轨迹方程的求法及典型例题(含答案)(最新整理)
- 格式:pdf
- 大小:236.03 KB
- 文档页数:19
轨迹方程的五种求法例题集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]动点轨迹方程的求法一、直接法按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时.例1已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常数()0>λλ(如图),求动点M 的轨迹方程,说明它表示什么曲线.【解析】:设M (x ,y ),直线MN 切圆C 于N ,则有λ=MQMN ,即λ=-MQONMO 22,λ=+--+2222)2(1yx y x .整理得0)41(4)1()1(222222=++--+-λλλλx y x ,这就是动点M 的轨迹方程.若1=λ,方程化为45=x ,它表示过点)0,45(和x 轴垂直的一条直线;若λ≠1,方程化为2222222)1(3112-+=+-λλλλy x )-(,它表示以)0,12(22-λλ为圆心,13122-+λλ为半径的圆.二、代入法若动点M (x ,y )依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况.例2 已知抛物线12+=x y ,定点A (3,1),B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线.【解析】:设),(),,(11y x B y x P ,由题设,P 分线段AB 的比2==PBAPλ,∴.2121,212311++=++=y y x x 解得2123,232311-=-=y y x x .又点B 在抛物线12+=x y 上,其坐标适合抛物线方程,∴ .1)2323()2123(2+-=-x y 整理得点P 的轨迹方程为),31(32)31(2-=-x y 其轨迹为抛物线.三、定义法若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现.例3 若动圆与圆4)2(22=++y x 外切且与直线x =2相切,则动圆圆心的轨迹方程是(A )012122=+-x y (B )012122=-+x y (C )082=+x y (D )082=-x y【解析】:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x =4的距离,故所求轨迹是以(-2,0)为焦点,直线x =4为准线的抛物线,并且p =6,顶点是(1,0),开口向左,所以方程是)1(122--=x y .选(B ).例4 一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为 (A )抛物线 (B )圆 (C )双曲线的一支 (D )椭圆【解析】:如图,设动圆圆心为M ,半径为r ,则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1,由双曲线定义知,其轨迹是以O 、C 为焦点的双曲线的左支,选(C ). 四、参数法若动点P (x ,y )的坐标x 与y 之间的关系不易直接找到,而动点变化受到另一变量的制约,则可求出x 、y 关于另一变量的参数方程,再化为普通方程.例5设椭圆中心为原点O ,一个焦点为F (0,1),长轴和短轴的长度之比为t .(1)求椭圆的方程;(2)设经过原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q ,点P 在该直线上,且12-=t t OQOP ,当t 变化时,求点P 的轨迹方程,并说明轨迹是什么图形.【解析】:(1)设所求椭圆方程为).0(12222>>b a bx a y =+由题意得⎪⎩⎪⎨⎧==-,,122t b ab a 解得 ⎪⎪⎩⎪⎪⎨⎧-=-=.11.122222t b t t a 所以椭圆方程为222222)1()1(t y t x t t =-+-.(2)设点),,(),,(11y x Q y x P 解方程组⎩⎨⎧==-+-,,)1()1(1122122122tx y t y t x t t 得⎪⎪⎩⎪⎪⎨⎧-=-=.)1(2,)1(212121t t y t x 由12-=t t OQ OP 和1x x OQ OP =得⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==,2,2,2222t y t x t y t x 或其中t >1.消去t ,得点P 轨迹方程为)22(222>=x y x 和)22(222-<-=x y x .其轨迹为抛物线y x 222=在直线22=x 右侧的部分和抛物线y x 222-=在直线22-=x 在侧的部分. 五、交轨法一般用于求二动曲线交点的轨迹方程.其过程是选出一个适当的参数,求出二动曲线的方程或动点坐标适合的含参数的等式,再消去参数,即得所求动点轨迹的方程.例6 已知两点)2,0(),2,2(Q P -以及一条直线ι:y =x ,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.【解析】:PA 和QB 的交点M (x ,y )随A 、B 的移动而变化,故可设)1,1(),,(++t t B t t A ,则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t ,得.082222=+-+-y x y x 当t =-2,或t =-1时,PA 与QB 的交点坐标也满足上式,所以点M 的轨迹方程是.0822222=+--+-y x x y x以上是求动点轨迹方程的主要方法,也是常用方法,如果动点的运动和角度有明显的关系,还可考虑用复数法或极坐标法求轨迹方程.但无论用何方法,都要注意所求轨迹方程中变量的取值范围.。
轨迹方程的六种求法整理求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考.求轨迹方程的一般方法:1.直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。
2.定义法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t 的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等一、直接法把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。
设点。
列式。
化简。
说明等,圆锥曲线标准方程的推导。
1. 已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =·,求点P 的轨迹。
26y x =+,2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ⋅=⋅(1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD⊥AE,判断:直线DE 是否过定点?试证明你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k1、k2满足k1·k2=2.求证:直线DE 过定点,并求出这个定点.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入二、定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.1、 若动圆与圆4)2(22=++y x 外切且与直线x=2相切,则动圆圆心的轨迹方程是解:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x=4的距离,故所求轨迹是以(-2,0)为焦点,直线x=4为准线的抛物线,并且p=6,顶点是(1,0),开口向左,所以方程是)1(122--=x y .选(B ).2、一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为解:如图,设动圆圆心为M ,半径为r ,则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1,由双曲线定义知,其轨迹是以O 、C 为焦点的双曲线的左支3、在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程.解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=. M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.225b a c =-=∴. ∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 注意:求轨迹方程时要注意轨迹的纯粹性与完备性.4、设Q是圆x2+y2=4上动点另点A(3。
与圆有关的轨迹方程的求法Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】与圆有关的轨迹方程的求法若已知动点P 1(α ,β)在曲线C 1:f 1(x,y )=0上移动,动点P (x,y )依动点P 1而动,它满足关系:⎩⎨⎧βα=βα=),(),(y y x x ① 则关于α 、β反解方程组①,得⎩⎨⎧=β=α),(),(y x h y x g ② 代入曲线方程f 1(x,y )=0,即可求得动点P 的轨迹方程C :f (x,y )=0. 例1、(求轨迹):已知线段AB 的端点B 的坐标是(4,3),端点A 在圆4)1(22=++y x 上运动,求线段AB 的中点M 的轨迹方程.【例2】已知点A (3,0),点P 在圆x 2+y 2=1的上半圆周上,∠AOP 的平分线交PA 于Q ,求点Q 的轨迹方程.【法一】如图所示,设P (x 0,y 0)(y 0>0),Q (x ,y ).∵OQ 为∠AOP 的平分线,∴31||||==OQ OP QA PQ , ∴Q 分PA 的比为31.∴⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=y y x x y y y x x x 3413443311031)1(43311313000000即 又因2020y x +=1,且y 0>0,∴19164391622=+⎪⎭⎫ ⎝⎛-y x . ∴Q 的轨迹方程为)0(169)43(22>=+-y y x .例3、已知圆,422=+y x 过A (4,0)作圆的割线ABC ,则弦BC 中点的轨迹方程为( )A .4)1(22=+-y xB .)10(4)1(22<≤=+-x y xC .4)2(22=+-y xD .)10(4)2(22<≤=+-x y x变式练习1:已知定点)0,3(B ,点A 在圆122=+y x 上运动,M 是线段AB 上的一点,且MB AM 31=,则点M 的轨迹方程是 解:设),(),,(11y x A y x M .∵MB AM 31=,∴),3(31),(11y x y y x x --=--, ∴⎪⎪⎩⎪⎪⎨⎧-=--=-y y y x x x 31)3(3111,∴⎪⎪⎩⎪⎪⎨⎧=-=y y x x 3413411.∵点A 在圆122=+y x 上运动,∴12121=+y x ,∴1)34()134(22=+-y x ,即169)43(22=+-y x ,∴点M 的轨迹方程是169)43(22=+-y x . 2:已知定点)0,3(B ,点A 在圆122=+y x 上运动,AOB ∠的平分线交AB 于点M ,则点M 的轨迹方程是 .解:设),(),,(11y x A y x M .∵OM 是AOB ∠的平分线,∴31==OB OA MB AM , ∴MB AM 31=.由变式1可得点M 的轨迹方程是169)43(22=+-y x . 3:已知直线1+=kx y 与圆422=+y x 相交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB ,求点P 的轨迹方程.解:设),(y x P ,AB 的中点为M .∵OAPB 是平行四边形,∴M 是OP 的中点,∴点M 的坐标为)2,2(y x ,且AB OM ⊥.∵直线1+=kx y 经过定点)1,0(C ,∴CM OM ⊥,∴0)12(2)2()12,2()2,2(2=-+=-⋅=⋅y y x y x y x CM OM ,化简得1)1(22=-+y x .∴点P 的轨迹方程是1)1(22=-+y x .4、圆9)1()2(22=++-y x 的弦长为2,则弦的中点的轨迹方程是5、已知半径为1的动圆与圆16)7()5(22=++-y x 相切,则动圆圆心的轨迹方程是( )A.25)7()5(22=++-y x B. 17)7()5(22=++-y x 或15)7()5(22=++-y xC. 9)7()5(22=++-y x D. 25)7()5(22=++-y x 或9)7()5(22=++-y x 6.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )A B 4 C 8 D 97:已知点M 与两个定点)0,0(O ,)0,3(A 的距离的比为21,求点M 的轨迹方程. 8 如图所示,已知圆422=+y x O :与y 轴的正方向交于A 点,点B 在直线2=y 上运动,过B 做圆O 的切线,切点为C ,求ABC ∆垂心H 的轨迹.分析:按常规求轨迹的方法,设),(y x H ,找y x ,的关系非常难.由于H 点随B ,C 点运动而运动,可考虑H ,B ,C 三点坐标之间的关系.解:设),(y x H ,),(''y x C ,连结AH ,CH ,则BC AH ⊥,AB CH ⊥,BC 是切线BC OC ⊥,所以AH OC //,OA CH //,OC OA =,所以四边形AOCH 是菱形.所以2==OA CH ,得⎪⎩⎪⎨⎧=-=.,2''x x y y 又),(''y x C 满足42'2'=+y x ,所以)0(4)2(22≠=-+x y x 即是所求轨迹方程.说明:题目巧妙运用了三角形垂心的性质及菱形的相关知识.采取代入法求轨迹方程.做题时应注意分析图形的几何性质,求轨迹时应注意分析与动点相关联的点,如相关联点轨迹方程已知,可考虑代入法.9. 已知圆的方程为222r y x =+,圆内有定点),(b a P ,圆周上有两个动点A 、B ,使PB PA ⊥,求矩形APBQ 的顶点Q 的轨迹方程.分析:利用几何法求解,或利用转移法求解,或利用参数法求解. 解法一:如图,在矩形APBQ 中,连结AB ,PQ 交于M ,显然AB OM ⊥,PQ AB =,在直角三角形AOM 中,若设),(y x Q ,则)2,2(b y a x M ++. 由222OA AM OM =+,即 22222])()[(41)2()2(r b y a x b y a x =-+-++++, 也即)(222222b a r y x +-=+,这便是Q 的轨迹方程.解法二:设),(y x Q 、),(11y x A 、),(22y x B ,则22121r y x =+,22222r y x =+. 又22AB PQ =,即)(22)()()()(2121222122122y y x x r y y x x b y a x +-=-+-=-+-.① 又AB 与PQ 的中点重合,故21x x a x +=+,21y y b y +=+,即)(22)()(2121222y y x x r b y a x ++=+++ ②①+②,有)(222222b a r y x +-=+.这就是所求的轨迹方程.解法三:设)sin ,cos (ααr r A 、)sin ,cos (ββr r B 、),(y x Q ,由于APBQ 为矩形,故AB 与PQ 的中点重合,即有βαcos cos r r a x +=+, ①βαsin sin r r b y +=+, ②又由PB PA ⊥有1cos sin cos sin -=--⋅--ar b r a r b r ββαα ③ 联立①、②、③消去α、β,即可得Q 点的轨迹方程为)(222222b a r y x +-=+.说明:本题的条件较多且较隐含,解题时,思路应清晰,且应充分利用图形的几何性质,否则,将使解题陷入困境之中.10、由动点P 向圆122=+y x 引两条切线PA 、PB ,切点分别为A 、B ,APB ∠=600,则动点P 的轨迹方程是 .解:设),(y x P .∵APB ∠=600,∴OPA ∠=300.∵AP OA ⊥,∴22==OA OP ,∴222=+y x ,化简得422=+y x ,∴动点P 的轨迹方程是422=+y x .练习巩固:设)0)(0,(),0,(>-c c B c A 为两定点,动点P 到A 点的距离与到B 点的距离的比为定值)0(>a a ,求P 点的轨迹.解:设动点P 的坐标为),(y x P .由)0(>=a a PB PA ,得a y c x y c x =+-++2222)()(,化简得0)1()1(2)1()1(2222222=-+++-+-a c x a c y a x a .当1≠a 时,化简得01)1(222222=+-+++c x a a c y x ,整理得222222)12()11(-=+-+-a ac y c a a x ; 当1=a 时,化简得0=x .所以当1≠a 时,P 点的轨迹是以)0,11(22c a a -+为圆心,122-a ac 为半径的圆; 当1=a 时,P 点的轨迹是y 轴.11、已知两定点)0,2(-A ,)0,1(B ,如果动点P 满足PB PA 2=,则点P 的轨迹所包围的面积等于 解:设点P 的坐标是),(y x .由PB PA 2=,得2222)1(2)2(y x y x +-=++,化简得4)2(22=+-y x ,∴点P 的轨迹是以(2,0)为圆心,2为半径的圆,∴所求面积为π4.。
轨迹方程的求法及典型例题轨迹方程的求法一、知识复习轨迹方程的求法常见的有(1)直接法;(2)定义法;(3)待定系数法(4)参数法(5)交轨法;(6)相关点法注意:求轨迹方程时注意去杂点,找漏点一、知识复习例1:点P(-3,0)是圆x2+y2-6x-55=0内的定点,动圆M 与已知圆相切,且过点P,求圆心M 的轨迹方程。
例2、如图所示,已知P(4,0)是圆x2+y2=36 内的一点, A 、B 是圆上两动点,且满足∠APB=90°,求矩形APBQ的顶点Q的轨迹方程.解:设AB 的中点为R,坐标为(x,y),则在Rt△ABP 中,|AR|=|PR|.又因为R是弦AB 的中点,依垂径定理:在Rt△OAR中,|AR|2=|AO|2-|OR|2=36-(x2+y2) 又|AR|=|PR|= (x 4)2y 2所以有(x-4)2+y2=36-(x2+y2),即x2+y2-4x-10=0因此点R在一个圆上,而当R在此圆上运动时,Q 点即在所求的轨迹上运动.设Q(x,y),R(x1,y1),因为R是PQ的中点,所以x1=x24,y1 y20, 代入方程x2+y2-4x-10=0,得(x24)2(2y)24 x24-10=0整理得:x2+y2=56,这就是所求的轨迹方程.2设曲线段C的方程为y 2px(p 0),(x A x x B ,y 0) ,由|AM | 17,|AN | 3得(x Ap2)22px A 17 (1)(x A 2p)2 2px A 9 (2)由①,②两式联立解得4 p 4 或p p。
再将其代入①式并由p>0解得x A 1 x A例3、如图, 直线L1和L2相交于点M, L1 L2, 点N L1. 以A, B为端点的曲线段C上的任一点到L 2的距离与到点N的距离相等. 若AMN 为锐角三角形, |AM|= 17 , |AN| = 3, 且|BN|=6. 建立适当的坐标系,求曲线段 C的方程.解法一:如图建立坐标系,以l1为x轴,MN的垂直平分线为y轴,点O为坐标原点依题意知:曲线段C是以点N为焦点,以l2为准线的抛物线的一段,其中A,B分别为C的端点其中x A,x B分别为A,B的横坐标,P=|MN| 所以M ( p,0),N(p,0)22x Ax A |ME | DA| | AN | 3y A |DM | | AM |2 |DA |2 2 2 由于 AMN 为锐角三角形故有 x N |ME | |EN ||ME | | AM |2 | AE |2 4 x B |BE| |NB| 6设点P(x, y)是曲线段 C 上任一点则由题意知 P 属于集合 2 2 2 {( x,y)|(x x N ) y x ,x A x x B ,y 0} 故曲线段 C 的方程y 2 8(x 2)(3 x 6,y 0)p x A因为△ AMN 是锐角三角形,所以 2 A ,故舍去p2 x A 2∴p=4,x A =1x B |BN |由点B 在曲线段 C 上,得 B 22综上得曲线段 C 的方程为y 8x(1 x解法二:如图建立坐标系,分别以 4 。
轨迹方程的六种求法整顿求轨迹方程是高考中罕有的一类问题.本文对曲线方程轨迹的求法做一归纳,供同窗们参考.求轨迹方程的一般办法:1.直译法:假如动点P的活动纪律是否合乎我们熟知的某些曲线的界说难以断定,但点P知足的等量关系易于树立,则可以先暗示出点P所知足的几何上的等量关系,再用点P的坐标(x,y)暗示该等量关系式,即可得到轨迹方程.2.界说法:假如动点P的活动纪律合乎我们已知的某种曲线(如圆.椭圆.双曲线.抛物线)的界说,则可先设出轨迹方程,再依据已知前提,待定方程中的常数,即可得到轨迹方程3. 参数法:假如采取直译法求轨迹方程难以奏效,则可追求引动员点P活动的某个几何量t,以此量作为参变数,分离树立P 点坐标x,y与该参数t的函数关系x=f(t), y=g(t),进而经由过程消参化为轨迹的通俗方程F(x,y)=0.4. 代入法(相干点法):假如动点P的活动是由别的某一点P'的活动激发的,而该点的活动纪律已知,(该点坐标知足某已知曲线方程),则可以设出P(x,y),用(x,y)暗示出相干点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程.5.交轨法:在求动点轨迹时,有时会消失请求两动曲线交点的轨迹问题,这种问题平日经由过程解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用. 6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等一.直接法把标题中的等量关系直接转化为关于x,y,的方程根本步调是:建系.设点.列式.化简.解释等,圆锥曲线尺度方程的推导. 1. 已知点(20)(30)A B -,,,,动点()P x y ,知足2PA PB x =·,求点P 的轨迹.26y x =+,2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且知足.||||CB PB BC PC ⋅=⋅(1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE,且AD⊥AE,断定:直线DE 是否过定点?试证实你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD,AE,且AD,AE 的斜率k1.k2知足k1·k2=2.求证:直线DE 过定点,并求出这个定点.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入二.界说法应用所学过的圆的界说.椭圆的界说.双曲线的界说.抛物线的界说直接写出所求的动点的轨迹方程,这种办法叫做界说法.这种办法请求题设中有定点与定直线及两定点距离之和或差为定值的前提,或应用平面几何常识剖析得出这些前提.1. 若动圆与圆4)2(22=++y x 外切且与直线x=2相切,则动圆圆心的轨迹方程是解:如图,设动圆圆心为M,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x=4的距离,故所求轨迹是以(-2,0)为核心,直线x=4为准线的抛物线,并且p=6,极点是(1,0),启齿向左,所以方程是)1(122--=x y .选(B ).2.一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为解:如图,设动圆圆心为M,半径为r,则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1,由双曲线界说知,其轨迹是以O.C 为核心的双曲线的左支3.在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程.解:以线段BC 地点直线为x 轴,线段BC 的中垂线为y 轴树立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=. M ∴点的轨迹是认为B C ,核心的椭圆,个中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 留意:求轨迹方程时要留意轨迹的纯粹性与完整性.4.设Q 是圆x2+y2=4上动点另点A (3.0).线段AQ 的垂直等分线l 交半径OQ 于点P(见图2-45),当Q 点在圆周上活动时,求点P 的轨迹方程.解:衔接PA ∵l⊥PQ,∴|PA|=|PQ|.又P在半径OQ 上.∴|PO|+|PQ|=2.由椭圆界说可知:P 点轨迹是以O.A 为核心的椭圆.5.已知ΔABC中,A,B,C 所对应的边为a,b,c,且a>c>b,a,c,b 成等差数列,|AB|=2,求极点C 的轨迹方程 解:|BC|+|CA|=4>2,由椭圆的界说可知,点C 的轨迹是以A.B 为核心的椭圆,其长轴为4,焦距为2, 短轴长为23,∴椭圆方程为13422=+y x , 又a>b, ∴点C 在y 轴左侧,必有x<0,而C 点在x 轴上时不克不及组成三角形,故x≠─2,是以点C 的轨迹方程是:13422=+y x (─2<x<0) 点评:本题在求出了方程今后评论辩论x 的取值规模,现实上就是斟酌前提的须要性6.一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,求动圆圆心M 的轨迹方程,并解释它是什么样的曲线.解析:(法一)设动圆圆心为(,)M x y ,半径为R ,设已知圆的圆心分离为1O .2O ,将圆方程分离配方得:22(3)4x y ++=,22(3)100x y -+=,当M 与1O 相切时,有1||2O M R =+①当M 与2O 相切时,有2||10O M R =-②将①②两式的双方分离相加,得21||||12O M O M +=, 即2222(3)(3)12x y x y +++-+=③移项再双方分离平方得:222(3)12x y x ++=+④双方再平方得:22341080x y +-=,整顿得2213627x y +=, 所以,动圆圆心的轨迹方程是2213627x y +=,轨迹是椭圆. (法二)由解法一可得方程2222(3)(3)12x y x y +++-+=, 由以上方程知,动圆圆心(,)M x y 到点1(3,0)O -和2(3,0)O 的距离和是常数12,所以点M 的轨迹是核心为1(3,0)O -.2(3,0)O ,长轴长等于12的椭圆,并且椭圆的中间在坐标原点,核心在x 轴上,∴26c =,212a =,∴3c =,6a =,∴236927b =-=,∴圆心轨迹方程为2213627x y +=. 三.相干点法此办法实用于动点随已知曲线上点的变更而变更的轨迹问题. 若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0.y0可用x.y 暗示,则将Q 点坐标表达式代入已知曲线方程,即得点P 的轨迹方程.这种办法称为相干点法(或代换法).x y 1O 2O P1.已知抛物线y2=x+1,定点A(3,1).B 为抛物线上随意率性一点,点P 在线段AB 上,且有BP∶PA=1∶2,当B 点在抛物线上变动时,求点P 的轨迹方程.剖析解:设点P(x,y),且设点B(x0,y0)∵BP∶PA=1∶2,且P 为线段AB 的内分点.2.双曲线2219x y -=有动点P ,12,F F 曲直线的两个核心,求12PF F ∆的重心M 的轨迹方程.解:设,P M 点坐标各为11(,),(,)P x y M x y ,∴在已知双曲线方程中3,1a b ==,∴9110c =+=∴已知双曲线两核心为12(10,0),(10,0)F F -,∵12PF F ∆消失,∴10y ≠ 由三角形重心坐标公式有11(10)10003x x y y ⎧+-+=⎪⎪⎨++⎪=⎪⎩,即1133x x y y =⎧⎨=⎩ . ∵10y ≠,∴0y ≠.3.已知点P 在双曲线上,将上面成果代入已知曲线方程,有22(3)(3)1(0)9x y y -=≠ 即所求重心M 的轨迹方程为:2291(0)x y y -=≠.4.(上海,3)设P 为双曲线-42x y2=1上一动点,O 为坐标原点,M 为线段OP 的中点,则点M 的轨迹方程是.解析:设P (x0,y0) ∴M(x,y ) ∴2,200y y x x ==∴2x=x0,2y =y0∴442x -4y2=1⇒x2-4y2=15.已知△ABC 的极点(30)(10)B C -,,,,极点A 在抛物线2y x =上活动,求ABC △的重心G 的轨迹方程.解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠. 四.参数法假如不轻易直接找出动点的坐标之间的关系,可斟酌借助中央变量(参数),把x,y 接洽起来.若动点P (x,y )的坐标x 与y 之间的关系不轻易直接找到,而动点变更受到另一变量的制约,则可求出x.y 关于另一变量的参数方程,再化为通俗方程.1.已知线段2AA a '=,直线l 垂直等分AA '于O ,在l 上取两点P P ',,使有向线段OP OP ',知足4OP OP '=·,求直线AP 与A P ''的交点M 的轨迹方程. 解:如图2,以线段AA '地点直线为x 轴,以线段AA '的中垂线为y 轴树立直角坐标系.设点(0)(0)P t t ≠,, 则由题意,得40P t ⎛⎫' ⎪⎝⎭,. 由点斜式得直线AP A P '',的方程分离为4()()t y x a y x a a ta =+=--,. 两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,症结有两点:一是选参,轻易暗示出动点;二是消参,消参的门路灵巧多变.2.设椭圆中间为原点O,一个核心为F (0,1),长轴和短轴的长度之比为t .(1)求椭圆的方程;(2)设经由原点且斜率为t 的直线与椭圆在y 轴右边部分的交点为Q,点P 在该直线上,且12-=t t OQ OP,当t 变更时,求点P 的轨迹方程,并解释轨迹是什么图形.解:(1)设所求椭圆方程为).0(12222>>b a b x a y =+由题意得⎪⎩⎪⎨⎧==-,,122t b a b a 解得 ⎪⎪⎩⎪⎪⎨⎧-=-=.11.122222t b t t a 所以椭圆方程为222222)1()1(t y t x t t =-+-.(2)设点),,(),,(11y x Q y x P 解方程组⎩⎨⎧==-+-,,)1()1(1122122122tx y t y t x t t 得 ⎪⎪⎩⎪⎪⎨⎧-=-=.)1(2,)1(212121t t y t x 由12-=t t OQ OP 和1x x OQ OP =得⎪⎪⎩⎪⎪⎨⎧-=-=⎪⎪⎩⎪⎪⎨⎧==,2,2,2222t y t x t y t x 或 个中t >1.消去t,得点P 轨迹方程为)22(222>=x y x 和)22(222-<-=x y x .其轨迹为抛物线y x 222=在直线22=x 右侧的部分和抛物线y x 222-=在直线22-=x 在侧的部分.3.已知双曲线2222n y m x -=1(m >0,n >0)的极点为A1.A2,与y 轴平行的直线l 交双曲线于点P.Q 求直线A1P 与A2Q 交点M 的轨迹方程; 解设P 点的坐标为(x1,y1),则Q 点坐标为(x1,-y1),又有A1(-m,0),A2(m,0),则A1P 的方程为y=)(11m x mx y ++① A2Q 的方程为y=-)(11m x mx y --② ①×②得y2=-)(2222121m x m x y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即 代入③并整顿得2222n y m x +=1此即为M 的轨迹方程4.设点A 和B 为抛物线 y2=4px(p >0)上原点以外的两个动点,已知OA⊥OB,OM⊥AB,求点M 的轨迹方程,并解释它暗示什么曲线 解法一设A(x1,y1),B(x2,y2),M(x,y) (x≠0)直线AB 的方程为x=my+a由OM⊥AB,得m=-y x 由y2=4px 及x=my+a,消去x,得y2-4pmy -4pa=0所以y1y2=-4pa, x1x2=22122()(4)y y a p = 所以,由OA⊥OB,得x1x2 =-y1y2所以244a pa a p =⇒=故x=my+4p,用m=-y x代入,得x2+y2-4px=0(x≠0)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点 解法二设OA 的方程为y kx =,代入y2=4px 得222(,)p p A k k则OB 的方程为1y x k =-,代入y2=4px 得2(2,2)B pk pk -∴AB 的方程为2(2)1k y x p k=--,过定点(2,0)N p , 由OM⊥AB,得M 在以ON 为直径的圆上(O 点除外)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点 解法三设M(x,y) (x≠0),OA 的方程为y kx =,代入y2=4px 得222(,)p p A k k 则OB 的方程为1y x k =-,代入y2=4px 得2(2,2)B pk pk -由OM⊥AB,得M 既在以OA 为直径的圆222220p p x y x y k k+--=……①上, 又在以OB 为直径的圆222220x y pk x pky +-+=……②上(O 点除外),①2k ⨯+②得 x2+y2-4px=0(x≠0)故动点M 的轨迹方程为x2+y2-4px=0(x≠0),它暗示以(2p,0)为圆心,以2p 为半径的圆,去失落坐标原点5.过点A (-1,0),斜率为k 的直线l 与抛物线C :y2=4x 交于P,Q 两点.若曲线C 的核心F 与P,Q,R 三点按如图次序组成平行四边形PFQR,求点R 的轨迹方程;解:请求点R 的轨迹方程,留意到点R 的活动是由直线l 的活动所引起的,是以可以寻找点R 的横.纵坐标与直线l 的斜率k 的关系.然而,点R 与直线l 并没有直接接洽.与l 有直接接洽的是点P.Q,经由过程平行四边形将P.Q.R 这三点接洽起来就成为解题的症结.由已知:(1)l y k x =+,代入抛物线C :y2=4x 的方程,消x 得:204k y y k -+=∵C l P 直线交抛物线于两点.Q∴20410k k ⎧≠⎪⎨⎪∆=->⎩解得1001k k -<<<<或设1122(,),(,),(,)P x y Q x y R x y ,M 是PQ 的中点,则由韦达定理可知:122,2M y y y k+==将其代入直线l的方程,得2212M M x k y k ⎧=-⎪⎪⎨⎪=⎪⎩∵四边形PFQR 是平行四边形, ∴RF 中点也是PQ 中点M .∴242342M F Mx x x k y y k ⎧=-=-⎪⎪⎨⎪==⎪⎩又(1,0)(0,1)k ∈-⋃∴(1,)M x ∈+∞.∴点R 的轨迹方程为.1),3(42>+=x x y6.垂直于y 轴的直线与y 轴及抛物线y2=2(x –1)分离交于点A 和点P,点B 在y 轴上且点A 分OB 的比为1:2,求线段PB 中点的轨迹方程解:点参数法 设A(0,t),B(0,3t),则P(t2/2 +1, t),设Q(x,y),则有⎪⎪⎩⎪⎪⎨⎧=+=+=+=t tt y t t x 223)2(4121222,消去t 得:y2=16(x –21) 点评:本题采取点参数,即点的坐标作为参数在求轨迹方程时应剖析动点活动的原因,找出影响动点的身分,据此恰当地选择参数7.过双曲线C :x2─y2/3=1的左核心F 作直线l 与双曲线交于点P.Q,以OP.OQ 为邻边作平行四边形OPMQ,求M 的轨迹方程解:k 参数法 当直线l 的斜率k 消失时,取k 为参数,树立点M 轨迹的参数方程设M(x,y),P(x1,y1), Q(x2,y2),PQ 的中点N(x0,y0), l:y=k(x+2), 代入双曲线方程化简得:(3─k2)x2─4k2x─4k2─3=0,依题意k≠3,∴3─k2≠0,x1+x2=4k2/(3─k2), ∴x=2x0=x1+x2=4k2/(3─k2),y=2y0=2k(x0+2)=12k/(3─k2),∴⎪⎪⎩⎪⎪⎨⎧-=-=22231234k k y k k x , 消去k 并整顿,得点M 的轨迹方程为:1124)2(22=-+y x 当k 不消失时,点M(─4,0)在上述方程的曲线上,故点M 的轨迹方程为:点评:本题用斜率作为参数,即k 参数法,k 是经常应用的参数设点P.Q 的坐标,但没有求出P.Q 的坐标,而是用韦达定理求x1+x2,y1+y2,从整体上行止理,是处懂得析几何分解题的罕有技能8.(06辽宁,20)已知点11(,)A x y ,22(,)B x y 12(0)x x ≠是抛物线22(0)y px p =>上的两个动点,O 是坐标原点,向量OA ,OB 知足OA OB OA OB +=-.设圆C 的方程为(I) 证实线段AB 是圆C 的直径;(II)当圆C 的圆心到直线X2Y=0的距离的最小值为5时,求p 的值.解析:(I)证实1:22,()()OA OB OA OB OA OB OA OB +=-∴+=- 整顿得:0OA OB ⋅=12120x x y y ∴⋅+⋅=设M(x,y)是以线段AB 为直径的圆上的随意率性一点,则0MA MB ⋅= 即1212()()()()0x x x x y y y y --+--=整顿得:221212()()0x y x x x y y y +-+-+= 故线段AB 是圆C 的直径(II)解法1:设圆C 的圆心为C(x,y),则又因12120x x y y ⋅+⋅=1212x x y y ∴⋅=-⋅22121224y y y y p∴-⋅= 所以圆心的轨迹方程为222y px p =- 设圆心C 到直线x2y=0的距离为d,则当y=p 时,d=2p ∴=.五.交轨法一般用于求二动曲线交点的轨迹方程.其进程是选出一个恰当的参数,求出二动曲线的方程或动点坐标合适的含参数的等式,再消去参数,即得所求动点轨迹的方程.1. 已知两点)2,0(),2,2(Q P -以及一条直线ι:y=x,设长为2的线段AB 在直线λ上移动,求直线PA 和QB 交点M 的轨迹方程.解:PA 和QB 的交点M (x,y )随 A.B 的移动而变更,故可设)1,1(),,(++t t B t t A ,则PA :),2)(2(222-≠++-=-t x t t y QB :).1(112-≠+-=-t x t t y 消去t,得.082222=+-+-y x y x 当t=-2,或t=-1时,PA 与QB 的交点坐标也知足上式,所以点M 的轨迹方程是.0822222=+--+-y x x y x以上是求动点轨迹方程的重要办法,也是经常应用办法,假如动点的活动和角度有显著的关系,还可斟酌用复数法或极坐标法求轨迹方程.但无论用何办法,都要留意所求轨迹方程中变量的取值规模.2.自抛物线y2=2x 上随意率性一点P 向其准线l 引垂线,垂足为Q,贯穿连接极点O 与P 的直线和贯穿连接核心F 与Q 的直线交于R 点,求R 点的轨迹方程.解:设P (x1,y1).R (x,y ),则Q (-21,y1).F (21,0),∴OP 的方程为y=11x y x,①FQ 的方程为y=-y1(x -21).②由①②得x1=xx 212-,y1=xy 212-,代入y2=2x,可得y2=-2x2+x.六.待定系数法当曲线(圆.椭圆.双曲线以及抛物线)的外形已知时,一般可用待定系数法解决.1.已知A,B,D三点不在一条直线上,且(20)A -,,(20)B ,,2AD =,1()2AE AB AD =+.(1)求E 点轨迹方程;(2)过A 作直线交认为A B ,核心的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设()E x y ,,由1()2AE AB AD =+知E 为BD 中点,易知(222)D x y -,.又2AD =,则22(222)(2)4x y -++=.即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切, 2211k k =+∴,解得33k =±. 将33y =±(2)x +代入椭圆方程并整顿,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴,又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.2.已知圆C1的方程为(x -2)2+(y -1)2=320,椭圆C2的方程为2222by ax +=1(a >b >0),C2的离心率为22,假如C1与C2订交于A.B 两点,且线段AB 恰为圆C1的直径,求直线AB 的方程和椭圆C2的方程..解:由e=22,可设椭圆方程为22222b y b x +=1,又设A(x1,y1).B(x2,y2),则x1+x2=4,y1+y2=2, 又2222222212212,12by bx by bx +=+=1,两式相减,得22221222212by y bx x -+-=0,2121x x y y --=-1,故直线AB 的方程为y=-x+3,代入椭圆方程得3x2-12x+18-2b2=0. 有Δ=24b2-72>0,又|AB|=3204)(221221=-+x x x x ,得3209722422=-⋅b ,解得b2=8.故所求椭圆方程为81622y x +=1.3.已知直线1+-=x y 与椭圆)0(12222>>=+b a by a x 订交于A.B 两点,且线段AB 的中点在直线02:=-y x l 上.(1)求此椭圆的离心率;(2 )若椭圆的右核心关于直线l 的对称点的在圆422=+y x 上,求此椭圆的方程. 讲授:(1)设A.B 两点的坐标分离为⎪⎩⎪⎨⎧=++-=11).,(),,(22222211b y ax x y y x B y x A ,则由得02)(2222222=-+-+b a a x a x b a , 依据韦达定理,得∴线段AB的中点坐标为(222222,ba b b a a ++).由已知得2222222222222)(22,02c a c a b a ba b b a a =∴-==∴=+-+ 故椭圆的离心率为22=e .(2)由(1)知,c b =从而椭圆的右核心坐标为),0,(b F 设)0,(b F 关于直线2:=-y x l 的对称点为,02221210),,(000000=⨯-+-=⋅--yb x b x y y x 且则解得b y b x 545300==且由已知得 4,4)54()53(,42222020=∴=+∴=+b b b y x故所求的椭圆方程为14822=+y x .。
专题四:求动点轨迹方程5种方法(解析版)一、直接法步骤:1、建立恰当的坐标系,设动点坐标()y x ,;2、由已知条件列出几何等量关系式,建立关于y x ,的方程()0=y x f ,;3、化简整理;4、检验,检验点轨迹的纯粹性与完备性。
[例1] 已知圆O 的方程是0222=-+y x ,圆O '的方程是010822=+-+x y x ,如图所示。
由动点P 向圆O 和圆O '所引的切线长相等,求动点P 的轨迹方程。
【解析】设()y x P ,,由圆O 的方程为:222=+y x ,圆O '的方程为()6422=+-y x 。
由已知得BP AP =,所以22BP AP =,所以2222B O P O OA OP '-'=-,则6222-'=-P O OP 。
所以()6422222-+-=-+y x y x ,化简得23=x 。
所以动点P 的轨迹方程为23=x 。
[练习1] 已知平面上两定点()20-,M ,()20,N ,点P 满足MN PN MN MP ⋅=⋅,求点P 的轨迹方程。
【解析】设()y x P ,,则()2+=y x MP ,,()40,=MN ,()y x PN --=2,,因为MN PN MN MP ⋅=⋅,所以()()222424y x y -+=+,所以()2222y x y -+=+。
两端同时平方得:2224444y y x y y +-+=++,整理得:y x 82=。
所以点P 的轨迹方程为y x 82=二、定义法步骤:1、分析几何关系;2、由曲线的定义直接得出轨迹方程。
[例2] 已知圆A :()36222=++y x ,()02,B ,点P 是圆A 上的动点,线段PB 的中垂线交PA 于点Q ,求动点Q 的轨迹方程。
【解析】 由题可得,()02,-A ,4=AB 。
因为Q 点在线段PB 的中垂线上,所以QB PQ =。
高考动点轨迹方程的用求法〔含练习题及答案〕轨迹方程的经典求法一、定义法:运用有关曲线的定义求轨迹方程.例2:在4ABC 中,BC 24, AC, AB 上的两条中线长度之和为 39,求4ABC 的重心的轨迹方 程.:P 点轨迹为抛物线.应选D.、代入法:此方法适用于动点随曲线上点的变化而变化的轨迹问题 例3:△ ABC 的顶点B( 3,0) C(1,0),顶点A 在抛物线y轨迹方程.3 1 X O,一 、一 一 x一; 一,x 3x 2,①解:设G(x, y) , A(x 0, y o ),由重心公式,得3:,y 弛,V .3y.②3又「 A(x .,y .)在抛物线y x 2上,「. y .x 2 .③将①,②代入③,得3y (3x 2)2(y .),即所求曲线方程是y 3x 2 4x -(y 0).3解:以线段BC 所在直线为x 轴,线段BC 的中垂线为 y 轴建立直角坐标系,如图1, M 为重2 心,那么有 BM CM — 3926 . 3「.M 点的轨迹是以B, C 为焦点的椭圆, 其中 c 12, a 13 . b ,a 2 c 2 5.2:所求^ABC 的重心的轨迹方程为 — 169 2y—i(y 0) . 25、直接法:直接根据等量关系式建立方程.例 1 :点 A( 2,0) B(3,0),动点 P(x,y)满足P A PBx 2 ,那么点P 的轨迹是(A.圆B.椭圆C,双曲线D.抛物线解析:由题知PA ( 2 x y) , PB(3x, y),由 PA PB x 2 ,得(2 x)(3x) y 2x 2,即x 2上运动,求 4ABC 的重心G 的6四、待定系数法:当曲线的形状时,一般可用待定系数法解决(1)求E 点轨迹方程;(2)过A 作直线交以A, B 为焦点的椭圆于M, N 两点,线段MN 的中点到y 轴的距离为公,5且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设 E(x, y),由 AE -(AB AD)知 E 为 BD 中点,易知 D(2x 2,2y). 2又 AD 2 ,那么(2x 2 2)2 (2 y)2 4.即 E 点轨迹方程为 x 2 y 2 1(y 0); (2)设 M(x, y i ), N(x 2, v2 ,中点(x 0, y (o ). 22由题意设椭圆方程为xr1 ,直线MN 方程为y k(x 2).a a 4••・直线MN 与E 点的轨迹相切,,/k L 1,解得k 眄.k 1 3将yX3(x 2)代入椭圆方程并整理,得4(a 2 3)x 2 4a 2x 16a 2 3a 4 0, 3 2x 〔 x 2a一 x o ------------------- -2——,2 2(a 3)222又由题意知x o4,即 T-解得a 2 8.故所求的椭圆方程为 上 £ 1.5 2(a 3) 58 4五、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量(参数),把例4:线段AA 2a ,直线l 垂直平分AA 于O ,在l 上取两点P, P ,使其满足解:如图2,以线段AA 所在直线为x 轴,以线段AA 的中垂线为y 轴建 立直角坐标系. 设点 P(0, t)(t 0), 那么由题意,得P 0彳.由点斜式得直线AP, A P 的方程分别为y -(x a), y —(x a).ata例5:A, B, D 三点不在一条直线上,且A( 2,0) , B(2,0) , A D 2, A E ^(A B A D).4,求直线AP 与AP 的交点M 的轨迹方程.两式相乘,消去t,得4x 2 a 2y 2 4a 2(y 0).这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途 径灵活多变.配套练习、选择题1.椭圆的焦点是 F i 、F 2, P 是椭圆上的一个动点,如果延长 F i P 到Q,使得|PQ|二|PF 2|,那么动点 Q的轨迹是()二、填空题迹方程为4.高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距 10 m ,如果把两旗杆底部的坐标分别确定为 A(- 5,0)、B(5, 0),那么地面观测两旗杆顶端仰角相等的点的轨迹方程是三、解做题5.A 、B 、C 是直线l 上的三点,且|AB|=|BC|=6,.0'切直线l 于点A,又过B 、C 作.O'异于l 的 两切线,设这两切线交于点P,求点P 的轨迹方程.A.圆B.椭圆C.双曲线的一支D.抛物线2一 .一 X 2.设A 1、A 2是椭圆一 92匕=1 的长轴两个端点,P i 、P 2是垂直于 A 1A 2的弦的端点,那么直线A i P i 与A 2P 2交点的轨迹方程为22A.L 工9 42 B.—92 C.—92D.—93. △ ABC 中,A 为动点,B 、B(-2a 1,0),C (2,0),且满足条件 sinC —sinB=^sinA,那么动点 A 的轨的交点为Q,求Q点的轨迹方程.. ..x2=1的实轴为A1A2,点P是双曲线上的一个动点,弓I A i QXA l P, A2QLA2P, A1Q与A2Q6.双曲线—ab22 2.「一 x y8.椭圆 - q=1(a>b>0),点P为其上一点,F i、F2为椭圆的焦点,/ F1PF2的外角平分线为1,点a bF2关于1的对称点为Q, F2Q交1于点R(1)当P点在椭圆上运动时,求R形成的轨迹方程;(2)设点R形成的曲线为C,直线1: y=k(x+J2a)与曲线C相交于A、B两点,当^ AOB的面积取得最大值时,求k的值.参考答案配套练习一、1.解析:|PF i|+|PF2|=2a,|PQ|=|PF2|,,|PF i|+|PF2|=|PF i|+|PQ|=2a,即|F i Q|=2a,.••动点Q到定点F i的距离等于定长2a,故动点Q的轨迹是圆答案:A2.解析:设交点P(x,y) ,A i(—3,0),A2(3,0),P i(X0,y o),P2(X0, —y o)A i、P i、P 共线,-一应—y—A2、P2、P 共线,x x0 x 3y Vo yx x0x 3解得x o=9,y o 型,代入得冬- 久-i,即止亡 i x x 9 49 4仅供学习与交流,如有侵权请联系网站删除谢谢6答案:C二、3.解析:由 sinC —sinB=』sinA,得 c — b=- a, 2 2・•・应为双曲线一支,且实轴长为 a ,故方程为285x+100=0.答案:4x 2+4y 2—85x+1..=.三、5.解:设过 B 、C 异于l 的两切线分别切..’于D 、E |BA|=|BD|, |PD|=|PE|, |CA|=|CE|,故 |PB|+|PC|=|BD |+|PD|+FC|=|BA|+|PE|+FC| 二|BA|+|CE|=|AB|+|CA|=6+I2=I8>6=|BC|,故由椭圆定义知,点P 的轨迹是以 B 、C 为两焦点的椭圆,以 l所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为 6.解:设 P(x o ,y o) (xw ± a),Q(x,y).「A i (—a,0),A 2(a,0).22 b 2x .2—aVJa 为2,即 b 2(-x 2)-a 2(---)2=a 2b 2yQ 点坐标为(x i , —y i ),又有 A i ( — m,0),A 2(m,0),22 2 答案:竽崇i(xJ)4.解析:设 P(x,y),依题意有 5 ,(x 5)2 y 2(x 5)2=,化简彳导P 点轨迹方程为4x 2+4y 2 -yy一八 x a由条件yx a y . x . ax . y . x . ay .x(x . a)22x a那么A i P 的方程为:y= -y I (xx i mm)A 2Q 的方程为:y=-必/-------- (x x i mm)m 2)i6x 2 * 2~ a i6y ar i(x ).3a 2 4两点,两切线交于点 P.由切线的性质知:2 2x y一 一 二i(yw0)8i 72而点P(x o ,y o )在双曲线上,化简得Q 点的轨迹方程为:a 2x 2—b 2y 2=a 4(xw ± a).7.解:⑴设P 点的坐标为(x i ,y i ),那么2n 八,2 〜2、 2 (x 1 m ). m21=1.此即为M 的轨迹方程. n(2)当mwn 时,M 的轨迹方程是椭圆.2 m 一 一 2 2e =lm__.e= ----------- , m8.解:(1)二.点F 2关于l 的对称点为Q,连接PQ,,/F 2PR=/QPR, |F 2R|=|QR|, |PQ|=|PF 2|又由于l 为/ F 1PF 2外角的平分线,故点 F i 、P 、Q 在同一直线上,设存在R(X 0,y o) ,Q(x i ,y i ),F i(— c,0),F 2(c,0).|F 1Q|=|F 2P|+|PQ|=|F 1P|+|PF 2|=2a,那么(x 1+c)2+y 12=(2a)2x 〔 c 2y 1 2得 x 1二2x .一 c,y 1=2y o .(2x o )2+(2y o )2=(2a)2, •1- x o 2+y o 2=a 2 故R 的轨迹方程为:x 2+y 2=a 2(yw 0)(2)如右图,••• S AAOB =1|QA| |OB| - sinAOB= a- sinAOB , 一 , .... 1c 当/AOB=90 时,S AAOB 最大值为-a 2. 此时弦心距|OC|二 I"2ak|1 k2 ,在 RtAAOC 中,/ AOC=45° ,|OC | | . 2ak |2 1 .3cos45 ——,k ——.22,离心率m n(ii)当mvn 时,焦点坐标为(0, 土 Jm ―n 7,准线方程为y= ±2n 2,n —2 ,离心率 m 2 2n m e= ------------- n又因点P 在双曲线上,2代入③并整理得 Jm(i )当m>n 时,焦点坐标为(土 J m ―n 2 ,0),准线方程为x=±xo又V .|OA| a1 k2 2 32 2x y7.双曲线—今=1(m>0,n>0)的顶点为A i、A2,与y轴平行的直线l交双曲线于点P、Q. m n(1)求直线A1P与A2Q交点M的轨迹方程;(2)当mwn时,求所得圆锥曲线的焦点坐标、准线方程和离心率① X ②得:y2=_ 2yi2(x2x i m。
求解轨迹方程的常用方法主要有以下几种:
参数方程法:通过引入参数,将轨迹上的点的坐标表示为参数的函数形式,然后通过给定参数的取值范围,确定轨迹上的点的位置关系。
隐式方程法:将轨迹方程中的自变量与因变量通过一个方程联系起来,形成一个隐式方程,然后通过对方程进行求解和化简,得到轨迹的几何性质。
极坐标方程法:对于某些曲线,使用极坐标系可以更方便地描述其轨迹。
通过将轨迹上的点的极坐标表示,可以得到轨迹的极坐标方程。
下面是一个例题:
例题:求解椭圆的轨迹方程。
解答:椭圆是一个平面上的闭合曲线,其定义特点是到两个焦点的距离之和恒定。
我们可以使用参数方程法来求解椭圆的轨迹方程。
假设椭圆的焦点为F1和F2,长轴长度为2a,短轴长度为2b。
取参数θ,定义点P在椭圆上的坐标为(x, y)。
那么根据椭圆的定义,可以得到以下参数方程:
x = a * cos(θ) y = b * sin(θ)
其中,θ的取值范围为0到2π。
通过给定θ的取值范围,我们可以得到椭圆上的点的坐标关系。
进一步化简参数方程,可以得到椭圆的隐式方程:
(x^2 / a^2) + (y^2 / b^2) = 1
这就是椭圆的轨迹方程,其中a和b分别为椭圆的长轴和短轴长度。
以上是求解轨迹方程的常用方法和一个椭圆轨迹方程的例题。
根据具体的问题和曲线类型,选择合适的方法进行求解和推导。
轨迹方程的求法一、知识复习轨迹方程的求法常见的有(1)直接法;(2)定义法;(3)待定系数法(4)参数法(5)交轨法;(6)相关点法注意:求轨迹方程时注意去杂点,找漏点.一、知识复习例1:点P(-3,0)是圆x2+y2-6x-55=0内的定点,动圆M与已知圆相切,且过点P,求圆心M的轨迹方程。
例2、如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动.设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=,2,241+=+y y x 代入方程x 2+y 2-4x -10=0,得-10=02442()24(22+⋅-++x y x 整理得:x 2+y 2=56,这就是所求的轨迹方程.例3、如图, 直线L 1和L 2相交于点M,L 1⊥L 2, 点N ∈L 1. 以A, B 为端点的曲线段C 上的任一点到L 2的距离与到点N 的距离相等. 若∆AMN 为锐角三角形, |AM|= , |AN| = 3, 17且|BN|=6. 建立适当的坐标系,求曲线段C 的方程.解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点。
依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点。
设曲线段C 的方程为,)0,(),0(22>≤≤>=y x x x p px y B A 其中x A,x B 分别为A ,B 的横坐标,P=|MN|。
)2(922()1(172)2(3||,17||)0,2(),0,2(22=+-=++==-A A A A px px px px AN AM pN p M 得由所以由①,②两式联立解得。
再将其代入①式并由p>0解得p x A 4=⎩⎨⎧⎩⎨⎧====2214A A x p x p 或因为△AMN 是锐角三角形,所以,故舍去Ax p >2⎩⎨⎧==22Ax p ∴p=4,x A =1由点B 在曲线段C 上,得。
42||=-=pBN x B 综上得曲线段C 的方程为)0,41(82>≤≤=y x x y 解法二:如图建立坐标系,分别以l 1、l 2为轴,M 为坐标原点。
作AE ⊥l 1,AD ⊥l 2,BF ⊥l 2垂足分别为E 、D 、F 设A(x A , y A )、B(x B , y B )、N(x N , 0)依题意有)0,63)(2(8}0,,)(|),{(),(6||||4||||||||||22||||||3|||||22222222>≤≤-=>≤≤=+-====++=+=∆=+======y x x y C y x x x x y x x y x P C y x P NB BE x AE AM ME EN ME x AMN DA AM DM y AN DA ME x B A N B N A A 的方程故曲线段属于集合上任一点则由题意知是曲线段设点为锐角三角形故有由于例4、已知两点以及一条直线:y =x ,设长为的线段AB 在直线上移动,)2,0(),2,2(Q P -ι2λ求直线PA 和QB 交点M 的轨迹方程.解:PA 和QB 的交点M (x ,y )随A 、B 的移动而变化,故可设,)1,1(),,(++t t B t t A 则PA :QB :),2)(2(222-≠++-=-t x t t y ).1(112-≠+-=-t x t t y 消去t ,得.082222=+-+-y x y x 当t =-2,或t =-1时,PA 与QB 的交点坐标也满足上式,所以点M 的轨迹方程是.0822222=+--+-y x x y x例5、设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.解法一:设M (x ,y ),直线AB 的方程为y =kx +b 由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+(2kb -4p )x +b 2=0所以x 1x 2=,y 1y 2=,22kb kpb 4由OA ⊥OB ,得y 1y 2=-x 1x 2所以=-, b =-4kpkpk422kb 故y =kx +b =k (x -4p ), 得x 2+y 2-4px =0(x ≠0)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设A (x 1,y 1),B (x 2,y 2),M (x ,y )依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x yx y px y px y ①-②得(y 1-y 2)(y 1+y 2)=4p (x 1-x 2)若x 1≠x 2,则有⑥ ①×②,得y 12·y 22=16p 2x 1x 2 ③代入上式2121214y y px x y y +=--有y 1y 2=-16p 2⑦⑥代入④,得 ⑧ ⑥代入⑤,得所以yxy y p -=+214py x y y x x y y y y p442111121--=--=+211214)(44y px y y p y y p --=+即4px -y 12=y (y 1+y 2)-y 12-y 1y 2 ⑦、⑧代入上式,得x 2+y 2-4px =0(x ≠0)当x 1=x 2时,AB ⊥x 轴,易得M (4p ,0)仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0(x ≠0)它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.①②③④⑤|轨 迹 方 程(练习1)1.(08、山东文22)已知曲线:所围成的封闭图形的面积为1C ||||1(0)x y a b a b+=>>为以曲线与坐1C 2C 1C 标轴的交点为顶点的椭圆.(1)求椭圆的标准方程;2C (2)设是过椭圆中心的任意弦,是线段的AB 2C L AB 垂直平分线,是上异于椭圆中心的点.M L ①若=λ(为坐标原点),当点在椭圆上||MO ||OA O A 2C 运动时,求点的轨迹方程;M ②若是与椭圆的交点,求的面积的最小值.M L 2C AMB ∆解:(1)由题意得2ab ⎧=⎪=⇒4522==b a ,椭圆方程:=1.⇒2254x y +(2)若AB 所在的斜率存在且不为零,设AB 所在直线方程为y =kx (k≠0),A().A A y x ,①由22154,x y y kx ⎧+=⎪⎨⎪=⎩⇒2222220204545A A k x y k k ==++,.⇒2222220(1)||45AAk OA x y k +=+=+设M (x ,y),由|MO|=λ|OA|(λ≠0)|MO|2=λ2|OA|2.⇒⇒2222220(1)45k x y kλ++=+因为L 是AB 的垂直平分线,所以直线L 的方程为y =k =,代入上式有:1x k -⇒x y-,由,22222222222220(1)20()4545x x y y x y x y x yλλ+++==++⨯022≠+y x ⇒2225420x y λ+=当k =0或不存时,上式仍然成立.,综上所述,M 的轨迹方程为,(λ0).22245x y λ+=≠②当k 存在且k 0时,|OA|2=.≠2222220204545AA k x y k k==++,⇒222220(1)45A A k x y k ++=+由.221541x y y xk ⎧+=⎪⎪⎨⎪=-⎪⎩⇒2222220205454M M k x y k k ==++,⇒22220(1)||54k OMk +=+=.⇒222222111120(1)20(1)4554k k OAOMk k +=+++++209≥.222119||||20OA OB OA OM≤+=⨯⇒||||OB OA ⨯940=≥,||||221OB OA S AMB ⨯⨯⨯=∆||||OB OA ⨯940当且仅当4+5k 2=5+4k 2时,即k =1时等号成立.±当;1400229AMB k S ∆==⨯=>,当k 不存在时,.140429AMB S ∆==>综上所述,的面积的最小值为.AMB ∆4092.(07、江西理21)设动点P 到点(10)A -,和(10)B ,的距离分别为1d 和2d ,2APB θ∠=,且存在常数(01)λλ<<,使得212sin d d θλ=.(1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)过点B 作直线与双曲线C 的右支于M N ,两点,试确定λ的范围,使·=0,OM ON 其中点O 为坐标原点.解:(1)在PAB △中,2AB =,即222121222cos 2d d d d θ=+-,2212124()4sin d d d d θ=-+,即122d d -==<(常数),点P 的轨迹C 是以A B ,为焦点,实轴长2a =的双曲线,方程为:2211x y λλ-=-.(2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.即2111101λλλλλ-=⇒+-=⇒=-,因为01λ<<,所以λ=.②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得:2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦,由题意知:2(1)0k λλ⎡⎤--≠⎣⎦21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x k λλλλ--+=--⇒22212122(1)(1)(1)k y y k x x k λλλ=--=--.⇒由·=0,且M N ,在双曲线右支上,OM ON所以2121222122212(1)0(1)2101131001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>⎪⎪⎪+-+>⇒⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩.由①②知.32215<≤-λ3.(09、海南)已知椭圆的中心为直角坐标系的原点,焦点在轴上,它的一个C xOy x 顶点到两个焦点的距离分别是7和1.(1)求椭圆的方程;(2)若为椭圆上的动点,C P C M 为过且垂直于轴的直线上的点,(e 为椭圆C 的离心率),求点的轨迹方P x 2OP e OM=M 程,并说明轨迹是什么曲线.解:(Ⅰ)设椭圆长半轴长及分别为a ,c .由已知得a =4,c =3椭圆C 的⎩⎨⎧=+=-71c a c a ⇒⇒方程为.221167x y +=(2)设M (x ,y ),P (,).0x 0y 其中∈[-4,4],=x .有……①0x 0x 22001167x y +=由得:=.OP e OM=2240022x y e x y +=+169故22220016()9()x y x y +=+【下面是寻找关系式=f (x ,y ),=g (x ,y )0x 0y 的过程】又……………………………………②⎪⎩⎪⎨⎧-==167112220220x y xx ②式代入①:并整理得:,所以点M 的轨迹是两条平行于x 22001167x y +=44)y x =-≤≤轴的线段.轨 迹 方 程(练习2)4.(09、重庆理)已知以原点O 为中心的椭圆的一条准线方程为y =e =M 是椭圆上的动点.(1)若C 、D 的坐标分别是(0,√3)、(0,-√3),求·的最大值;||MC ||MD (2)如图,点A 的坐标为(1,0),点B 是圆221x y +=上的点,点N 是点M(椭圆上的点)在x 轴上的射影,点Q 满足条件:=+,·=0.求线段QB 的中点P 的轨迹方程.OQ OM ON QA BA解:(1)设椭圆方程为:22221x y a b +=(a >b >0).准线方程y =,e =,c a 2a c ⇒2=a 32=c 1=⇒b 椭圆方程为:2214y x +=.所以:C 、D 是椭圆2214y x +=的两个焦点+=4.·≤⇒⇒||MC ||MD ||MC ||MD ,当且仅当=,即点M 的坐标为(1,0)±时上式取等号·的最大42||||(2=+MD MC ||MC ||MD ⇒||MC ||MD 值为4.(2)设M(,),(,)m m B B x y B x y ,(,)Q Q Q x y ,N()0,m x ,.⇒4422=+m m y x 122=+B B y x 由=+OQ OM ON,⇒m Q x x 2=mQ y y =………①⇒4)2(2222=+=+m m Q Qy x y x 由·=0QA BA ()·()=()()+=0⇒Q Q y x --,1B B y x --,1Q x -1B x -1B Q y y …………②⇒=+B Q B Q y y x x 1-+B Q x x 记P 点的坐标为(,),因为P 是的中点P x P y BQ ,⇒B Q P x x x +=2BQ P y y y +=2=⇒2222)2()2(B Q B Q P P y y x x y x +++=+)22(412222B Q B Q B Q B Q y y x x y y x x +++++==)]1(25[41-++B Q x x )245(41-+P x ⇒P P P x y x +=+4322动点P 的方程为:. ⇒121(22=+-y x5.(09、安徽)已知椭圆+=1(a >b >0)的离心率为.以原点为圆心,以椭圆短半轴长为半径的圆22a x 22by 33与直线y =x +2相切.(1)求a 与b 的值;(2)设该椭圆的左,右焦点分别为和,直线过且与x 轴垂直,动直线与y 轴垂直,交于点p.1F 2F 1L 2F 2L 2L 1L 求线段的垂直平分线与直线的交点M 的轨迹方程,并指明曲线类型1PF 2L解:(1)e ==.又圆心(0,0)到直线y =x +2的距离d =半径b =,33⇒22a b 3222112+∴=2,=3.2b 2a 12322=+y x (2)(-1,0)、(1,0),由题意可设P (1,t )(t ≠0).那么线段的中点为N (0,).1F 2F 1PF 2t 的方程为:y =t ,设M ()是所求轨迹上的任意点.2L M M y x , 【下面求直线MN 的方程,然后与直线的方程联立,求交点M 的轨迹方程】2L 直线的斜率k =,∴线段的中垂线MN 的斜率=-.1PF 2t 1PF t2所以:直线MN 的方程为:y -=-x .由,2t t 2⎪⎩⎪⎨⎧+-==22t x t y t y ⇒⎪⎩⎪⎨⎧=-=t y t x MM 42消去参数t 得:,即:M M x y 42-=,其轨迹为抛物线(除原点).x y 42-= 又解:由于=(-x ,-y ),=(-x ,-y ).∵·=0,MN 2t 1PF 2t MN 1PF ∴,消参数t 得:(x ≠0),其轨迹为抛物线(除原点).⎪⎩⎪⎨⎧==---ty y t x t x 0)2(·)2,(,x y 42-=6.(07湖南理20)已知双曲线的左、右焦点分别为,,过点的动直线与双曲线相交于两222x y -=1F 2F 2F A B ,点.【直接法求轨迹】(1)若动点满足(其中为坐标原点),求点的轨迹方程;M 1111F M F A FBF O =++ O M (2)在轴上是否存在定点,使·为常数?若存在,求出点的坐标;若不存在,请说明理由.x C CA CB C解:(1)由条件知,,设,.设,则1(20)F -,2(20)F ,11()A x y ,22()B x y ,()M x y ,,,,1(2)F M x y =+ ,111(2)F A x y =+ ,1221(2)(20)F B x y F O =+= ,,,由1111F M F A F B F O =++ ⇒121226x x x y y y +=++⎧⎨=+⎩的中点坐标为.⇒12124x x x y y y+=-⎧⎨+=⎩⇒AB 422x y -⎛⎫ ⎪⎝⎭,当不与轴垂直时,,AB x 1212024822y y y y x x x x --==----即.1212()8y y y x x x -=--又因为两点在双曲线上,所以,,两A B ,22112x y -=22222x y -=式相减得,即.12121212()()()()x x x x y y y y -+=-+1212()(4)()x x x y y y --=-将代入上式,化简得.1212()8y y y x x x -=--22(6)4x y --=当与轴垂直时,,求得,也满足上述方程.AB x 122x x ==(80)M ,所以点的轨迹方程是.M 22(6)4x y --=(2)假设在轴上存在定点,使·为常数.x (0)C m ,CA CB 当不与轴垂直时,设直线的方程是.AB x AB (2)(1)y k x k =-≠±代入有.222x y -=2222(1)4(42)0k x k x k -+-+=则是上述方程的两个实根,所以,,12x x ,212241k x x k +=-2122421k x x k +=-于是·CA CB 22221212(1)(2)()4k x x k m x x k m =+-++++22222222(1)(42)4(2)411k k k k m k m k k +++=-++--.222222(12)2442(12)11m k m m m m k k -+-=+=-++--因为·是与无关的常数,所以,即,此时·=-1.CA CB k 440m -=1m =CA CB 当与轴垂直时,点的坐标可分别设为,,AB xA B ,(2(2,此时·=(1,√2)·(1,-√2)=-1.故在轴上存在定点,使·为常数.CA CB x (10)C ,CA CB。