最新2019年高中数学单元测试试题《坐标系与参数方程》专题模拟考试(含标准答案)
- 格式:doc
- 大小:400.00 KB
- 文档页数:8
2019年高中数学单元测试试题 坐标系与参数方程专题(含答案)学校:__________ 考号:__________一、填空题1.直线2,34x lt y t=-+⎧⎨=+⎩(t 为参数,l 为常数)恒过定点 ▲ .2. 已知曲线22x ty t=⎧⎨=-⎩(t 为参数)与x 轴,y 轴交于A 、B 两点,点C 在曲线2cos 4sin ρθθ=--上移动,ABC ∆面积的最大值为 14 .3.已知点(m ,n)在椭圆8x 2+3y 2=24上,则2m +4的取值范围是____________. 4.在平面直角坐标系xOy 中,若直线121,:x s l y s =+⎧⎨=⎩(s 为参数)和直线2,:21x at l y t =⎧⎨=-⎩(t 为参数)平行,则常数a 的值为_____(2013年高考湖南(文))5.已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为____________.(2013年高考广东卷(文))(坐标系与参数方程选做题)6.在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为cos 4ρθ=的直线与曲线23x ty t⎧=⎪⎨=⎪⎩(t 为参数)相交于,A B 两点,则______AB =(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案)) 7.参数方程⎩⎨⎧=-=θθθ2s i n s i n c os y x (θ为参数)的普通方程是_______.)11(12≤≤--=y y x ;8.在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线4cos ρθ=于A 、B 两点,则AB =______________________.9.极坐标方程4cos ρθ=化为直角坐标方程是10.曲线⎩⎨⎧+=-=1212t y t x (t 为参数)的焦点坐标是_____.(2002上海理,8)二、解答题11.在极坐标系中,直线l 的方程为2cos sin 0t ρθρθ++=,圆C 的方程:2ρ=,若圆C 上有且仅有三个点到直线l 的距离为1,求实数t 的值.12.以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),已知点A 的直角坐标为)6,2(-,点B 的极坐标为)2,4(π,直线l 过点A 且倾斜角为4π,圆C 以点B 为圆心,4为半径,试求直线l 的参数方程和圆C 的极坐标方程.13.已知极坐标系的极点O 与直角坐标系的原点重合,极轴与x 轴的正半轴重合,曲线C 1:cos()4ρθπ+=与曲线C 2:24,4x t y t ⎧=⎨=⎩(t ∈R )交于A 、B 两点.求证:OA ⊥OB .14. 在平面直角坐标系中,动点P 的坐标(x,y )满足方程组:⎪⎩⎪⎨⎧-=+=--θθsin )22(cos )22(kk kk y x(1) 若k 为参数,θ为常数(Z k k ∈≠,2πθ),求P 点轨迹的焦点坐标。
2019年高中数学单元测试试题 坐标系与参数方程专题(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.曲线⎩⎨⎧==θθsin cos y x (θ为参数)上的点到两坐标轴的距离之和的最大值是( )A .21 B .22 C .1 D .2(2002天津理,1)第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题2.已知过曲线3cos ,(4sin x y θθθ=⎧⎨=⎩为参数,0)θπ≤≤上一点P 与原点O 的直线OP 的倾斜角为4π,则点P 的极坐标为 . 3.极坐标方程分别为2cos ρθ=和sin ρθ=的两个圆的圆心距为 ; 4. 参数方程2,(cos 3tan ,x y θθθ⎧=⎪⎨⎪=⎩为参数)化为普通方程为___________.5.在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________(2013年高考上海卷(理))6.已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫⎪⎝⎭, 则|CP | =______.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))7.在极坐标系中,O 是极点,点2),(4,)63A B ππ,则以线段OA 、OB 为邻边的平行四边形的面积是 。
8.已知曲线C 的极坐标方程是4cos ρθ=,那么它的直角坐标方程是 ▲ .9.在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线4cos ρθ=于A 、B 两点,则AB =______________________.10.以直角坐标系的原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位。
已知直线的极坐标方程为()4R πθρ=∈,它与曲线12cos 22sin x y αα=+⎧⎨=+⎩(α为参数)相交于两点A 和B ,则|AB|=_______. 11.若直线3x+4y+m=0与圆 ⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)没有公共点,则实数m 的取值范围是 . (,0)(10,)-∞⋃+∞(福建卷14)三、解答题12.已知直线l 的参数方程为⎩⎨⎧=+=t y tx 342(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立坐标系,若圆C 的极坐标方程为28cos 120ρρθ-+=,试求直线l 被圆C 所截的弦长.13.已知直线l 和参数方程为⎩⎨⎧-=-=224t y t x )t 为参数(,P 是椭圆1422=+y x 上任意一点,求点P 到直线l 的距离的最大值。
2019年高中数学单元测试试题 坐标系与参数方程专题(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.椭圆⎩⎨⎧+-=+=ϕϕsin 51cos 33y x 的两个焦点坐标是( )A .(-3,5),(-3,-3)B .(3,3),(3,-5)C .(1,1),(-7,1)D .(7,-1),(-1,-1)(1996全国理,7)2.下列以t 为参数的参数方程所表示的曲线中,与xy =1所表示的曲线完全一致的是( )(1999上海理,14)A .⎪⎩⎪⎨⎧==-2121t y t xB .⎪⎩⎪⎨⎧==||1||t y t xC .⎩⎨⎧==t y tx sec cosD .⎩⎨⎧==ty tx cot tan3.曲线⎩⎨⎧==θθsin cos y x (θ为参数)上的点到两坐标轴的距离之和的最大值是( )A .21 B .22 C .1 D .2(2002天津理,1)第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题4.在平面直角坐标系xoy 中,若,3cos ,:(t )C :2sin x t x l y t a y ϕϕ==⎧⎧⎨⎨=-=⎩⎩为参数过椭圆()ϕ为参数的右顶点,则常数a 的值为________.(2013年高考湖南卷(理))5.(理)已知两曲线的参数方程分别为sin x y θθ⎧=⎪⎨=⎪⎩(0≤θ <π)和25()4x t t R y t⎧=⎪∈⎨⎪=⎩,则它们的交点坐标为 .(文)若(02x ∈π),,则函数sin cos y x x x =-的单调递增区间是 .6.曲线C 1的极坐标方程(3cos 4sin )5ρθθ-=,曲线C 2的参数方程为2cos (1sin x y ααα=-+⎧⎨=+⎩为参数),则曲线C 1和C 2的最短距离是 .2 7.极坐标方程为cos 0ρθθ-=表示的圆的半径为___________【..1 】 二 解答题8. 已知椭圆的参数方程为4cos ,5sin ,x y θθ=⎧⎨=⎩(R θ∈),则该椭圆的焦距为 .三、解答题9.已知曲线C 的极坐标方程为θρsin 6=,以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线l的参数方程为121x t y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),求直线l 被曲线C 截得的线段长度.10.已知曲线C 的极坐标方程为4sin ρθ=,以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线l的参数方程为121x t y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),求直线l 被曲线C 截得的线段长度。
2019年高中数学单元测试试题 坐标系与参数方程专题(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为 ( )A .=0()cos=2R θρρ∈和B .=()cos=22R πθρρ∈和C .=()cos=12R πθρρ∈和 D .=0()cos=1R θρρ∈和(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版)) 2.若直线y x b =-与曲线2cos ,sin x y θθ=+⎧⎨=⎩([0,2)θπ∈)有两个不同的公共点,则实数b 的取值范围为( )(A )(2- (B )[22-+ (C )(,2(22,)-∞++∞(D )(22+(2010重庆文8)3.若θ∈[0,2π],则椭圆x 2+2y 2-22x cos θ+4y sin θ=0的中心的轨迹是( )(1996上海理,7)4.椭圆⎩⎨⎧+-=+=ϕϕsin 51cos 33y x 的两个焦点坐标是( )A .(-3,5),(-3,-3)B .(3,3),(3,-5)C .(1,1),(-7,1)D .(7,-1),(-1,-1)(1996全国理,7)第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题5.已知过曲线3cos ,(4sin x y θθθ=⎧⎨=⎩为参数,0)θπ≤≤上一点P 与原点O 的直线OP 的倾斜角为4π,则点P 的极坐标为 . 6.直线2,34x lt y t =-+⎧⎨=+⎩(t 为参数,l 为常数)恒过定点 ▲ .7.已知曲线C 的方程为28(8x t t y t⎧=⎨=⎩为参数),过点(2,0)F 作一条倾斜角为4π的直线交曲线C 于A 、B 两点,则AB 的长度为8.设曲线C 的参数方程为2x ty t=⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线c 的极坐标方程为__________(2013年高考江西卷(理))(坐标系与参数方程选做题)9.在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s=+⎧⎨=-⎩(s 为参数)和C :22,x t y t=+⎧⎨=⎩(t 为参数),若l 与C 相交于A 、B 两点,则AB = .(坐标系与参数方程选做题)10.若直线3x+4y+m=0与圆 ⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)没有公共点,则实数m 的取值范围是 . (,0)(10,)-∞⋃+∞(福建卷14)三、解答题11.已知曲线C 的极坐标方程为θρsin 6=,以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线l的参数方程为121x t y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),求直线l 被曲线C 截得的线段长度.12.已知A 是曲线12sin ρθ=上的动点,B 是曲线12cos()6πρθ=-上的动点,试求AB 的最大值.13.在极坐标系中,已知圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a=0相切,求实数a 的值。
2019年高中数学单元测试试题 坐标系与参数方程专题(含答案)学校:__________考号:__________一、填空题1.1()sin()4R ρπθ=∈+的距离为__________.2.已知直线l 的参数方程是445()335x t t R y t⎧=+⎪⎪∈⎨⎪=-+⎪⎩,则l 在y 轴上的截距为___6-______. 3.在极坐标系中,圆C 的方程为2cos a ρθ=,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为3242x t y t =+⎧⎨=+⎩(t 为参数),若直线l 与圆C 相切,求实数a 的值.4.参数方程⎩⎨⎧=-=θθθ2s i n s i n c os y x (θ为参数)的普通方程是_______.)11(12≤≤--=y y x ;5.曲线C 1的极坐标方程(3cos 4sin )5ρθθ-=,曲线C 2的参数方程为2cos (1sin x y ααα=-+⎧⎨=+⎩为参数),则曲线C 1和C 2的最短距离是 .26.曲线22223,151t x t t y t ⎧=⎪⎪+⎨-⎪=⎪+⎩(t 为参数)的普通方程是 . 【250(03)x y x +-=≤<】 二、解答题7.在平面直角坐标系xoy 中,判断曲线C:为参数)θθθ(sin cos 2⎩⎨⎧==y x 与直线⎩⎨⎧-=+=ty tx l 121:(t 为参数)是否有公共点,并证明你的结论8.以直角坐标系的原点O 为极点,x 轴的正半轴为极轴.已知点P 的直角坐标为(1,-5),点M 的极坐标为(4,π2 ).若直线l 过点P ,且倾斜角为 π3 ,圆C 以M 为圆心、4为半径.(1)求直线l 的参数方程和圆C 的极坐标方程;(5分) (2)试判定直线l 和圆C 的位置关系.(5分)9.已知A 是曲线12sin ρθ=上的动点,B 是曲线12cos()6πρθ=-上的动点,试求AB的最大值.10.若两条曲线的极坐标方程分别为1ρ=与2cos 3πρθ⎛⎫=+ ⎪⎝⎭,它们相交于A,B 两点,求直线AB 的极坐标方程 11.已知直线l 的参数方程:12x t y t=⎧⎨=+⎩(t 为参数)和圆C 的极坐标方程: )4sin(22πθρ+=.(1)将直线l 的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程; (2)判断直线l 和圆C 的位置关系.12.P 为曲线1C :1cos sin x y θθ=+⎧⎨=⎩(θ为参数)上一点,求它到直线2C :122x ty =+⎧⎨=⎩(t 为参数)距离的最小值.13.已知圆的参数方程为2cos 2sin x y θθ⎧=+⎪⎨=⎪⎩(θ为参数),在直角坐标系中,P 是圆C 与y 轴正半轴的交点(1)求圆的标准方程(2)若以圆心C 为极点,x 轴的正半轴为极轴建立极坐标系,求过点P 的圆C 的切线的极坐标方程 14.已知曲线:C 3cos 2sin x y θθ=⎧⎨=⎩,直线:l (cos 2sin )12ρθθ-=.⑴将直线l 的极坐标方程化为直角坐标方程;⑵设点P 在曲线C 上,求P 点到直线l 距离的最小值.15.若两条曲线的极坐标方程分别为1=ρ与θρsin 2=,它们相交于B A ,两点,求线段AB 的长.16.在极坐标系中,A 为曲线22cos 30ρρθ+-=上的动点,B 为直线cos sin 70ρθρθ+-=上的动点,求AB 的最小值。
2019年高中数学单元测试试题 坐标系与参数方程专题(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.椭圆⎩⎨⎧+-=+=ϕϕsin 51cos 33y x的两个焦点坐标是( )A .(-3,5),(-3,-3)B .(3,3),(3,-5)C .(1,1),(-7,1) D .(7,-1),(-1,-1)(1996全国理,7)第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题2.1()sin()4R ρπθ=∈+的距离为__________.3.(理)已知圆的极坐标方程为:2cos 604πρθ⎛⎫--+= ⎪⎝⎭,若点P(x ,y)在该圆上,则x +y 的最大值为____________.11、(文)已知函数3()128f x x x =-+在区间[3,3]-上的最大值与最小值分别为,M m ,则=-m M ____________.4.已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为____________.(2013年高考广东卷(文))(坐标系与参数方程选做题)5.设曲线C 的参数方程为2x ty t=⎧⎨=⎩(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线c 的极坐标方程为__________(2013年高考江西卷(理))(坐标系与参数方程选做题) 6.在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于_________.(2013年高考北京卷(理))7.在极坐标系中,曲线cos 1ρθ=+与cos 1ρθ=的公共点到极点的距离为__________(2013年高考上海卷(理))8.已知曲线C 的参数方程为24(x t t y t⎧=⎨=⎩为参数),若点(,2)P m 在曲线C 上,则m = ▲ .9.二次曲线⎩⎨⎧==θθsin 3cos 5y x (θ为参数)的左焦点坐标是_____.(1997上海)三、解答题10.已知A 是曲线12sin ρθ=上的动点,B 是曲线12cos()6πρθ=-上的动点,试求线段AB 长的最大值.11.已知A 是曲线ρ=3cos θ上任意一点,求点A 到直线ρcos θ=1距离的最大值和最小值12.已知曲线C 的极坐标方程为4sin ρθ=,以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线l的参数方程为121x t y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),求直线l 被曲线C 截得的线段长度。
2019年高中数学单元测试试题 坐标系与参数方程专题(含答案)学校:__________考号:__________一、填空题1.点P 的直角坐标为,点P 的一个极坐标为 _▲___. 2.1()sin()4R ρπθ=∈+的距离为__________.3.在平面直角坐标系xOy 中,若直线121,:x s l y s =+⎧⎨=⎩(s 为参数)和直线2,:21x at l y t =⎧⎨=-⎩(t 为参数)平行,则常数a 的值为_____(2013年高考湖南(文))4.在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线4cos ρθ=于A 、B 两点,则AB =______________________.5.若直线3x+4y+m=0与圆 ⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)没有公共点,则实数m 的取值范围是 . (,0)(10,)-∞⋃+∞(福建卷14)二、解答题6.已知12O O 和的极坐标方程分别是2cos 2sin a ρθρθ==和(a 是常数).(1)分别将两个圆的极坐标方程化为直角坐标方程; (2a 求的值。
7.已知曲线C 的极坐标方程为4sin ρθ=,以极点为原点,极轴为x 轴的非负半轴建立平面直角坐标系,直线l的参数方程为121x t y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),求直线l 被曲线C 截得的线段长度。
8.已知曲线C 的极坐标方程是)4cos(2πθρ+=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是:⎩⎨⎧+-=-=ty tx 3141(为参数t ),求直线l 与曲线C 相交所成的弦的弦长.9.在极坐标系中,P 是曲线θρsin 12=上的动点,Q 是曲线)6cos(12πθρ-=上的动点,试求PQ 的最大值10.若两条曲线的极坐标方程分别为1=ρ与⎪⎭⎫ ⎝⎛+=3cos 2πθρ,它们相交于B A ,两点,求线段AB 的长.11.已知圆1O 和圆2O 的极坐标方程分别为2ρ=,2πcos()24ρθ--=.(1)把圆1O 和圆2O 的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.12.已知A 是曲线12sin ρθ=上的动点,B 是曲线12cos()6πρθ=-上的动点,试求AB 的最大值.13.已知椭圆的长轴长为6,焦距2421=F F ,过椭圆左焦点F 1作一直线,交椭圆于两点M 、N ,设)0(12παα<≤=∠M F F ,当α为何值时,MN 与椭圆短轴长相等?(用极坐标或参数方程方程求解)14.在极坐标系中,圆C :10cos ρθ=和直线:3cos 4sin 300l ρθρθ--=相交于A 、B 两点,求线段AB 的长.15.在极坐标系中,圆C 的方程为)4ρθπ=+,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为,12x t y t =⎧⎨=+⎩(t 为参数),判断直线l 和圆C 的位置关系.16.已知某圆的极坐标方程为:ρ 2-42ρcos(θ-4π)+6=0. (1)将极坐标方程化为普通方程;(2)若点P (x ,y )在该圆上,求x +y 的最大值和最小值.17.从极点O 作直线与另一直线:cos 4l ρθ=相交于点M ,在OM 上取一点P ,使12OM OP ⋅=.(Ⅰ)求点P 的轨迹方程;(Ⅱ)设R 为l 上的任意一点,试求RP 的最小值.18.已知曲线1C 的极坐标方程为cos 13πρθ⎛⎫-=- ⎪⎝⎭,曲线2C的极坐标方程为4πρθ⎛⎫=-⎪⎝⎭,判断两曲线的位置关系。
2019年高中数学单元测试试题坐标系与参数方程专题(含答案)学校:__________第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.直线l的参数方程是x=1+2t()y=2-tt R⎧∈⎨⎩,则l的方向向量是d可以是【答】(C)(A)(1,2) (B)(2,1) (C)(-2,1) (D)(1,-2)第II卷(非选择题)请点击修改第II卷的文字说明二、填空题2.在极坐标系中,圆4sinρθ=的圆心的极坐标是▲.3.圆cos sin)ρθθ+的圆心的极坐标是(1,)4π.4.在平面直角坐标系xoy中,以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,则点(1,化为极坐标为_______________.5.已知点(m,n)在椭圆8x2+3y2=24上,则2m+4的取值范围是____________.6.已知曲线C的参数方程为x ty t⎧=⎪⎨=⎪⎩(t为参数),C在点()1,1处的切线为l,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,则l的极坐标方程为_____________.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD版))(坐标系与参数方程选讲选做题)7.在平面直角坐标系中,已知直线l 与曲线C 的参数方程分别为l :1,1x s y s=+⎧⎨=-⎩(s 为参数)和C :22,x t y t=+⎧⎨=⎩(t 为参数),若l 与C 相交于A 、B 两点,则AB = .(坐标系与参数方程选做题)8.曲线C 1的极坐标方程(3cos 4sin )5ρθθ-=,曲线C 2的参数方程为2cos (1sin x y ααα=-+⎧⎨=+⎩为参数),则曲线C 1和C 2的最短距离是 .2 9.在极坐标系中,已知圆2cos ρθ=与直线3cos 4sin 0a ρθρθ++= 相切,求实数a 的值。
10.已知曲线C 的参数方程为24(x t t y t⎧=⎨=⎩为参数),若点(,2)P m 在曲线C 上,则m = ▲ .11.已知曲线C 的极坐标方程是4cos ρθ=,那么它的直角坐标方程是 ▲ .三、解答题12.在极坐标系下,已知圆θθρsin cos :+=O 和直线:l 22)4sin(=-πθρ。
2019年高中数学单元测试试题坐标系与参数方程专题(含答案)学校:__________第I卷(选择题)请点击修改第I卷的文字说明一、选择题1.直线3y x=+D的圆,([0,2))1xyθθπθ⎧=⎪∈⎨=⎪⎩交于A、B两点,则直线AD与BD的倾斜角之和为()(A)76π(B)54π(C)43π(D)53π(2010重庆理)2.曲线⎩⎨⎧==θθsincosyx(θ为参数)上的点到两坐标轴的距离之和的最大值是()A.21B.22C.1 D.2(2002天津理,1)第II卷(非选择题)请点击修改第II卷的文字说明二、填空题3.在极坐标系中,曲线ρθ=和cos1ρθ=相交于点,A B,则线段AB的中点E 到极点的距离是 .4.圆cos sin )ρθθ+的圆心的极坐标是 (1,)4π.5. 参数方程2,(cos 3tan ,x y θθθ⎧=⎪⎨⎪=⎩为参数)化为普通方程为___________.6.在平面直角坐标系xoy 中,以直角坐标系原点O 为极点,x 轴的正半轴为极轴建立极坐标系,则点(1,化为极坐标为_______________.7.圆锥曲线22x t y t ⎧=⎨=⎩(t 为参数)的焦点坐标是____________ . (2013年高考陕西卷(文))(坐标系与参数方程选做题)8.(理)已知两曲线的参数方程分别为sin x y θθ⎧=⎪⎨=⎪⎩(0≤θ <π)和25()4x t t R y t⎧=⎪∈⎨⎪=⎩,则它们的交点坐标为 .(文)若(02x ∈π),,则函数sin cos y x x x =-的单调递增区间是 .9.在极坐标系中,已知圆2cos ρθ=与直线3cos 4sin 0a ρθρθ++= 相切,求实数a 的值。
10.已知曲线C 的极坐标方程是4cos ρθ=,那么它的直角坐标方程是 ▲ .11.直线23x a y t ⎧=+⎪⎨⎪=⎩(t 为参数,a 为常数且0>a )被以原点为极点,x 轴的正半轴为极轴,方程为θρcos 2a =的曲线所截,求截得的弦长.12.在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线4cos ρθ=于A 、B 两点,则AB =______________________.三、解答题13.求经过极点9(0,0),(6,),)24O A B ππ三点的圆的极坐标方程.14.已知直线l k k C l 若直线和圆),0)(4cos(2:4)4sin(:≠+⋅==-πθρπθρ上的点到圆C 上的点的最小距离等于2。
2019年高中数学单元测试试题 坐标系与参数方程专题(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.若直线y xb =-与曲线2cos ,sin x y θθ=+⎧⎨=⎩([0,2)θπ∈)有两个不同的公共点,则实数b的取值范围为( )(A )(2- (B )[22-+ (C )(,2(22,)-∞++∞(D )(22+(2010重庆文8)2.下列以t 为参数的参数方程所表示的曲线中,与xy =1所表示的曲线完全一致的是( )(1999上海理,14)A .⎪⎩⎪⎨⎧==-2121t y t xB .⎪⎩⎪⎨⎧==||1||t y t xC .⎩⎨⎧==t y t x sec cosD .⎩⎨⎧==t y tx cot tan3.点P (1,0)到曲线⎩⎨⎧==ty t x 22(其中参数t ∈R )上的点的最短距离为( )A .0B .1C .2D .2(2002全国理,6)第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题4.1()sin()4R ρπθ=∈+的距离为__________.5. 已知曲线22x ty t=⎧⎨=-⎩(t 为参数)与x 轴,y 轴交于A 、B 两点,点C 在曲线2cos 4sin ρθθ=--上移动,ABC ∆面积的最大值为 14 .6.在平面直角坐标系xoy 中,以直角坐标系原点O 为极点,x 轴的正半轴为极轴建立极坐标系,则点(1,化为极坐标为_______________.7.(理)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标系是 _ . (文)曲线xy e =在点A (0,1)处的切线斜率为 _ .8.在平面直角坐标系xOy 中,若直线121,:x s l y s =+⎧⎨=⎩(s 为参数)和直线2,:21x at l y t =⎧⎨=-⎩(t 为参数)平行,则常数a 的值为_____(2013年高考湖南(文))9.在极坐标系中,点(2,6π)到直线ρsin θ=2的距离等于_________.(2013年高考北京卷(理))10.直线23x a y t ⎧=+⎪⎨⎪=⎩(t 为参数,a 为常数且0>a )被以原点为极点,x 轴的正半轴为极轴,方程为θρcos 2a =的曲线所截,求截得的弦长.三、解答题11.已知圆的参数方程为2cos 2sin x y θθ⎧=+⎪⎨=⎪⎩(θ为参数),在直角坐标系中,P 是圆C 与y 轴正半轴的交点(1)求圆的标准方程(2)若以圆心C 为极点,x 轴的正半轴为极轴建立极坐标系,求过点P 的圆C 的切线的极坐标方程12.已知曲线C :3x 2+4y 2-6=0(y ≥0). (Ⅰ)写出曲线C 的参数方程;(Ⅱ)若动点P(x,y)在曲线C 上,求z=x+2y 的最大值与最小值.13.在极坐标系中,O 为极点,已知两点,M N 的极坐标分别为2(4,)3π,1)4π,求OMN 的面积。
2019年高中数学单元测试试题 坐标系与参数方程专
题(含答案)
学校:
__________
第I 卷(选择题)
请点击修改第I 卷的文字说明 一、选择题
1.在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为 ( )
A .=0()cos=2R θρρ∈和
B .=
()cos=22
R π
θρρ∈和
C .=
()cos=12
R π
θρρ
∈和 D .=0()cos=1R θρρ∈和(2013年普通高
等学校招生统一考试安徽数学(理)试题(纯WORD 版))
第II 卷(非选择题)
请点击修改第II 卷的文字说明 二、填空题
2. 参数方程2,(cos 3tan ,
x y θθθ⎧
=
⎪⎨⎪=⎩为参数)化为普通方程为___________.
3.在平面直角坐标系xoy 中,以直角坐标系原点O 为极点,x 轴的正半轴为极轴建立极坐标系,则点(1,化为极坐标为_______________.
4.已知圆的极坐标方程为4cos ρθ=, 圆心为C , 点P 的极坐标为4,3π⎛⎫
⎪⎝
⎭
, 则|CP | =
______.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))
5.已知直线l 的参数方程是445
()335x t t R y t ⎧=+⎪⎪∈⎨
⎪=-+⎪⎩
,则l 在y 轴上的截距为___6-______. 6.在极坐标系中,圆C 的方程为2cos a ρθ=,以极点为坐标原点,极轴为x 轴的正半轴
建立平面直角坐标系,直线l 的参数方程为32
42x t y t =+⎧⎨=+⎩
(t 为参数),若直线l 与圆C 相
切,求实数a 的值.
7.极坐标方程4cos ρθ=化为直角坐标方程是
8.若直线3x+4y+m=0与圆 ⎩⎨
⎧+-=+=θ
θ
sin 2cos 1y x (θ为参数)没有公共点,则实数m 的取
值范围是 . (,0)(10,)-∞⋃+∞(福建卷14)
三、解答题
9.从极点O 作直线l :cos 4ρθ=相交于点M ,在OM 上取一点P ,使
12OM OP ⋅=。
⑴求点P 的轨迹方程;⑵设R 为l 上的任意一点,试求RP 的最小值.
10.若两条曲线的极坐标方程分别为ρ =l 与ρ =2cos(θ+π
3),它们相交于A ,B 两点,求线 段AB 的长.
11.在极坐标系中,圆C 的极坐标方程为2sin ρθ=,
(1)过极点的一条直线l 与圆相交于O ,A 两点,且∠︒
=45AOX ,求OA 的长。
(2)求过圆上一点)2
,2(π
P ,且与圆相切的直线的极坐标方程;
12.过点P (-3,0)且倾斜角为30°直线和曲线1,()1x t t
t y t t ⎧=+⎪⎪⎨
⎪=-
⎪⎩
为参数相交于A 、B 两点.求线段AB 的长. 2.
13.已知曲线C
的参数方程为13()x y t t ⎧
=⎪⎪⎨⎪=+⎪⎩
(t 为参数,0t >).
求曲线C 的普通方程。
【解析】本小题主要考查参数方程和普通方程的基本知识,考查转化问题的能力。
满分10分。
14.已知曲线C 的极坐标方程是2sin ρθ=,直线l 的参数方程是32,
545x t y t ⎧=-+⎪⎨⎪=⎩(t 为参
数).
(1)将曲线C 的极坐标方程化为直角坐标方程;
(2)设直线l 与x 轴的交点是M ,N 是曲线C 上一动点,求MN 的最大值.
15.在极坐标系中,圆C 的极坐标方程为2sin ρθ=,
(1)过极点的一条直线l 与圆相交于O ,A 两点,且∠︒
=45AOX ,求OA 的长.
(2)求过圆上一点)2
,2(π
P ,且与圆相切的直线的极坐标方程;
16.在极坐标系中,圆C :10cos ρθ=和直线:3cos 4sin 300l ρθρθ--=相交于A 、B 两点,求线段AB 的长.
17.在极坐标系中,圆C 的方程为)4
ρθπ=+,以极点为坐标原点,极轴为x 轴的
正半轴建立平面直角坐标系,直线l 的参数方程为,
12x t y t =⎧⎨=+⎩
(t 为参数),判断直线l 和
圆C 的位置关系.
18.设点P 在曲线sin 2ρθ=上,点Q 在曲线2cos ρθ=-上,求||PQ 的最小值.
19.以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴,且在两种坐标系中取相同的长度单位.
直线l 极坐标方程为sin()4
π
ρθ+
=,圆C 的参数方程为
3cos 5
()3sin 5x t t y t =+⎧⎨
=+⎩
其中为参数. (1)将直线l 极坐标方程化成直角坐标方程; (2)试判断直线l 与圆C 的位置关系.
20.极坐标系与直角坐标系xOy 取相同的长度单位,以原点O 为极点,以x 轴正半轴为极
轴.已知直线l 的参数方程为2,sin .
x t α⎧⎨
⎩=+tcos αy =(t 为参数).曲线C 的极坐标方程为ρ
2sin θ=8cos θ.
(1)求曲线C 的直角坐标方程;
(2)设直线l 与曲线C 交于A ,B 两点,与x 轴的交点为F ,求1|AF |+1|BF |
的值.
21.在极坐标系中,已知圆C :θρcos 22=和直线)(4
:R l ∈=ρπ
θ相交于A 、B 两
点,求线段AB 的长。
22.在平面直角坐标系xoy 中,判断曲线C:为参数)
θθθ(sin cos 2⎩⎨
⎧==y x 与直线⎩⎨⎧-=+=t
y t
x l 121:(t 为参数)是否有公共点,并证明你的结论
23.在平面直角坐标系xOy 中,过椭圆221124
y x +=在第一象限处的一点( )P x y ,分别作x 轴、y 轴的两条垂线,垂足分别为M N 、,求矩形PMON 周长最大值时点P 的坐标.
24.
已知直线的参数方程21x t
y =-⎧⎪⎨=⎪⎩(为参数),圆C 的极坐标方程:2sin 0ρθ+=.
(1)将直线的参数方程化为普通方程,圆C 的极坐标方程化为直角坐标方程; (2)在圆C 上求一点P ,使得点P 到直线的距离最小.
25.
(理)在直角坐标系xOy 中,曲线C 1的参数方程为⎩
⎪⎨⎪⎧
x =2cos α,
y =2+2sin α.(α为参数),M 是C 1上
的动点,P 点满足OM 2=,P 点的轨迹为曲线C 2. (Ⅰ)求C 2的参数方程;
(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π
3与C 1的异于极点的交
点为A ,与C 2的异于极点的交点为B ,求|AB |值.(本题满分14分) (文)设.ln 2)(x x k
kx x f --
=
(Ⅰ)若0)2(='f ,求过点(2,)2(f )的直线方程; (Ⅱ)若)(x f 在其定义域内为单调增函数,求k 的取值范围.
26.已知曲线C 1的参数方程为45cos 55sin x t
y t
=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半
轴为极轴建立极坐标系,曲线C 2的极坐标方程为2sin ρθ=. (Ⅰ)把C 1的参数方程化为极坐标方程;
(Ⅱ)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π). (2013年高考新课标1(理))选修4—4:坐标系与参数方程
27.在极坐标系中,从极点O 作直线与另一直线:cos 4l ρθ=相交于点M ,在OM 上取一点P ,使12OM OP ⋅=. (1)求点P 的轨迹方程;
(2)设R 为l 上任意一点,试求RP 的最小值. 28.选修4—4:坐标系与参数方程
已知曲线1C 的极坐标方程为cos 13πρθ⎛⎫
-
=- ⎪⎝
⎭
,曲线2C 的极坐标方程为
4πρθ⎛⎫
=-
⎪⎝
⎭
,判断两曲线的位置关系.
29.[选修4-4:坐标系与参数方程](本小题满分10分)
圆C
的参数方程为12cos ,
2sin x y θθ=+⎧⎪⎨=⎪⎩
(θ为参数),设P 是圆C 与x 轴正半轴的交点.以原点O
为极点,x 轴的正半轴为极轴建立极坐标系.设过点P 的圆C 的切线为l ,求直线l 的极坐标方程.
30.在直角坐标系xoy 中,直线l
的参数方程为3,x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)。
在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C
的方程为ρθ=。
(1)求圆C 的直角坐标方程;
(2)设圆C 与直线l 交于点,A B ,若点P 的坐标为,求||||PA PB 。