502004,01,80(1)2054,12,90(2)2134,23,75(3)2224,34,65(4)2299,4 5.t tt ts t tt tt t+≤<⎧⎪-+≤<⎪⎪=-+≤<⎨⎪-+≤<⎪-+≤≤⎪⎩这个函数的图象如图所示.实际应用用问题解决的一般步骤:理解问题⇒简化假设⇒数学建模⇒解答模型⇒检验模型⇒评价与应用的进一步深体.巩固练习课堂练习习题1.如果一辆汽车匀速行驶,1.5h行驶路程为90km,求这辆汽车行驶路程与时间之间的函数关系,以及汽车3h所行驶的路程.习题2.已知某食品5kg价格为40元,求该食品价格与重量之间的函数关系,并求8kg食品的价格是多少元.习题3.有300m长的篱笆材料,如果利用已有的一面墙(设长度够用)作为一边,围成一块矩形菜地,问矩形的长、宽各为多少时,这块菜地的面学生练习,师生点评.1.设汽车行驶的时间为t h,则汽车行驶的路程S km与时间t h之间的函数关系为S = vt.当t = 1.5时,S = 90,则v = 60.因此所求的函数关系为S=60t,当t = 3时,S = 180,所以汽车3h所行驶的路程为180km.2.设食品的重量为x kg,则食品的价格y元与重量x kg之间的函数关系式为y=8x,当x = 8时,y = 64,所以当8kg食品的价格为64元.3.设矩形菜地与墙相对的一边长为x cm,则另一组对边的长为3002x-m,从而矩形菜地的面积为:学生动手实践、体验所学方法,从而提升解应用题的技能.积最大?习题4.某市一种出租车标价为1.20元/km ,但事实上的收费标准如下:最开始4km 内不管车行驶路程多少,均收费10元(即起步费),4km 后到15km 之间,每公里收费1.20元,15km 后每公里再加收50%,即每公里1.80元.试写出付费总数f 与打车路程x 之间的函数关系.21(300)21(150)11250(0300).2S x x x x =-=--+<<当x = 150时,S max = 11250. 即当矩形的长为150m ,宽为75m 时,菜地的面积最大. 4.解:所求函数的关系式为 100410 1.2(4)41523.2 1.8(15)15x y x x x x <≤⎧⎪=+-<≤⎨⎪+->⎩归纳小结课堂小结解决应用用问题的步骤:读题—列式—解答. 学生总结,师生完善使学生养成归纳总结的好习惯.让学生初步掌握数学建模的基本过程. 布置作业 习题2—3B 第1、3题: 教材第71页“思考与讨论”.学生练习使学生巩固本节所学知识与方法.例1 某游艺场每天的盈利额y 元与售出的门票数x 张之间的关系如图所示,试问盈利额为750元时,当天售出的门票数为多少?【解析】根据题意,每天的盈利额y 元与售出的门票数x 张之间的函数关系是:3.75(0400)1.251000(400600)x x y x x ≤≤⎧=⎨+≤≤⎩(1)当0≤x ≤400时,由3.75x =750,得x =200.(2)当400≤x ≤600时,由1.25x + 1000 = 750,得x = – 200 (舍去). 综合(1)和(2),盈利额为750元时,当天售出的门票数为200张. 答:当天售出的门票数为200张时盈利额为750元. 例2投资A 种商品金额(万元) 1 2 3 4 5 6 获纯利润 (万元) 0.65 1.39 1.85 2 1.84 1.40 投资B 种商品金额(万元) 1 2 3 4 5 6 获纯利润 (万元)0.250.490.7611.261.51该经营者准备下月投入12万元经营这两种产品,但不知投入A B 两种商品各多少才最合算. 请你帮助制定一个资金投入方案,使得该经营者获得最大的利润,并按你的方案求出该经营者下月可获得的最大纯利润(结果保留两位有效数字).【解析】以投资额为横坐标,纯利润为纵坐标,在直角坐标系中画出散点图:据此,可考虑用下列函数分别描述上述两组数据之间的对应关系.y = –a (x – 4)2 + 2 (a>0) ①y = bx②把x = 1,y = 0.65代入①式,得0.65 = –a (1 – 4)2 + 2,解得a = 0.15.故前六个月所获纯利润关于月投资A商品的金额的函数关系式可近似地用y = – 0.15(x– 4)2 + 2表示,再把x = 4,y = 1代入②式,得b = 0.25,故前六个月所获利润关于月投资B种商品的金额的函数关系可近似地用y = 0.25x表示.设下月投资A种商品x万元,则投资B种商品为(12 –x)万元,可获纯利润y = – 0.15 (x– 4)2 + 2 + 0.25 (12 –x)= – 0.15x2 + 0.95x + 2.6,当0.952(0.15)x-=⨯-≈3.2时,2max 4(0.15) 2.60.954(0.15)y⨯-⨯-=⨯-≈4.1.故下月分别投资A、B两种商品3.2万元和8.8万元,可获最大纯利润4.1万元.【评析】幂函数模型的应用题经常以二次函数的形式出现,要注意y = x2变换到y = a (x –m)2 + b后发生的变化.。
3.2.2 函数模型的应用实例自主学习1.掌握几种初等函数的应用.2.理解用拟合函数的方法解决实际问题的方法. 3.了解应用实例的三个方面和数学建模的步骤.1.函数模型的应用实例主要包括三个方面:(1)________________________________________________; (2)________________________________________________; (3)________________________________________________. 2.面临实际问题,自己建立函数模型的步骤:(1)________________;(2)________;(3)______________; (4)______________; (5)________;(6)______________.对点讲练已知函数模型的应用问题【例1】 某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎪⎨⎪⎧400x -12x 2 (0≤x ≤400)80 000 (x >400).其中x 是仪器的月产量.(1)将利润表示为月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)变式迁移1 为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t的函数关系式为y =(116)t -a (a 为常数)如图所示.根据图中提供的信息,回答下列问题:(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为__________________;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过________小时后,学生才能回到教室.自建函数模型的应用问题【例2】某公司每年需购买某种元件8 000个用于组装生产,每年分n次等量进货,每进一次货(不分进货量大小)费用500元,为了持续生产,需有每次进货的一半库存备用,每件每年库存费2元,问分几次进货可使得每年购买和贮存总费用最低?变式迁移2 某工厂拟建一座平面图为矩形且面积为200 m2的三级污水处理池(平面图如图所示),由于地形限制,长、宽都不能超过16 m,如果池外周壁建造单价为每米400元,中间墙建造单价为每米248元,池底建造单价为每平方米80元(池壁的厚度忽略不计,且池无盖).(1)写出总造价y(元)与污水处理池长x(m)的函数关系式,并指出其定义域.(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.函数模型的选择【例3】某工厂今年1月、2月、3月生产某种产品的数量分别是1万件、1.2万件、1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量y与月份x的关系,模拟函数可以选用二次函数或函数y=ab x+c(其中a,b,c为常数,a≠0),已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.变式迁移3 某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/102kg)(1)Q 与上市时间t 的变化关系;Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t ;(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.1.解答应用题的基本步骤: (1)设:合理、恰当地设出变量;(2)写:根据题意,抽象概括数量关系,并能用数学语言表示,得到数学问题; (3)算:对所得数学问题进行分析、运算、求解;(4)答:将数学问题的解还原到实际生活问题中,给出最终的答案. 2.在中学阶段,用函数拟合解决实际问题的基本过程是:课时作业一、选择题1现准备用下列函数中的一个近似地表示这些数满足的规律,其中最接近的一个是( )A .V =log 2tB .V =log 12t C .V =t 2-12D .V =2t -22.计算机成本不断降低,若每隔3年计算机价格降低13,则现在价格为8 100元的计算机,9年后的价格可降为( )A .2 400元B .900元C .300元D .3 600元3. 一个高为H ,盛水量为V 0的水瓶的轴截面如图所示,现以均匀速度往水瓶中灌水,直到灌满为止,如果水深h 时水的体积为V ,则函数V =f (h )的图象大致是( )4.某种电热水器的水箱盛满水是200升,加热到一定温度可浴用.浴用时,已知每分钟放水34升,在放水的同时注水,t分钟注水2t2升,当水箱内水量达到最小值时,放水自动停止.现假定每人洗浴用水65升,则该热水器一次至多可供几人洗澡() A.3人B.4人C.5人D.6人二、填空题5.60年国庆,举国欢腾,某旅游胜地的客流量急速增加.某家客运公司为招揽游客,推出了客运定票的优惠政策:如果行程不超过100 km,票价是0.4元/km;如果超过100 km,则超过100 km的部分按0.3元/km定价.则客运票价y元与行程公里x km之间的函数关系是______________________________.6. 右图表示一位骑自行车和一位骑摩托车者在相距为80 km的两城镇间旅行的函数图象,由图可知:骑自行车者用6 h(含途中休息的1 h),骑摩托车者用了2 h.有人根据这个函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上骑自行车者.其中正确的序号是__________________________________________________.三、解答题7.某产品的总成本y(万元)与产量x(台)之间的函数关系式是y=3 000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不赔本时(销售收入不小于总成本)的最低产量是多少.8.某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,凡多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1 000个,利润又是多少元?3.2.2函数模型的应用实例答案自学导引1.(1)利用给定的函数模型解决实际问题 (2)建立确定性的函数模型解决问题 (3)建立拟合函数模型解决实际问题2.(1)收集数据 (2)描点 (3)选择函数模型 (4)求函数模型 (5)检验 (6)用函数模型解决实际问题对点讲练【例1】 解 (1)设每月产量为x 台,则总成本为20 000+100x ,从而f (x )=⎩⎪⎨⎪⎧-12x 2+300x -20 000 (0≤x ≤400)60 000-100x (x >400).(2)当0≤x ≤400时,f (x )=-12(x -300)2+25 000,∴当x =300时,有最大值25 000;当x >400时,f (x )=60 000-100x 是减函数, f (x )<60 000-100×400<25 000. ∴当x =300时,f (x )取最大值.∴每月生产300台仪器时,利润最大, 最大利润为25 000元.变式迁移1 (1) y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110, t >110(2)0.6解析 (1)设y =kt (k ≠0),由图象知y =kt 过点(0.1,1),则1=k ×0.1,k =10, ∴y =10t (0≤t ≤0.1);由y =⎝⎛⎭⎫116t -a过点(0.1,1)得1=⎝⎛⎭⎫1160.1-a , a =0.1,∴y =⎝⎛⎭⎫116t -0.1(t >0.1).∴y =⎩⎨⎧10t , 0≤t ≤110,⎝⎛⎭⎫116t -110,t >110.(2)由⎝⎛⎭⎫116t -0.1≤0.25=14,得t ≥0.6, 故至少需经过0.6小时.【例2】 解 设每年购买和贮存元件总费用为y 元,其中购买成本费为固定投入, 设为c 元,则y =500n +2×8 000n ×12+c=500n +8 000n +c =500(n +16n )+c=500(n -4n )2+4 000+c ,当且仅当n =4n,即n =4时,y 取得最小值且y min =4 000+c .所以分4次进货可使得每年购买和贮存元件总费用最低.变式迁移2 解 (1)设污水处理池的长为x m ,则宽为200xm ,总造价为y .∴y =400(2x +2×200x )+248×200x ×2+80×200=800(x +324x )+16 000.∵⎩⎪⎨⎪⎧0<x ≤160<200x≤16,∴12.5≤x ≤16.故其定义域为[12.5,16].(2)先讨论y =800(x +324x)+16 000在[12.5,16]上的单调性.设x 1,x 2∈[12.5,16]且x 1<x 2,则y 1-y 2=800[(x 1-x 2)+324(1x 1-1x 2)]=800(x 1-x 2)(1-324x 1x 2).∵x 1,x 2∈[12.5,16],x 1<x 2, ∴x 1·x 2<162<324.∴1-324x 1x 2<0,x 1-x 2<0.∴y 1-y 2>0.∴此函数在[12.5,16]上单调递减. ∴当x =16时,y min =45 000(元),此时,宽为20016m =12.5 m.∴当池长为16 m ,宽为12.5 m 时, 总造价最低为45 000元.【例3】 解 设f (x )=px 2+qx +r (p ≠0),则有 ⎩⎪⎨⎪⎧f (1)=p +q +r =1,f (2)=4p +2q +r =1.2,f (3)=9p +3q +r =1.3.解得p =-0.05,q =0.35,r =0.7. ∴f (x )=-0.05x 2+0.35x +0.7,∴f (4)=-0.05×42+0.35×4+0.7=1.3. 设g (x )=ab x +c (a ≠0),则有 ⎩⎪⎨⎪⎧g (1)=ab +c =1,g (2)=ab 2+c =1.2,g (3)=ab 3+c =1.3.解得a =-0.8,b =0.5,c =1.4. ∴g (x )=-0.8×0.5x +1.4,∴g (4)=-0.8×0.54+1.4=1.35.经比较可知,用g (x )=-0.8×0.5x +1.4作为模拟函数较好. 变式迁移3 解 (1)由表中数据知,当时间t 变化时,种植成本并不是单调的, 故只能选取Q =at 2+bt +c .即⎩⎪⎨⎪⎧150=a ×502+b ×50+c 108=a ×1102+b ×110+c 150=a ×2502+b ×250+c, 解得Q =1200t 2-32t +4252. (2)Q =1200(t -150)2+4252-2252=1200(t -150)2+100, ∴当t =150天时,西红柿的种植成本最低,为100元/102 kg. 课时作业 1.C 2.A3.D [考察相同的Δh 内ΔV 的大小比较.] 4.B [设最多用t 分钟,则水箱内水量y =200+2t 2-34t ,当t =172时,y 有最小值,此时共放水34×172=289(升),可供4人洗澡.]5.y =⎩⎪⎨⎪⎧0.4x ,0<x ≤100,40+0.3(x -100),x >1006.①②解析 ③错,骑摩托车者出发1.5 h 时走了60 km ,而从图中可看出骑自行车者走的距离大于60 km.7.解 由题意得⎩⎪⎨⎪⎧3 000+20x -0.1x 2≤25x 0<x <240解得150≤x <240,x ∈N *∴生产者不赔本时的最低产量是150台.8.解 (1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x 0个,则x 0=100+60-510.02=550(个).∴当一次订购量为550个时,每个零件的实际出厂价恰好降为51元. (2)当0<x ≤100时,P =60; 当100<x <550时,P =60-0.02(x -100)=62-0.02x ; 当x ≥550时,P =51.∴P =f (x )=⎩⎪⎨⎪⎧60, 0<x ≤100,62-0.02x , 100<x <550,51, x ≥550(x ∈N +).(3)设销售商一次订购量为x 个时,工厂获得的利润为S 元,则 S =(P -40)x =⎩⎪⎨⎪⎧20x , 0<x ≤100,22x -0.02x 2, 100<x <550,11x , x ≥550(x ∈N +)当x =500时,S =22×500-0.02×5002=6 000(元);当x =1 000时,S =11×1 000=11 000(元).∴当销售商一次订购500个零件时,该厂获得的利润是6 000元;如果一次订购1 000个零件时,利润是11 000元.。
教学准备1. 教学目标解应用题的一般思路2. 教学重点/难点解应用题的一般思路3. 教学用具4. 标签教学过程2.解应用题的一般程序(1)审题:阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是基础.(2)建模:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型,正确进行建“模”是关键的一关。
(3)求模:求解数学模型,得到数学结论,要充分注重数学模型中元素的实际意义,更要注意巧思妙作,优化过程。
(4)作答:将数学结论还原给实际问题的过程。
3.常见函数模型(1)应用的模型解决有关增长率及利息等问题。
(2)分段函数模型。
(3)应用二次函数模型解决有关最值问题。
(4)数列模型。
二.题型剖析例1:书P30例1。
(增长率)练习.(成才之路P99变式2)某农产品去年各季度的市场价格如下表:今年某公司计划按去年各季度市场价的“最佳近似值m”(m是与上表中各售价差的平方和取最小值时的值)收购该种农产品,并按每100元纳税10元(又称征税率为10个百分点),计划可收购a万担,政府为了鼓励收购公司多收购这种农产品,决定将税率降低x个百分点,预测收购量可增加2x个百分点。
(1)根据题中条件填空,m= (元/担)(2)写出税收y(万元)与x的函数关系式;(3)若要使此项税收在税率调节后不少于原计划税收的83.2%,试确定x的取值范围。
解:设平方和为y例2:书例2(分段函数)例3:书例3(二次不等式)练习(基本不等式):某校办工厂有毁坏的房屋一幢,留有旧墙一面,其长14m,现准备利用这面旧墙,建造平面图形为矩形,面积为3150px2的厂房,工程条件:(1)修1m旧墙的费用是建1m新墙的费用的25%,(2)用拆去1m旧墙的材料建1m新墙,其费用是建1m新墙费用的50%,(3)建门窗的费用与建新墙的费用相同,问:如何利用旧墙才能使建墙费用最低?三.小结1.解应用题的一般步骤:审题、建模、求模、作答2.常见函数模型及应用。
3.2.2函数模型的应用实例教案教学目标知识与技能掌握一些普遍使用的函数模型(一次函数、二次函数、指数函数、对数函数、幂函数、分段函数等)的实例。
过程与方法通过实例,感知并体会函数在实际生活中的应用,能利用函数图象、解析式等有关知识正确解决生活中的数学问题。
情感、态度与价值观通过实例,提高解决实际问题的能力,发挥个人的能力,构建数学模型,养成独立思考问题的能力。
教学重点与难点:函数模型的选取与求解。
教学过程设计第一课时已知函数模型解实际问题例1、一辆汽车在某段路程中的行驶速率与时间的关系如图所示。
(1)求略中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆车的里程表在汽车行驶这段路程前的读数为2004 km,试建立行驶这段路程时汽车里程表读数s km与时间t h的函数解析式,并作出相应的图象。
解:(1)阴影部分的面积为50×1 + 80×1 + 90×1 + 75×1 +65×1 = 360,阴影部分的面积表示汽车在这5小时内行驶的路程为360km。
(2)根据上图,有502004,0180(1)2054,1290(2)2134,2375(3)2224,3465(4)2299,45t tt ts t tt tt t+≤<⎧⎪-+≤<⎪⎪=-+≤<⎨⎪-+≤<⎪-+≤≤⎪⎩,这个函数的图象如右图所示。
h VH 小结:由函数图象,可以形象直观地研究推断函数关系,可以定性地研究变量之间的变化趋势,是近年来常见的应用题的一种题型,其出发点是函数的图象,处理问题的基本方法就是数形结合。
练习1:向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h的函数关系的图象如右图所示,那么水瓶的形状是( )(A) (B) (C) (D)练习2:某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示。
函数模型的应用实例(第一课时)【教学设计】一、教学内容本课是普通高中课程标准实验教科书(人民教育出版社A版)数学1(必修),3.2.2 函数模型的应用实例的第一课时。
通过对例3,例4的教学让学生学习体会利用已知的函数模型解决问题和建立确定的函数模型解决实际问题,进而掌握建立数学模型解决实际问题的一般步骤。
二、教学目标知识与技能目标:1.能根据图象和表格提供的有关信息和数据,挖掘隐含条件,建立函数模型;2.体会分段函数模型的实际应用,规范分段函数的标准形式;3.掌握用待定系数法求解已知函数类型的函数模型;4.学会验证数学模型与实际情况是否吻合的方法及应用数学模型进行预测。
5.会利用建立的函数模型解决实际问题,掌握求解函数应用题的一般步骤;6.培养学生阅读理解、分析问题、数形结合、抽象概括、数据处理、数学建模等数学能力.过程与方法目标:1.通过实例分析,巩固练习,结合多媒体教学,培养学生读图的能力;2.通过实例使学生感受函数的广泛应用,体会建立函数模型解决实际问题的一般过程;3.渗透数形结合、转化与化归等数学思想方法.情感、态度与价值观目标:1.通过切身感受数学建模的过程,让学生体验数学在实际生活中的应用,体会数学来源于生活又服务于生活,体验数学在解决实际问题中的价值和作用,激发学习数学的兴趣与动力,增强学好数学的意识。
2.培养学生的应用意识、创新意识和勇于探索、勤于思考的精神,优化学生的理性思维和求真务实的科学态度。
三、教材分析本课时共有2个例题,其中例3是根据图形信息建立确定的函数模型解决实际问题;例4 是利用已知的确定的函数模型解决实际问题,并验证求解出的数学模型与实际情况的吻合程度及用数学模型进行预测。
分别在汽车和人口问题这两种不同应用情境中,引导学生自主建立函数模型来解决实际问题.教学重点1.根据图形信息建立函数模型解决实际问题.2.用待定系数法求解函数模型并应用.3.将实际问题转化为数学问题的过程。
教学难点1.验证数学模型与实际情况是否吻合的方法及用数学模型解决实际问题,并应用数学模型进行预测。
2.将实际问题抽象为数学问题,并建立函数模型.四、学情分析学生已掌握了一些基本初等函数的相关知识,在第二章的学习过程中运用过指数函数, 对数函数等解决过简单的实际应用题,并在上一节《几类不同增长的函数模型》的学习中,初步体会了建立函数模型解决实际问题的过程,这为本节课的学习奠定了知识基础.但学生的应用意识、应用能力比较弱,社会实践经验少,而且正确运用数学知识解决实际问题,需要有较高的阅读理解能力、抽象概括能力、计算推理能力等,这些对学生学习函数模型的实际应用造成了一定的困难.因此,本节课的教学应采取分解难点,由潜入深,循序渐进,及合作探究讨论和多媒体辅助的方式教学。
五、教学方法1.创设问题情境,启发式,探究式教学。
通过课堂师生互动交流,体会利用函数模型解决 问题的过程。
2.借助多媒体辅助教学弥补传统教学在直观感、立体感和动态感方面的不足,化解教学 难点、 突破教学重点、提高课堂效率。
六、教学过程复习引入复习学过的基本初等函数名称及解析式的一般形式,引入函数模型的实际应用的课题。
新课讲授(一)知识探究:建立函数模型以汽车行程为背景,创设问题情境,启发引导学生探究体会根据图形的直观性,分析图形和数据,从中抽象出相应的函数模型。
例题1:一辆汽车在某段路程中的行驶速率与时间的关系如图所示问题1:怎样理解图中数据反映的实际意义?怎样建立速度v 关于时间t 的函数关系?设计意图:让学生从图中直观的看出图中数据反映出了不同时间段的行驶速度,并且根据图形的特点:分段的水平线段,抽象建立出分段的常函数模型,初步体验建立函数模型及将实际问题转化为数学问题的过程,并强调分段函数模型的规范形式。
问题2:图中阴影部分小矩形面积是多少?它的实际意义是什么?问题3:5个小矩形的面积之和为多少?它的实际意义是什么?设计意图:通过第一个小矩形面积的求解过程探究出小矩形面积的实际意义是汽车一小时的行驶路程,然后由特殊到一般让学生探究出五个小矩形面积之和并得出面积之和的实际意义是汽车五小时的行驶路程,从而挖掘出图形中的隐含信息,为探究建立路程关于时间的函数 5 3 2 1 t/h 4 0 10 50 60 70 80 90 vkm/h v = 50 80 90 75 65 0≤t <1 1≤t <2 2≤t <3 3≤t <4 4≤t≤5关系做好铺垫,降低求解的难度,利用从“局部到整体”、“特殊到一般”的思想分析问题,从而化解难点,教会学生分析问题的方法.从中培养学生数形结合,转化与化归,由特殊到一般的数学思想方法。
问题4:t=2.5时汽车行驶路程是多少?问题5:你能建立路程S1关于时间t 的函数关系吗?并画出函数图像。
(学生板书)问题6 假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km ,试建立行驶这段路程时汽车里程表读数s 与时间t 的函数解析式,并作出相应的图象。
设计意图:通过前面的探究可以通过用面积求解路程,从而建立路程和里程表关于时间的函数关系并画出图像体验将实际问题转化为数学问题的过程,让学生体会函数与现实生活的密切联系,感受建立函数模型解决实际问题的必要性,从而激发他们的学习兴趣。
总结提升:通过本例的教学,让学生体会建立分段函数模型的思维过程,培养学生读图、识图、解图、画图的能力,渗透数形结合的数学思想,养成自主探究与合作交流相结合的学习习惯.(二)练习巩固,提升能力1. 向高为H 的水瓶中注水,注满为止,如果注水量V 与水位h 的关系的图象如图所示,那么水瓶的形状是 ( )V H h o 1≤t <2 S 1 =50t 80t-30 90t-50 75t-5 65t+35 0≤t <1 2≤t <3 3≤t <4 4≤t≤5 t1 2 3 5 4 0 s1(km) 50 200 400 300 100 S = 50t+2004 80t+1974 90t+1954 75t+1994 65t+2039 0≤t <1 1≤t <2 2≤t <3 3≤t <4 4≤t≤5 2400 s 0 t 1 2 3 5 4 2000 2100 2300 2200 A B C D变式1: 向高为H 的水瓶中注水,注满为止,如果注水量V 与水位h 的关系的图象如图那么水瓶的形状是 ( )变式1 变式2 变式3 变式2: 向高为H 的水瓶中注水,注满为止,如果注水量V 与水位h 的关系的图象如图那么水瓶的形状是 ( )变式3: 向高为H 的水瓶中注水,注满为止,如果注水量V 与水位h 的关系的图象如图那么水瓶的形状是 ( ) 设计意图:通过观察图形的增长趋势,判断水瓶的粗细变化,并从中联系几种常见的增长型 函数模型,如匀速增长的直线型函数模型,二次型函数模型,指数型,对数型和幂函数模型。
培养学生读图,识图的能力,并与所学的知识密切联系。
(三)知识探究:函数模型的应用创设人口问题情境,引导学生探究求解函数模型的方法及运用求出的函数模型求解具体的实际问题的方法途径,并结合人口增长的实际社会意义和重要性激发学生的学习热情和责任感。
例题2 人口问题是当年世界各国普遍关注的问题。
认识人口数量的变化规律,可以为有效控制人口增长提供依据。
早在1798年,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型: 其中t 表示经过的时间,y0表示t=0时的人口数,r 表示人口的年平均增长率。
探究活动1:如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型。
设计意图:要求学生以自主探索与合作交流相结合的方式对本问题求解,通过互相探究讨论能够得到求平均增长率的方法和求函数解析式的方法,然后找学生交流探究的结果。
问题:怎样检验该模型与我国实际人口数据是否相符?说明:学生会探究出多种方法,如将时间代入所得的人 口数与实际人口数做比较或画实际人口数据的散 点图和函数模型的图像做比较,从中选择作图这 种比较直观的方法检验。
问题3:据此人口增长模型,大约在哪一年我国的人口达到13亿?设计意图:让学生体会将实际问题转化为数学问题并运用数学方法推理验算解决问题的过o h H V DH h Vo H hV ortey y 0 t 0 y1 2 3 5 4 50005500 6500 6000 70006 7 8 9程,结合2005年1月6日我国人口达到13亿的实际情况,让学生体会到数学在实际生活中的价值和作用,激发学习的兴趣和动力。
知识拓展:据此人口增长模型,1650年世界人口为5亿,当时人口的年增长率为0.3%,经计算大约1881年(231年后)世界人口达到10亿。
1970年世界人口为36亿,当时人口的年增长率为2.1%, 经计算大约2003年(33年后)世界人口达到72亿。
实际上1850年以前世界人口就超过了10亿,而2003年世界人口还没达到72亿。
设计意图:通过这一个教学活动让学生了解到有的模型不适宜估计时间跨度非常大的人口增长情况。
因此用已知的函数模型刻画实际问题的时候,由于实际问题的条件与得出已知模型的条件有所不同,通过模型得出的结果往往会与实际问题存在一定的误差。
往往需要对模型进行修正。
从中培养学生科学,严谨,务实的学习态度。
总结提升:1、已知函数类型时,可利用待定系数法求函数解析式。
2、解函数应用题的一般步骤:(1)审题.读懂题目认真审题;(2)建模.建立数学模型;(3)求解.选择合适的数学方法,设计合理的运算途径,求出问题的答案;(4)作答.将计算结果转移到实际问题中作答。
建立函数模型解决实际问题的思维流程:设计意图:学会归纳、总结解决数学问题的思维方法,掌握建立函数模型解决实际问题的一般规律,提高理性思维能力.(四)、巩固提升:函数模型的应用某蔬菜基地种植西红柿,由历年市场行情得知,从2月1日起的300天内,西红柿市场售价P 与上市时间t 的关系用下图的一条折线表示,写出市场售价与时间的函数关系式P =f(t)。
设计意图:综合例1,例2的学习,巩固训练知识方法的应用能力,能够看图,识图建立函数模型,并用待定系数法求解确定的分段函数模型,检测、反馈学生对两类建立函数模型的应用问题的掌握程度,同时培养学生在综合问题情境中对知识和方法的迁移能力.要求学生认t 100 200 300 300100 200 p0 ⎩⎨⎧≤<-≤≤+-=-=≤<+-=⎩⎨⎧=-=⎩⎨⎧=+=+=≤≤30020030022000300)(3002)(,300200,300)(3001100200300)(2000t t t t t f t t f t t t f b k b k b b kt t f t 时当同理所以得则时,设解:当真写出求解过程,老师巡视答疑,再抽取学生的解答作实物投影展示,师生一起评价、纠错,形成共同解答.(五)归纳小结强化认识由学生自主对本节课所学内容进行归纳小结,总结解题方法,提炼数学思想等方面.1、解函数应用题的一般步骤:(1)审题(2)建模(3)求解(4)作答2、解有关函数的应用题,要充分挖掘题目的隐含条件,充分利用函数图形的直观性,考虑选择哪一种函数作为模型,然后建立其解析式.已知函数类型时,一般利用待定系数法求解析式。