高三复习课圆锥曲线方程
- 格式:doc
- 大小:603.50 KB
- 文档页数:15
圆锥曲线一、知识结构 1.方程的曲线在平面直角坐标系中,如果某曲线C 看作适合某种条件的点的集合或轨迹 上的点与一个二元方程fx,y=0的实数解建立了如下的关系:1曲线上的点的坐标都是这个方程的解;2以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线.点与曲线的关系 若曲线C 的方程是fx,y=0,则点P 0x 0,y 0在曲线C 上⇔fx 0,y=0;点P 0x 0,y 0不在曲线C 上⇔fx 0,y 0≠0两条曲线的交点 若曲线C 1,C 2的方程分别为f 1x,y=0,f 2x,y=0,则 f 1x 0,y 0=0 点P 0x 0,y 0是C 1,C 2的交点⇔f 2x 0,y 0 =0方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没有 交点.2.圆圆的定义:点集:{M ||OM |=r },其中定点O 为圆心,定长r 为半径. 圆的方程: 1标准方程圆心在ca,b,半径为r 的圆方程是x-a 2+y-b 2=r 2圆心在坐标原点,半径为r 的圆方程是x 2+y 2=r 22一般方程当D 2+E 2-4F >0时,一元二次方程x 2+y 2+Dx+Ey+F=0叫做圆的一般方程,圆心为-2D ,-2E,半径是24F-E D 22+.配方,将方程x 2+y 2+Dx+Ey+F=0化为x+2D 2+y+2E 2=44F -E D 22+当D 2+E 2-4F=0时,方程表示一个点-2D ,-2E; 当D 2+E 2-4F <0时,方程不表示任何图形.点与圆的位置关系 已知圆心Ca,b,半径为r,点M 的坐标为x 0,y 0,则 |MC |<r ⇔点M 在圆C 内,|MC |=r ⇔点M 在圆C 上,|MC |>r ⇔点M 在圆C 内,其中|MC |=2020b)-(y a)-(x +. 3直线和圆的位置关系①直线和圆有相交、相切、相离三种位置关系 直线与圆相交⇔有两个公共点 直线与圆相切⇔有一个公共点 直线与圆相离⇔没有公共点②直线和圆的位置关系的判定 i 判别式法ii 利用圆心Ca,b 到直线Ax+By+C=0的距离d=22C Bb Aa BA +++与半径r 的大小关系来判定.3.椭圆、双曲线和抛物线基本知识4.圆锥曲线的统一定义平面内的动点Px,y到一个定点Fc,0的距离与到不通过这个定点的一条定直线l的距离之比是一个常数ee>0,则动点的轨迹叫做圆锥曲线.其中定点Fc,0称为焦点,定直线l称为准线,正常数e称为离心率.当0<e<1时,轨迹为椭圆,当e=1时,轨迹为抛物线当e>1时,轨迹为双曲线5.坐标变换坐标变换在解析几何中,把坐标系的变换如改变坐标系原点的位置或坐标轴的方向叫做坐标变换.实施坐标变换时,点的位置,曲线的形状、大小、位置都不改变,仅仅只改变点的坐标与曲线的方程.坐标轴的平移坐标轴的方向和长度单位不改变,只改变原点的位置,这种坐标系的变换叫做坐标轴的平移,简称移轴.坐标轴的平移公式设平面内任意一点M,它在原坐标系xOy中的坐标是9x,y,在新坐标系x ′O′y′中的坐标是x′,y′.设新坐标系的原点O′在原坐标系xOy 中的坐标是h,k,则x=x′+h x′=x-h1 或2y=y′+k y′=y-k公式1或2叫做平移或移轴公式.中心或顶点在h,k的圆锥曲线方程见下表.方程焦点焦线对称轴椭圆22h)-(xa+22k)-(yb=1 ±c+h,k x=±ca2+hx=hy=k 22h)-(xb+22k)-(ya=1h,±c+k y=±ca2+kx=hy=k双曲线22h)-(xa-22k)-(yb=1 ±c+h,k=±ca2+kx=hy=k 22k)-(ya-22h)-(xb=1 h,±c+h y=±ca2+kx=hy=k抛物线y-k2=2px-h2p+h,k x=-2p+h y=ky-k2=-2px-h -2p+h,k x=2p+h y=kx-h2=2py-k h,2p+k y=-2p+k x=hx-h2=-2py-k h,-2p+k y=2p+k x=h二、知识点、能力点提示一曲线和方程,由已知条件列出曲线的方程,曲线的交点说明在求曲线方程之前必须建立坐标系,然后根据条件列出等式进行化简 .特别是在求出方程后要考虑化简的过程是否是同解变形,是否满足已知条件,只有这样求出的曲线方程才能准确无误.另外,要求会判断曲线间有无交点,会求曲线的交点坐标.三、考纲中对圆锥曲线的要求:考试内容:. 椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程;. 双曲线及其标准方程.双曲线的简单几何性质;. 抛物线及其标准方程.抛物线的简单几何性质;考试要求:. 1掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程;. 2掌握双曲线的定义、标准方程和双曲线的简单几何性质;. 3掌握抛物线的定义、标准方程和抛物线的简单几何性质;. 4了解圆锥曲线的初步应用;四.对考试大纲的理解高考圆锥曲线试题一般有3题1个选择题, 1个填空题, 1个解答题, 共计22分左右, 考查的知识点约为20个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查以圆锥曲线的基本概念和性质为主, 难度在中等以下,一般较容易得分,解答题常作为数学高考中的压轴题,综合考查学生数形结合、等价转换、分类讨论、逻辑推理等诸方面的能力,重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 往往结合平面向量进行求解,在复习应充分重视;求圆锥曲线的方程复习要点求指定的圆锥曲线的方程是高考命题的重点,主要考查识图、画图、数形结合、等价转化、分类讨论、逻辑推理、合理运算及创新思维能力,解决好这类问题,除要求熟练掌握好圆锥曲线的定义、性质外,命题人还常常将它与对称问题、弦长问题、最值问题等综合在一起命制难度较大的题,解决这类问题常用定义法和待定系数法.一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤.定形——指的是二次曲线的焦点位置与对称轴的位置.定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx 2+ny 2=1m >0,n >0.定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小. 例题【例1】 双曲线2224b y x =1b ∈N 的两个焦点F 1、F 2,P 为双曲线上一点,|OP |<5,|PF 1|,|F 1F 2|,|PF 2|成等比数列,则b 2=_________.解:设F 1-c ,0、F 2c ,0、Px ,y ,则 |PF 1|2+|PF 2|2=2|PO |2+|F 1O |2<252+c 2, 即|PF 1|2+|PF 2|2<50+2c 2,又∵|PF 1|2+|PF 2|2=|PF 1|-|PF 2|2+2|PF 1|·|PF 2|, 依双曲线定义,有|PF 1|-|PF 2|=4, 依已知条件有|PF 1|·|PF 2|=|F 1F 2|2=4c 2 ∴16+8c 2<50+2c 2,∴c 2<317,又∵c 2=4+b 2<317,∴b 2<35,∴b 2=1.【例2】 已知圆C 1的方程为()()3201222=-+-y x ,椭圆C 2的方程为12222=+b y a x ()a b >>0,C 2的离心率为22,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为圆C 1的直径,求直线AB 的方程和椭圆C 2的方程;解:由,2,22,22222b c a a c e ====得设椭圆方程为.122222=+b y b x设).1,2().,().,(2211由圆心为y x B y x A 又,12,12222222221221=+=+b y b x b y b x两式相减,得.022222122221=-+-b y y b x x 又.1.2.421212121-=--=+=+x x yy y y x x 得即3+-=x y 将得代入,1232222=++-=b y b x x y由.3204)(222122121=-+=-=x x x x x x B A 得.3203722422=-⋅b 解得 .82=b 故所有椭圆方程.181622=+y x【例3】 过点1,0的直线l 与中心在原点,焦点在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y =21x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程. 解法一:由e =22=a c ,得21222=-a b a ,从而a 2=2b 2,c =b .设椭圆方程为x 2+2y 2=2b 2,Ax 1,y 1,Bx 2,y 2在椭圆上. 则x 12+2y 12=2b 2,x 22+2y 22=2b 2,两式相减得,x 12-x 22+2y 12-y 22=0,.)(221212121y y x x x x y y ++-=--设AB 中点为x 0,y 0,则k AB =-02y x , 又x 0,y 0在直线y =21x上,y 0=21x 0,于是-02y x =-1,k AB =-1,设l 的方程为y =-x +1.右焦点b ,0关于l 的对称点设为x由点1,1-b 在椭圆上,得1+21-b 2=2b 2,b 2=89,1692=a .∴所求椭圆C的方程为2291698y x + =1,l的方程为y =-x +1.解法二:由e =21,22222=-=a b a a c 得,从而a 2=2b 2,c =b .设椭圆C 的方程为x 2+2y 2=2b 2,l 的方程为y =kx -1, 将l 的方程代入C 的方程,得1+2k 2x 2-4k 2x +2k 2-2b 2=0, 则x 1+x 2=22214k k +,y 1+y 2=kx 1-1+kx 2-1=kx 1+x 2-2k =-2212k k +.直线l :y =21x 过AB 的中点2,22121y y x x ++,则2222122121k k k k +⋅=+-, 解得k =0,或k =-1.若k =0,则l 的方程为y =0,焦点Fc ,0关于直线l 的对称点就是F 点本身,不能在椭圆C 上,所以k =0舍去,从而k =-1,直线l 的方程为y =-x -1,即y =-x +1,以下同解法一.解法3:设椭圆方程为)1()0(12222>>=+b a by ax直线l 不平行于y 轴,否则AB 中点在x 轴上与直线AB x y 过21=中点矛盾; 故可设直线)2()1(-=x k y l 的方程为)()(2211y x B y x A ,,设,22222212ba k a k x x +=+知:21221=+-x x k k ,212222222=+⋅-∴a k b a k k k ,2122=--∴ka b k k ,22=e 又122)(22222222-=+-=--=-=∴e a c a a b k ,x y l -=∴1的方程为直线,222b a =此时,02243)3(22=-+-b x x 化为方程,0)13(8)1(241622>-=--=∆b b33>∴b ,)4(22222b y x C =+的方程可写成:椭圆,2222b b a c =-=又,)0(,右焦点b F ∴,)(00y x l F ,的对称点关于直线设点,则b y x b x y b x y -=-⇒⎪⎪⎩⎪⎪⎨⎧+-==-11212100000,, 得:在椭圆上,代入,又点)4()11(b -22)1(21b b =-+,3343>=∴b ,1692=∴b , 892=a 所以所求的椭圆方程为:11698922=+y x 【例4】 如图,已知△P 1OP 2的面积为427,P 为线段P 1P 2的一个三等分点,求以直线OP 1、OP 2为渐近线且过点P 的离心率为213的双曲线方程.解:以O 为原点,∠P 1OP 2的角平分线为x 轴建立如图所示的直角坐标系. 设双曲线方程为2222by ax -=1a >0,b >0由e 2=2222)213()(1=+=a b a c ,得23=a b .∴两渐近线OP 1、OP 2方程分别为y =23x 和y =-23x设点P 1x 1, 23x 1,P 2x 2,-23x 2x 1>0,x 2>0,则由点P 分21P P 所成的比λ=21PP PP =2,得P 点坐标为22,322121x x x x -+,又点P 在双曲线222294ay ax -=1上, 所以222122219)2(9)2(a x x a x x --+=1,即x 1+2x 22-x 1-2x 22=9a 2,整理得8x 1x 2=9a 2 ①即x 1x 2= 29②由①、②得a 2=4,b 2=9 故双曲线方程为9422y x -=1.【例5】 过椭圆C :)0(12222>>=+b a b x a y 上一动点P 引圆O :x 2 +y 2 =b 2的两条切线P A 、P B ,A 、B 为切点,直线AB 与x 轴,y 轴分别交于M 、N 两点;1 已知P 点坐标为x 0,y 0 并且x 0y 0≠0,试求直线AB 方程;2 若椭圆的短轴长为8,并且1625||||2222=+ON b OM a ,求椭圆C 的方程;3 椭圆C 上是否存在点P,由P 向圆O 所引两条切线互相垂直若存在,请求出存在的条件;若不存在,请说明理由; 解:1设Ax 1,y 1,Bx 2, y 2切线P A :211b y y x x =+,P B :222b y y x x =+ ∵P 点在切线P A 、P B 上,∴202022101b y y x x b y y x x =+=+∴直线AB 的方程为)0(00200≠=+y x b y y x x2在直线AB 方程中,令y =0,则M 02x b ,0;令x =0,则N0,2y b∴1625)(||||22220220222222==+=+ba b x a y b a ON b OM a ①∵2b =8 ∴b =4 代入①得a 2 =25, b 2 =16 ∴椭圆C 方程:)0(1162522≠=+xy x y 注:不剔除xy ≠0,可不扣分3 假设存在点P x 0,y 0满足P A ⊥P B ,连接O A 、O B 由|P A |=|P B |知,四边形P A O B 为正方形,|OP|=2|O A | ∴220202b y x =+ ① 又∵P 点在椭圆C 上 ∴22202202b a y b x a =+ ②由①②知x2222202222220,)2(b a b a y b a b a b -=--=∵a >b >0 ∴a 2-b 2>01当a 2-2b 2>0,即a >2b 时,椭圆C 上存在点,由P 点向圆所引两切线互相垂直; 2当a 2-2b 2<0,即b <b 时,椭圆C 上不存在满足条件的P 点【例6】 已知椭圆C 的焦点是F 1-3,0、F 23,0,点F 1到相应的准线的距离为33,过F 2点且倾斜角为锐角的直线l 与椭圆C 交于A 、B 两点,使得|F 2B|=3|F 2A|.1求椭圆C 的方程;2求直线l 的方程. 解:1依题意,椭圆中心为O0,0,3=c点F 1到相应准线的距离为1333,322=⨯=∴=b cb, a 2=b 2+c 2=1+3=4∴所求椭圆方程为1422=+y x2设椭圆的右准线l '与l 交于点P,作AM ⊥l ',AN⊥l ',垂足分别为M 、N. 由椭圆第二定义, 得||||||||22AM e AF e AM AF =⇒=同理|BF 2|=e|BN| 由Rt △PAM ~Rt △PBN,得||2||2||21||2AM e A F AB PA ===…9分 l ePA AM PAM ⇒=⨯===∠∴33232121||||cos 的斜率2tan =∠=PAM k .∴直线l 的方程062)3(2=---=y x x y 即【例7】 已知点B -1,0,C1,0,P 是平面上一动点,且满足.||||CB PB BC PC ⋅=⋅1求点P 的轨迹C 对应的方程;x2已知点Am,2在曲线C 上,过点A 作曲线C 的两条弦AD 和AE,且AD ⊥AE,判断:直线DE 是否过定点试证明你的结论.3已知点Am,2在曲线C 上,过点A 作曲线C 的两条弦AD,AE,且AD,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点.解:1设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入【例8】 已知曲线332)0,0(12222=>>=-e b a by ax 的离心率,直线l 过A a ,0、B0,-b 两点,原点O 到l 的距离是.23 Ⅰ求双曲线的方程;Ⅱ过点B 作直线m 交双曲线于M 、N 两点,若23-=⋅ON OM ,求直线m 的方程. 解:Ⅰ依题意,,0,1=--=-+ab ay bx byax l 即方程 由原点O 到l 的距离为23,得2322==+c ab ba ab 又332==ac e 3,1==∴a b故所求双曲线方程为1322=-y xⅡ显然直线m 不与x 轴垂直,设m 方程为y =k x -1,则点M 、N 坐标11,y x 、22,y x 是方程组 ⎪⎩⎪⎨⎧=--=13122y x kx y 的解 消去y ,得066)31(22=-+-kx x k ① 依设,,0312≠-k 由根与系数关系,知136,136221221-=-=+k x x k k x x =1)()1(21212++-+x x k x x k =113613)1(62222+---+k k k k =11362+-k23-=⋅ON OM ∴11362+-k =-23,k=±21 当k=±21时,方程①有两个不等的实数根 故直线l 方程为121,121--=-=x y x y 或【例9】 已知动点P 与双曲线13222=-y x 的两个焦点1F 、2F 的距离之和为定值,且21cos PF F ∠的最小值为91-.1求动点P 的轨迹方程;2若已知)3,0(D ,M 、N 在动点P 的轨迹上且DN DM λ=,求实数λ的取值范围. 解:1由已知可得: 5=c ,912)2(2222-=-+a c a a ∴ 4,92222=-==c a b a∴ 所求的椭圆方程为 14922=+y x . 2方法一:由题知点D 、M 、N 共线,设为直线m,当直线m 的斜率存在时,设为k,则直线m 的方程为 y = k x +3 代入前面的椭圆方程得 4+9k 2 x 2 +54 k +45 = 0 ① 由判别式 045)94(4)54(22≥⨯+⨯-=∆k k ,得952≥k . 再设M x 1 , y 1 , N x 2 , y 2,则一方面有))3(,()3,()3,(222211-=-==-=y x y x DN y x DM λλλλ,得另一方面有 2219454kk x x +-=+,2219445k x x += ②将21x x λ=代入②式并消去 x 2可得94)1(532422+=+k λλ,由前面知, 536402≤<k ∴ 581)1(532492≤+<λλ,解得 551<<λ.又当直线m 的斜率不存在时,不难验证:551==λλ或, 所以 551≤≤λ为所求;方法二:同上得设点M 3cos α,2sin α,N 3cos β,2sin β 则有⎩⎨⎧-=-=)3sin 2(3sin 2cos cos βλαβλα由上式消去α并整理得)(1251813sin 22λλλλβ-+-=, 由于1sin 1≤≤-β∴ 1)(1251813122≤-+-≤-λλλλ, 解得551≤≤λ为所求. 方法三:设法求出椭圆上的点到点D 的距离的最大值为5,最小值为1. 进而推得λ的取值范围为551≤≤λ;求圆锥曲线的方程练习一、选择题1.已知直线x +2y -3=0与圆x 2+y 2+x -6y +m =0相交于P 、Q 两点,O 为坐标原点,若OP ⊥OQ ,则m 等于B.-3D.-12.中心在原点,焦点在坐标为0,±52的椭圆被直线3x -y -2=0截得的弦的中点的横坐标为21,则椭圆方程为二、填空题3.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2-4y 2=3的焦点作椭圆的焦点,那么具有最短长轴的椭圆方程为_________.4.已知圆过点P 4,-2、Q -1,3两点,且在y 轴上截得的线段长为43,则该圆的方程为_________.三、解答题5.已知椭圆的中心在坐标原点,焦点在x 轴上,它的一个焦点为F ,M 是椭圆上的任意点,|MF |的最大值和最小值的几何平均数为2,椭圆上存在着以y =x 为轴的对称点M 1和M 2,且|M 1M 2|=3104,试求椭圆的方程.6.某抛物线形拱桥跨度是20米,拱高4米,在建桥时每隔4米需用一支柱支撑,求其中最长的支柱的长.7.已知圆C 1的方程为x -22+y -12=320,椭圆C 2的方程为2222by ax +=1a >b >0,C 2的离心率为22,如果C 1与C 2相交于A 、B 两点,且线段AB 恰为圆C 1的直径,求直线AB 的方程和椭圆C 2的方程.参考答案一、1.解析:将直线方程变为x =3-2y ,代入圆的方程x 2+y 2+x -6y +m =0, 得3-2y 2+y 2+3-2y +m =0.整理得5y 2-20y +12+m =0,设Px 1,y 1、Qx 2,y 2 则y 1y 2=512m +,y 1+y 2=4.又∵P 、Q 在直线x =3-2y 上, ∴x 1x 2=3-2y 13-2y 2=4y 1y 2-6y 1+y 2+9 故y 1y 2+x 1x 2=5y 1y 2-6y 1+y 2+9=m -3=0,故m =3. 答案:A2.解析:由题意,可设椭圆方程为:2222b x a y + =1,且a 2=50+b 2,即方程为222250b x b y ++=1.将直线3x -y -2=0代入,整理成关于x 的二次方程. 由x 1+x 2=1可求得b 2=25,a 2=75. 答案:C二、3.解析:所求椭圆的焦点为F 1-1,0,F 21,0,2a =|PF 1|+|PF 2|.欲使2a 最小,只需在直线l 上找一点P .使|PF 1|+|PF 2|最小,利用对称性可解.答案:4522y x + =14.解析:设所求圆的方程为x -a 2+y -b 2=r 2则有⎪⎪⎩⎪⎪⎨⎧=+=-+--=--+-222222222)32(||)3()1()2()4(ra rb a r b a ⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧===⇒2745130122r b a r b a 或由此可写所求圆的方程.答案:x 2+y 2-2x -12=0或x 2+y 2-10x -8y +4=0三、5.解:|MF |ma x =a +c ,|MF |min =a -c ,则a +ca -c =a 2-c 2=b 2, ∴b 2=4,设椭圆方程为14222=+y a x ① 设过M 1和M 2的直线方程为y =-x +m② 将②代入①得:4+a 2x 2-2a 2mx +a 2m 2-4a 2=0③设M 1x 1,y 1、M 2x 2,y 2,M 1M 2的中点为x 0,y 0, 则x 0=21x 1+x 2=224a m a +,y 0=-x 0+m =244a m +.代入y =x ,得222444amam a +=+,由于a 2>4,∴m =0,∴由③知x 1+x 2=0,x 1x 2=-2244aa +,又|M 1M 2|=31044)(221221=-+x x x x ,代入x 1+x 2,x 1x 2可解a 2=5,故所求椭圆方程为:4522y x + =1.6.解:以拱顶为原点,水平线为x 轴,建立坐标系,如图,由题意知,|AB |=20,|OM |=4,A 、B 坐标分别为-10,-4、10,-4 设抛物线方程为x 2=-2py ,将A 点坐标代入,得100=-2p ×-4,解得p =, 于是抛物线方程为x 2=-25y .由题意知E 点坐标为2,-4,E ′点横坐标也为2,将2代入得y =-,从而|EE ′|=---4=.故最长支柱长应为米.7.解:由e =22,可设椭圆方程为22222b y b x +=1,又设Ax 1,y 1、Bx 2,y 2,则x 1+x 2=4,y 1+y 2=2, 又2222222212212,12by bx by bx +=+=1,两式相减,得22221222212by y bx x -+-=0,即x 1+x 2x 1-x 2+2y 1+y 2y 1-y 2=0. 化简得2121x x y y --=-1,故直线AB 的方程为y =-x +3, 代入椭圆方程得3x 2-12x +18-2b 2=0. 有Δ=24b 2-72>0,又|AB |=3204)(221221=-+x x x x ,得3209722422=-⋅b ,解得b 2=8.故所求椭圆方程为81622y x +=1.直线与圆锥曲线复习要点直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能.1.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解成实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长即应用弦长公式;涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍. 例题【例1】 已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程.解:设椭圆方程为mx 2+ny 2=1m >0,n >0,Px 1,y 1,Qx 2,y 2 由⎪⎩⎪⎨⎧=++=1122ny mx x y 得m +nx 2+2nx +n -1=0,Δ=4n 2-4m +nn -1>0,即m +n -mn >0,由OP ⊥OQ ,所以x 1x 2+y 1y 2=0,即2x 1x 2+x 1+x 2+1=0, ∴nm nn m n --+-2)1(2+1=0,∴m +n =2①又2)210()(4=+-+nm mn n m 2, 将m +n =2,代入得m ·n =43②由①、②式得m =21,n =23或m =23,n =21 故椭圆方程为22x +23y 2=1或23x 2+21y 2=1.【例2】 如图所示,抛物线y 2=4x 的顶点为O ,点A 的坐标为5,0,倾斜角为4π的直线l 与线段OA 相交不经过点O 或点A 且交抛物线于M 、N 两点,求△AMN 面积最大时直线l 的方程,并求△AMN 的最大面积.解:由题意,可设l 的方程为y =x +m ,-5<m <0. 由方程组⎪⎩⎪⎨⎧=+=xy mx y 42,消去y ,得x 2+2m -4x +m 2=0……………①∵直线l 与抛物线有两个不同交点M 、N ,∴方程①的判别式Δ=2m -42-4m 2=161-m >0, 解得m <1,又-5<m <0,∴m 的范围为-5,0设Mx 1,y 1,Nx 2,y 2则x 1+x 2=4-2m ,x 1·x 2=m 2, ∴|MN |=4)1(2m -. 点A 到直线l 的距离为d =25m +.∴S △=25+m m -1,从而S △2=41-m 5+m 2 =22-2m ·5+m 5+m ≤235522mm m ++++-3=128.∴S △≤82,当且仅当2-2m =5+m ,即m =-1时取等号. 故直线l 的方程为y =x -1,△AMN 的最大面积为82.【例3】 已知双曲线C :2x 2-y 2=2与点P 1,2;1求过P 1,2点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点;2若Q 1,1,试判断以Q 为中点的弦是否存在.解:1当直线l 的斜率不存在时,l 的方程为x =1, 与曲线C 有一个交点.当l 的斜率存在时,设直线l 的方程为y -2=kx -1, 代入C 的方程,并整理得2-k 2x 2+2k 2-2kx -k 2+4k -6=0………………ⅰ当2-k 2=0,即k =±2时,方程有一个根,l 与C 有一个交点 ⅱ当2-k 2≠0,即k ≠±2时Δ=2k 2-2k 2-42-k 2-k 2+4k -6=163-2k①当Δ=0,即3-2k =0,k =23时,方程有一个实根,l 与C 有一个交点.②当Δ>0,即k <23,又k ≠±2,故当k <-2或-2<k <2或2<k <23时,方程有两不等实根,l 与C 有两个交点.③当Δ<0,即k >23时,方程无解,l 与C 无交点.综上知:当k =±2,或k =23,或k 不存在时,l 与C 只有一个交点;当2<k <23,或-2<k <2,或k <-2时,l 与C 有两个交点;当k >23时,l 与C 没有交点.2假设以Q 为中点的弦存在,设为AB ,且Ax 1,y 1,Bx 2,y 2,则2x 12-y 12=2,2x 22-y 22=2两式相减得:2x 1-x 2x 1+x 2=y 1-y 2y 1+y 2又∵x 1+x 2=2,y 1+y 2=2 ∴2x 1-x 2=y 1-y 1 即k AB =2121x x y y --=2但渐近线斜率为±2,结合图形知直线AB 与C 无交点,所以假设不正确,即以Q 为中点的弦不存在.【例4】 如图,已知某椭圆的焦点是F 1-4,0、F 24,0,过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10,椭圆上不同的两点Ax 1,y 1,Cx 2,y 2满足条件:|F 2A |、|F 2B |数列.1求该弦椭圆的方程; 2求弦AC 中点的横坐标;3设弦AC 的垂直平分线的方程为y =kx 求m 的取值范围.解:1由椭圆定义及条件知,2a =|F 1B |+|F 2B |=10,得a =5,又c =4,所以b =22c a -=3.故椭圆方程为92522y x +=1.2由点B 4,y B 在椭圆上,得|F 2B |=|y B |=59.因为椭圆右准线方程为x =425,离心率为54,根据椭圆定义,有|F 2A |=54425-x 1,|F 2C |=54425-x 2,由|F 2A |、|F 2B |、|F 2C |成等差数列,得54425-x 1+54425-x 2=2×59,由此得出:x 1+x 2=8.设弦AC 的中点为Px 0,y 0,则x 0=221x x +=4.3解法一:由Ax 1,y 1,Cx 2,y 2在椭圆上.得⎪⎩⎪⎨⎧⨯=+⨯=+25925925925922222121y x y x①-②得9x 12-x 22+25y 12-y 22=0, 即9×)()2(25)2(21212121x x y y y y x x --⋅+++=0x 1≠x 2 将kx x y y y y y x x x 1,2,422121021021-=--=+==+ k ≠0代入上式,得9×4+25y 0-k1=0k ≠0即k =3625y 0当k =0时也成立.由点P 4,y 0在弦AC 的垂直平分线上,得y 0=4k +m , 所以m =y 0-4k =y 0-925y 0=-916y 0.由点P 4,y 0在线段BB ′B ′与B 关于x 轴对称的内部, 得-59<y 0<59,所以-516<m <516.解法二:因为弦AC 的中点为P 4,y 0,所以直线AC 的方程为y -y 0=-k1x -4k ≠0③将③代入椭圆方程92522y x +=1,得9k 2+25x 2-50ky 0+4x +25ky 0+42-25×9k 2=0 所以x 1+x 2=259)4(5020++k k =8,解得k =3625y 0.当k =0时也成立①以下同解法一.【例5】 已知双曲线G 的中心在原点,它的渐近线与圆2210200x y x +-+=相切.过点()4,0P -作斜率为14的直线l ,使得l 和G 交于,A B 两点,和y 轴交于点C ,并且点P 在线段AB 上,又满足2PA PB PC ⋅=. 1求双曲线G 的渐近线的方程; 2求双曲线G 的方程;3椭圆S 的中心在原点,它的短轴是G 的实轴.如果S 中垂直于l 的平行弦的中点的轨迹恰好是G 的渐近线截在S 内的部分,求椭圆S 的方程.解:1设双曲线G 的渐近线的方程为:y kx =, 则由渐近线与圆2210200x y x +-+==所以,12k =±.双曲线G 的渐近线的方程为:12y x =±. 2由1可设双曲线G 的方程为:224x y m -=.把直线l 的方程()144y x =+代入双曲线方程,整理得2381640x x m ---=. 则8164, 33A B A B mx x x x ++==-∵ 2PA PB PC ⋅=,,,,P A B C 共线且P 在线段AB 上, ∴ ()()()2P A B P P C x x x x x x --=-,即:()()4416B A x x +--=,整理得:()4320A B A B x x x x +++= 将代入上式可解得:28m =.所以,双曲线的方程为221287x y -=. 3由题可设椭圆S的方程为:(222128x y a a+=>.下面我们来求出S 中垂直于l 的平行弦中点的轨迹.设弦的两个端点分别为()()1122,,,M x y N x y ,MN 的中点为()00,P x y ,则2211222222128128x y a x y a ⎧+=⎪⎪⎨⎪+=⎪⎩. 两式作差得:()()()()121212122028x x x x y y y y a-+-++=由于12124y y x x -=--,1201202,2x x x y y y +=+= 所以,0024028x y a -=, 所以,垂直于l 的平行弦中点的轨迹为直线24028x ya-=截在椭圆S 内的部分. 又由题,这个轨迹恰好是G 的渐近线截在S 内的部分,所以,211122a =.所以,256a =,椭圆S 的方程为:2212856x y +=. 点评:解决直线与圆锥曲线的问题时,把直线投影到坐标轴上也即化线段的关系为横坐标或纵坐标之间的关系是常用的简化问题的手段;有关弦中点的问题,常常用到“设而不求”的方法;判别式和韦达定理是解决直线与圆锥曲线问题的常用工具.【例6】 设抛物线过定点()1,0A -,且以直线1x =为准线.1求抛物线顶点的轨迹C 的方程;2若直线l 与轨迹C 交于不同的两点,M N ,且线段MN 恰被直线12x =-平分,设弦MN 的垂直平分线的方程为y kx m =+,试求m 的取值范围.解:1设抛物线的顶点为(),G x y ,则其焦点为()21,F x y -.由抛物线的定义可知:12AF A x ==点到直线的距离=.所以2=.所以,抛物线顶点G 的轨迹C 的方程为:2214y x += ()1x ≠.2因为m 是弦MN 的垂直平分线与y 轴交点的纵坐标,由MN 所唯一确定.所以,要求m 的取值范围,还应该从直线l 与轨迹C 相交入手.显然,直线l 与坐标轴不可能平行,所以,设直线l 的方程为1:l y x b k=-+,代入椭圆方程得:由于l 与轨迹C 交于不同的两点,M N ,所以,()22222441440b k b k k ⎛⎫+∆=--> ⎪⎝⎭,即:()222410 0k k b k -+>≠.又线段MN 恰被直线12x =-平分,所以,2212241M N bk x x k ⎛⎫+==⨯- ⎪+⎝⎭.所以,2412k bk +=-.代入可解得:() 022k k -<<≠. 下面,只需找到m 与k 的关系,即可求出m 的取值范围.由于y kx m =+为弦MN 的垂直平分线,故可考虑弦MN 的中点01,2P y ⎛⎫- ⎪⎝⎭.在1:l y x b k=-+中,令12x =-,可解得:2011412222k y b k k k k +=+=-=-. 将点1,22P k ⎛⎫-- ⎪⎝⎭代入y kx m =+,可得:32k m =-.所以,0m m <<≠. 从以上解题过程来看,求m 的取值范围,主要有两个关键步骤:一是寻求m 与其它参数之间的关系,二是构造一个有关参量的不等式.从这两点出发,我们可以得到下面的另一种解法:解法二.设弦MN 的中点为01,2P y ⎛⎫- ⎪⎝⎭,则由点,M N 为椭圆上的点,可知:22224444M M N N x y x y ⎧+=⎪⎨+=⎪⎩. 两式相减得:()()()()40M N M N M N M N x x x x y y y y -++-+= 又由于01121, 2, 2M N M N M N M N y y x x y y y x x k -⎛⎫+=⨯-=-+=- ⎪-⎝⎭=,代入上式得:02y k =-.又点01,2P y ⎛⎫- ⎪⎝⎭在弦MN 的垂直平分线上,所以,012y k m =-+. 所以,001324m y k y =+=. 由点01,2P y ⎛⎫- ⎪⎝⎭在线段BB ’上B ’、B 为直线12x =-与椭圆的交点,如图,所以,'0B B y y y <<.也即:0y <<所以,3333044m m -<<≠且 点评:解决直线和圆锥曲线的位置关系问题时,对于消元后的一元二次方程,必须讨论二次项系数和判别式,有时借助图形的几何性质更为方便.涉及弦中点问题,利用韦达定理或运用平方差法时设而不求,必须以直线与圆锥曲线相交为前提,否则不宜用此法.从构造不等式的角度来说,“将直线l 的方程与椭圆方程联立所得判别式大于0”与“弦MN 的中点01,2P y ⎛⎫- ⎪⎝⎭在椭圆内”是等价的.【例7】 设抛物线)0(22>=p px y 的焦点为F ,经过点F 的直线与抛物线交于A 、B 两点.又M 是其准线上一点.试证:直线MA 、MF 、MB 的斜率成等差数列.证明 依题意直线MA 、MB 、MF 的斜率显然存在,并分别设为1k ,2k ,3k 点A 、B 、M 的坐标分别为A 1x ,1y ,B 2x ,2y ,M 2p -,m由“AB 过点F 2p ,0”得 AB l :2p ty x +=将上式代入抛物线px y 22=中得:0222=--p pty y可知221p y y -=⋅又依“1212px y =及2222px y =”可知 因此22221121p x my p x m y k k +-++-=+而p m p p m k -=---=)2(203故3212k k k =+即直线MA 、MF 、MB 的斜率成等差数列.【例8】 已知a =x,0,b =1,y )3()3(b a b a -⊥+1求点Px,y 的轨迹C 的方程;2若直线l :y=kx+mkm ≠0与曲线C 交于A 、B 两端,D0,-1,且有|AD|=|BD|,试求m 的取值范围;解:1)3,3(),1(3)0,(y x y x a +=+=+∵((a a -⊥+∴((a a -⋅+=0∴0)3(3)3)(3(=-⋅+-+y y x x 得1322=-y x∴P 点的轨迹方程为1322=-y x2考虑方程组⎪⎩⎪⎨⎧=-+=1322y x m kx y 消去y,得1-3k 2x 2-6kmx -3m 2-3=0 显然1-3k 2≠0 △=6km 2-4-3m 2-3=12m 2+1-3k 2>0设x 1,x 2为方程的两根,则221316kkmx x -=+ 故AB 中点M 的坐标为2313k km -,231k m-∴线段AB 的垂直平分线方程为:)313)(1(3122k kmx k k m y ---=--将D0,-1坐标代入,化简得:4m=3k 2-1故m 、k 满足⎪⎩⎪⎨⎧-=>-+134031222k m k m ,消去k 2得:m 2-4m>0 解得:m<0或m>4又∵4m=3k 2-1>-1 ∴m>-41 故m ),4()0,41(+∞⋃-∈.直线与圆锥曲线练习一、选择题1.斜率为1的直线l 与椭圆42x +y 2=1相交于A 、B 两点,则|AB |的最大值为B.554C.5104D.51082.抛物线y =ax 2与直线y =kx +bk ≠0交于A 、B 两点,且此两点的横坐标分别为x 1,x 2,直线与x 轴交点的横坐标是x 3,则恒有=x 1+x 2=x 1x 3+x 2x 3 +x 2+x 3=0+x 2x 3+x 3x 1=0二、填空题3.已知两点M 1,45、N -4,-45,给出下列曲线方程:①4x +2y -1=0,②x 2+y 2=3,③22x +y 2=1,④22x -y 2=1,在曲线上存在点P 满足|MP |=|NP |的所有曲线方程是_________.4.正方形ABCD 的边AB 在直线y =x +4上,C 、D 两点在抛物线y 2=x 上,则正方形ABCD 的面积为_________.5.在抛物线y 2=16x 内,通过点2,1且在此点被平分的弦所在直线的方程是_________.三、解答题6.已知抛物线y 2=2pxp >0,过动点Ma ,0且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,且|AB |≤2p .1求a 的取值范围.2若线段AB 的垂直平分线交x求△NAB 面积的最大值.7.已知中心在原点,顶点A 1、A 2在x e =321的双曲线过点P 6,6.1求双曲线方程.2动直线l 经过△A 1PA 2的重心G ,与双曲线交于不同的两点M 、N ,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.8.已知双曲线C 的两条渐近线都过原点,且都以点A 2,0为圆心,1为半径的圆相切,双曲线的一个顶点A 1与A 点关于直线y =x 对称.1求双曲线C 的方程.2设直线l 过点A ,斜率为k ,当0<k <1时,双曲线C 的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时B 点的坐标.直线与圆锥曲线参考答案一、1.解析:弦长|AB |=55422t -⋅⋅≤5104.答案:C2.解析:解方程组⎪⎩⎪⎨⎧+==bkx y ax y 2,得ax 2-kx -b =0,可知x 1+x 2=ak ,x 1x 2=-ab ,x 3=-kb ,代入验证即可.答案:B二、3.解析:点P 在线段MN 的垂直平分线上,判断MN 的垂直平分线于所给曲线是否存在交点.答案:②③④4.解析:设C 、D 所在直线方程为y =x +b ,代入y 2=x ,利用弦长公式可求出|CD |的长,利用|CD |的长等于两平行直线y =x +4与y =x +b 间的距离,求出b 的值,再代入求出|CD |的长.答案:18或505.解析:设所求直线与y 2=16x 相交于点A 、B ,且Ax 1,y 1,Bx 2,y 2,代入抛物线方程得y 12=16x 1,y 22=16x 2,两式相减得,y 1+y 2y 1-y 2=16x 1-x 2.即⇒+=--21212116y y x x y y k AB =8. 故所求直线方程为y =8x -15. 答案:8x -y -15=0三、6.解:1设直线l 的方程为:y =x -a ,代入抛物线方程得x -a 2=2px ,即x 2-2a +px +a 2=0∴|AB |=224)(42a p a -+⋅≤2p .∴4ap +2p 2≤p 2,即4ap ≤-p 2又∵p >0,∴a ≤-4p .2设Ax 1,y 1、Bx 2,y 2,AB 的中点 Cx ,y , 由1知,y 1=x 1-a ,y 2=x 2-a ,x 1+x 2=2a +2p , 则有x =222,2212121ax x y y y p a x x -+=+=+=+=p .∴线段AB 的垂直平分线的方程为y -p =-x -a -p ,从而N 点坐标为a +2p ,0点N 到AB 的距离为p a p a 22|2|=-+从而S △NAB =2222224)(4221p ap p p a p a +=⋅-+⋅⋅当a 有最大值-4p 时,S 有最大值为2p 2.7.解:1如图,设双曲线方程为2222b y a x -=1.由已知得321,16622222222=+==-ab a e b a ,解得a 2=9,b 2=12.所以所求双曲线方程为12922y x -=1.2P 、A 1、A 2的坐标依次为6,6、3,0、-3,0, ∴其重心G 的坐标为2,2假设存在直线l ,使G 2,2平分线段MN ,设Mx 1,y 1,Nx 2,y 2.则有34912441089121089122121212122222121==--⇒⎪⎪⎩⎪⎪⎨⎧=+=+=-=-x x y y y y x x y x y x ,∴k l =34∴l 的方程为y =34x -2+2,由⎪⎩⎪⎨⎧-==-)2(3410891222x y y x ,消去y ,整理得x 2-4x +28=0.∵Δ=16-4×28<0,∴所求直线l 不存在. 8.解:1设双曲线的渐近线为y =kx ,由d =1|2|2+k k =1,解得k =±1.即渐近线为y =±x ,又点A 关于y =x 对称点的坐标为0,2. ∴a =2=b ,所求双曲线C 的方程为x 2-y 2=2.2设直线l :y =kx -20<k <1),依题意B 点在平行的直线l ′上,且l 与l ′间的距离为2.设直线l ′:y =kx +m ,应有21|2|2=++k m k ,化简得m 2+22k m=2. ②把l ′代入双曲线方程得k 2-1x 2+2mkx +m 2-2=0, 由Δ=4m 2k 2-4k 2-1m 2-2=0. 可得m 2+2k 2=2③②、③两式相减得k =2m ,代入③得m 2=52,解设m =510,k =552,此时x =2212=--k mk ,y =10.故B 22,10.。
《圆锥曲线与方程》说课稿单元教学有利于整体规划学生核心素养的发展,有利于借助于大背景、大问题、大思路、大框架进行高观点统领、思想性驾驭、结构化关联,能有效规避传统的课时教学整体感不强、知识分解过度、学习碎片化、教学效益低下的现象。
但数学单元教学同时也要求课时教学,它应该在核心素养和课程目标的指引下,设计单元教学目标和课时教学目标,使之成为一个前后联系、相互支撑的整体,今天,我就“圆锥曲线与方程”的二轮复习进行单元设计与课时实施的说课。
1 单元教学的整体设计圆锥曲线包含椭圆、双曲线、抛物线,从知识技能角度看,三者的知识结构相近,知识间存在内在的必然联系,具有统一性,一轮复习我们采用了“总——分—总”的方式,把三者整合在一起,即先通过曲线与方程部分总体建构几何与代数的轨迹关系,引出大单元的学习内容。
然后分三个小单元进行学习,每个单元的研究结构是一致的,均从定义、标准方程和几何性质三个方面展开研究。
最后在知识学习的基础上,进行直线与圆锥曲线的位置关系的整体教学,形成圆锥曲线学习与研究的大框架。
经过一轮复习,学生掌握了圆锥曲线基础知识,学生初步建立了利用圆锥曲线知识解决解问题的基本思路及模式,但是在解题过程中,学生往往急于求成或者套用现成的模式,分析解决问题的能力较弱;主动把题目与相关概念建立联系的意识比较淡薄,表现在选填题目不能深入挖掘已知条件,将已知和所学知识建立联系的能力不足;而对于圆锥曲线的学习,知识的内在统一性是一条明线,内隐的用代数的方法研究几何,深刻认识数和形的辩证统一是一条暗线。
所以在二轮复习时,我们从思想方法视角对传统的知识单元进行重整,更为上位地认识学科知识。
重整后的三个小单元的做法和目标各不相同,如果说一轮复习进行的是横向到边的广度学习,那么二轮复习我希望以核心素养为立意,以整体设计为入口,进行纵向到底的深度学习。
“核心素养一课程标准一单元设计—课时计划”是环环相扣的教师教育活动的基本环节,单元设计下的课时教学不同于传统的以知识传授为主的学习,强调将教学内容置于整体内容中去把控,更多地关注教学内容的本质及其蕴含的数学思想。
复习课(二) 圆锥曲线与方程圆锥曲线的定义及标准方程会涉及,是高考解析几何的必考内容.椭圆、双曲线、抛物线的定义及标准方程椭圆双曲线抛物线定义平面内与两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹平面内与两个定点F 1,F 2的距离的差的绝对值等于非零常数(小于|F 1F 2|且大于零)的点的轨迹平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等的点的轨迹标准 方程x 2a 2+y 2b 2=1或 y 2a 2+x 2b 2=1 (a >b >0)x 2a 2-y 2b 2=1或 y 2a 2-x 2b 2=1 (a >0,b >0) y 2=2px 或 y 2=-2px 或 x 2=2py 或 x 2=-2py (p >0)关系 式a 2-b 2=c 2a 2+b 2=c 2[典例] (1)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A .x 23+y 24=1B .x 24+y 23=1C .x 24+y 22=1D .x 24+y 23=1(2)已知抛物线y 2=8x的准线过双曲线x 2a 2-y 2b2=1(a >0,b >0)的一个焦点,且双曲线的离心率为2,则该双曲线的方程为________________.[解析] (1)右焦点为F (1,0)说明两层含义:椭圆的焦点在x 轴上;c =1.又离心率为c a =12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y 23=1,故选D . (2)由题意可知抛物线的准线方程为x =-2,∴双曲线的半焦距c =2.又双曲线的离心率为2,∴a =1,b =3,∴双曲线的方程为x 2-y 23=1. [答案] (1)D (2)x 2-y 23=1 [类题通法]求圆锥曲线方程的一般步骤一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤. (1)定形——指的是二次曲线的焦点位置与对称轴的位置.(2)定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx 2+ny 2=1(m >0,n >0).(3)定量——由题设中的条件找到“式”中待定系数的等量关系,通过解方程得到量的大小. 1.(天津高考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线过点(2,3),且双曲线的一个焦点在抛物线y 2=47x 的准线上,则双曲线的方程为( )A .x 221-y 228=1B .x 228-y 221=1C .x 23-y 24=1D .x 24-y 23=1解析:选D 由双曲线的渐近线y =ba x 过点(2,3),可得3=ba×2.①由双曲线的焦点(-a 2+b 2,0)在抛物线y 2=47x 的准线x =-7上,可得 a 2+b 2=7.②由①②解得a =2,b =3, 所以双曲线的方程为x 24-y 23=1.2.(全国卷Ⅰ)一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.解析:由题意知a =4,b =2,上、下顶点的坐标分别为(0,2),(0,-2),右顶点的坐标为(4,0).由圆心在x 轴的正半轴上知圆过点(0,2),(0,-2),(4,0)三点.设圆的标准方程为(x -m )2+y 2=r 2(0<m <4,r >0),则⎩⎪⎨⎪⎧m 2+4=r 2,?4-m ?2=r 2,解得⎩⎨⎧m =32,r 2=254.所以圆的标准方程为⎝⎛⎭⎫x -322+y 2=254. 答案:⎝⎛⎭⎫x -322+y 2=2543.方程x 24-t +y 2t -1=1表示曲线C ,给出以下命题:①曲线C 不可能为圆; ②若1<t <4,则曲线C 为椭圆; ③若曲线C 为双曲线,则t <1或t >4;④若曲线C 为焦点在x 轴上的椭圆,则1<t <52.其中真命题的序号是________(写出所有正确命题的序号).解析:显然当t =52时,曲线为x 2+y 2=32,方程表示一个圆;而当1<t <4,且t ≠52时,方程表示椭圆;当t <1或t >4时,方程表示双曲线;而当1<t <52时,4-t >t -1>0,方程表示焦点在x 轴上的椭圆,故③④为真命题.答案:③④圆锥曲线的几何性质试卷中一般以选择题或者填空题的形式考查圆锥曲线的几何性质(主要是椭圆和双曲线的离心率),在解答题中与圆锥曲线方程的其他知识一起进行综合考查.椭圆、双曲线、抛物线的几何性质椭圆 双曲线 抛物线 标准方程 x 2a 2+y 2b 2=1 (a >b >0) x 2a 2-y 2b 2=1 (a >0,b >0) y 2=2px (p >0)关系式 a 2-b 2=c 2 a 2+b 2=c 2图形 封闭图形无限延展,有渐近线无限延展,没有渐近线对称性 对称中心为原点 无对称中心 两条对称轴一条对称轴顶点 四个 两个 一个 离心率 0<e <1 e >1 e =1 准线方程x =-p 2决定形状的因素e 决定扁平程度e 决定开口大小2p 决定开口大小[典例] (1)(山东高考)已知双曲线E :x a 2-y b 2=1(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.(2)已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为________. [解析] (1)如图,由题意知|AB |=2b 2a ,|BC |=2c . 又2|AB |=3|BC |,∴2×2b 2a =3×2c ,即2b 2=3ac ,∴2(c 2-a 2)=3ac ,两边同除以a 2并整理得2e 2-3e -2=0,解得e =2(负值舍去).(2)设椭圆C 1和双曲线C 2的离心率分别为e 1和e 2,则e 1=a 2-b 2a ,e 2=a 2+b 2a .因为e 1·e 2=32,所以a 4-b 4a 2=32,即⎝⎛⎭⎫b a 4=14,∴b a =22.故双曲线的渐近线方程为y =±b a x =±22x ,即x ±2y =0.[答案] (1)2 (2)x ±2y =0 [类题通法]求解离心率三种方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x 轴上还是y 轴上都有关系式a 2-b 2=c 2(a 2+b 2=c 2)以及e =ca ,已知其中的任意两个参数,可以求其他的参数,这是基本且常用的方法.(2)方程法:建立参数a 与c 之间的齐次关系式,从而求出其离心率,这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.1.如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.其四边形AF 1BF 2为矩形,则C 2的离心率是( )A . 2B . 3C .32D .62解析:选D 焦点F 1(-3,0),F 2(3,0), 在Rt △AF 1F 2中,|AF 1|+|AF 2|=4, |AF 1|2+|AF 2|2=12,所以可解得|AF 2|-|AF 1|=22, 故a =2,所以双曲线的离心率e =32=62,选D . 2.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.解析:不妨设A 在x 轴上方,由于AB 过F 2且垂直于x 轴,因此可得A ⎝⎛⎭⎫c ,b 2a ,B ⎝⎛⎭⎫c ,-b2a ,由OD ∥F 2B ,O 为F 1F 2的中点可得D ⎝⎛⎭⎫0,-b 22a ,所以AD =⎝⎛⎭⎫-c ,-3b 22a ,F B 1=⎝⎛⎭⎫2c ,-b2a ,又AD ⊥F 1B ,所以AD ·F B 1=-2c 2+3b 42a 2=0,即3b 4=4a 2c 2,又b 2=a 2-c 2,所以可得3(a 2-c 2)=2ac ,两边同时除以a 2,得3e 2+2e -3=0,解得e =33或-3,又e ∈(0,1),故椭圆C 的离心率为33.答案:333.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且|FA |=c ,则双曲线的渐近线方程为________.解析:c 2=a 2+b 2,①由双曲线截抛物线的准线所得线段长为2c 知, 双曲线过点⎝⎛⎭⎫c ,-p 2,即c 2a 2-p24b2=1.② 由|FA |=c ,得c 2=a 2+p 24,③ 由①③得p 2=4b 2.④ 将④代入②,得c 2a 2=2.∴a 2+b 2a2=2,即ba =1,故双曲线的渐近线方程为y =±x ,即x ±y =0. 答案:x ±y =0直线与圆锥曲线的位置关系这使得解析几何试题具有广泛的命题背景,当直线与圆锥曲线问题综合时就产生了如:直线与圆锥曲线的位置关系(相交、相切、相离),直线与曲线交汇产生的一些几何量的范围和最值,动直线(或曲线)过定点等一系列热点问题,这些热点问题都是高考所重视的.直线与圆锥曲线有关的问题(1)直线与圆锥曲线的位置关系,可以通过讨论直线方程与曲线方程组成的方程组的实数解的个数来确定,通常消去方程组中变量y (或x )得到关于变量x (或y )的一元二次方程,考虑该一元二次方程的判别式Δ,则有:Δ>0?直线与圆锥曲线相交于两点;Δ=0?直线与圆锥曲线相切于一点;Δ<0?直线与圆锥曲线无交点.(2)直线l 截圆锥曲线所得的弦长|AB |=?1+k 2??x 1-x 2?2或⎝⎛⎭⎫1+1k 2?y 1-y 2?2,其中k 是直线l 的斜率,(x 1,y 1),(x 2,y 2)是直线与圆锥曲线的两个交点A ,B 的坐标,且(x 1-x 2)2=(x 1+x 2)2-4x 1x 2,x 1+x 2,x 1x 2可由一元二次方程的根与系数的关系整体给出.[典例] 已知椭圆的一个顶点为A (0,-1),焦点在x 轴上,若右焦点到直线x -y +22=0的距离为3.(1)求椭圆的方程;(2)设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M ,N ,当|AM |=|AN |时,求m 的取值范围. [解] (1)依题意可设椭圆方程为x 2a 2+y 2=1(a >1),则右焦点F (a 2-1,0),由题设,知|a 2-1+22|2=3,解得a 2=3,故所求椭圆的方程为x 23+y 2=1.(2)设点P 为弦MN 的中点,由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,得(3k 2+1)x 2+6mkx +3(m 2-1)=0, 由于直线与椭圆有两个交点, 所以Δ>0,即m 2<3k 2+1, ① 所以x P =x M +x N 2=-3mk3k 2+1, 从而y P =kx P +m =m3k 2+1, 所以k AP =y P +1x P =-m +3k 2+13mk ,又|AM |=|AN |,所以AP ⊥MN ,则-m +3k 2+13mk =-1k ,即2m =3k 2+1, ②把②代入①得2m >m 2, 解得0<m <2, 由②得k 2=2m -13>0, 解得m >12,故所求m 的取值范围是⎝⎛⎭⎫12,2. [类题通法]有关直线与圆锥曲线综合问题的求解方法(1)将直线方程与圆锥曲线方程联立,化简后得到关于x (或y )的一元二次方程,则直线与圆锥曲线的位置关系有三种情况:①相交:Δ>0?直线与椭圆相交;Δ>0?直线与双曲线相交,但直线与双曲线相交不一定有Δ>0,如当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故Δ>0是直线与双曲线相交的充分不必要条件;Δ>0?直线与抛物线相交,但直线与抛物线相交不一定有Δ>0,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故Δ>0也仅是直线与抛物线相交的充分条件,而不是必要条件.②相切:Δ=0?直线与椭圆相切;Δ=0?直线与双曲线相切;Δ=0?直线与抛物线相切. ③相离:Δ<0?直线与椭圆相离;Δ<0?直线与双曲线相离;Δ<0?直线与抛物线相离.(2)直线与圆锥曲线的位置关系,涉及函数、方程、不等式、平面几何等诸多方面的知识,形成了求轨迹、最值、对称、取值范围、线段的长度等多种问题.解决此类问题应注意数形结合,以形辅数的方法;还要多结合圆锥曲线的定义,根与系数的关系以及“点差法”等.1.平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x =-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是________.解析:设机器人所在位置为A (x ,y ),依题意得点A 在以F (1,0)为焦点,x =-1为准线的抛物线上,该抛物线的标准方程为y 2=4x .过点P (-1,0),斜率为k 的直线为y =k (x +1).由⎩⎪⎨⎪⎧y 2=4x ,y =kx +k 得ky 2-4y +4k =0. 当k =0时,显然不符合题意;当k ≠0时,依题意得Δ=(-4)2-4k ·4k <0,化简得k 2-1>0,解得k >1或k <-1,因此k 的取值范围为(-∞,-1)∪(1,+∞). 答案:(-∞,-1)∪(1,+∞)2.平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值. 解:(1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1, 由此可得b 2?x 2+x 1?a 2?y 2+y 1?=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3. 所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y 23=1解得⎩⎨⎧x =433,y =-33或⎩⎨⎧x =0,y = 3.因此|AB |=463. 由题意可设直线CD 的方程为y =x +n ⎝⎛⎭⎫-533<n <3,设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y 23=1得3x 2+4nx +2n 2-6=0. 于是x 3,4=-2n ±2?9-n 2?3.因为直线CD 的斜率为1, 所以|CD |=2|x 4-x 3|=439-n 2.由已知,四边形ACBD 的面积S =12|CD |·|AB |=8699-n 2.当n =0时,S 取得最大值,最大值为863.所以四边形ACBD 面积的最大值为863.1.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线互相垂直,则该双曲线的离心率是( )A .2B . 3C . 2D .32解析:选C 由题可知y =b a x 与y =-b a x 互相垂直,可得-b a ·ba =-1,则a =b .由离心率的计算公式,可得e 2=c 2a 2=a 2+b 2a2=2,e =2. 2.设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线的方程为( )A .y 2=±4xB .y 2=±8xC .y 2=4xD .y 2=8x解析:选B 由题可知抛物线的焦点坐标为⎝⎛⎭⎫a 4,0,于是过焦点且斜率为2的直线的方程为y =2⎝⎛⎭⎫x -a 4,令x =0,可得点A 的坐标为⎝⎛⎭⎫0,-a 2,所以S △OAF =12×|a |4×|a |2=4,得a =±8,故抛物线的方程为y 2=±8x .3.已知一动圆P 与圆O :x 2+y 2=1外切,而与圆C :x 2+y 2-6x +8=0内切,则动圆的圆心P 的轨迹是( )A .双曲线的一支B .椭圆C .抛物线D .圆解析:选A 由题意,知圆C 的标准方程为(x -3)2+y 2=1,则圆C 与圆O 相离,设动圆P 的半径为R .∵圆P 与圆O 外切而与圆C 内切,∴R >1,且|PO |=R +1,|PC |=R -1.又|OC |=3,∴|PO |-|PC |=2<|OC |,即点P 在以O ,C 为焦点的双曲线的右支上.4.我们把由半椭圆x 2a 2+y 2b 2=1(x ≥0)与半椭圆y 2b 2+x 2c 2=1(x <0)合成的曲线称作“果圆”(其中a 2=b 2+c 2,a >b >c >0),如图所示,其中点F 0,F 1,F 2是相应椭圆的焦点.若△F 0F 1F 2是边长为1的等边三角形,则a ,b 的值分别为( )A .72,1 B .3,1 C .5,3D .5,4解析:选A ∵|OF 2|=b 2-c 2=12,|OF 0|=c =3|OF 2|=32,∴b =1,∴a 2=b 2+c 2=1+34=74,得a=72. 5.已知抛物线的方程为y 2=4x ,直线l 的方程为x -y +4=0,在抛物线上有一动点P 到y 轴的距离为d 1,到直线l 的距离为d 2,则d 1+d 2的最小值为( )A .522+2 B .522+1C .522-2 D .522-1 解析:选D 因为抛物线的方程为y 2=4x ,所以焦点坐标为F (1,0),准线方程为x =-1.因为点P 到y 轴的距离为d 1,所以到准线的距离为d 1+1.又d 1+1=|PF |,所以d 1+d 2=d 1+1+d 2-1=|PF |+d 2-1.焦点F 到直线l 的距离记为d ,则d =|1-0+4|2=52=522,而|PF |+d 2≥d =522,所以d 1+d 2=|PF |+d 2-1≥522-1,即d 1+d 2的最小值为522-1.6.双曲线与椭圆4x 2+y 2=64有公共焦点,它们的离心率互为倒数,则双曲线方程为( ) A .y 2-3x 2=36 B .x 2-3y 2=36 C .3y 2-x 2=36 D .3x 2-y 2=36解析:选A 由4x 2+y 2=64得x 216+y 264=1, c 2=64-16=48, ∴c =43,e =438=32. ∴双曲线中,c ′=43,e ′=23=c ′a ′. ∴a ′=32c ′=6,b ′2=48-36=12. ∴双曲线方程为y 236-x 212=1,即y 2-3x 2=36.7.已知椭圆x 2a 2+y 2b 2=1(a >b >0),其上一点P (3,y )到两焦点的距离分别是6.5和3.5,则该椭圆的标准方程为________.解析:由椭圆的定义,知2a =6.5+3.5=10,a =5.又⎩⎪⎨⎪⎧?3+c ?2+y 2=6.52,?3-c ?2+y 2=3.52,解得c =52, 从而b 2=a 2-c 2=754, 所以椭圆的标准方程为x 225+4y 275=1.答案:x 225+4y 275=18.已知直线l 与抛物线y 2=4x 交于A ,B 两点,O 为坐标原点,若OA ·OB =-4,则直线l 恒过的定点M 的坐标是________.解析:设A (x 1,y 1),B (x 2,y 2),则x 1x 2+y 1y 2=-4.当直线l 的斜率不存在时,设其方程为x =x 0(x 0>0),则x 20-4x 0=-4,解得x 0=2;当直线l 的斜率存在时,设直线l 的方程为y =kx +b ,由⎩⎪⎨⎪⎧y =kx +b ,y 2=4x ,得ky 2-4y +4b =0,得y 1y 2=4b k ,则x 1x 2=y 21y 2216=b 2k 2,得b 2k2+4b k =-4,∴b k =-2,有b =-2k ,直线y =kx -2k =k (x -2)恒过定点(2,0).又直线x =2也恒过定点(2,0),得点M 的坐标为(2,0).答案:(2,0)9.已知A (0,-4),B (3,2),抛物线y 2=x 上的点到直线AB 的最短距离为________. 解析:直线AB 为2x -y -4=0,设抛物线y 2=x上的点P (t ,t 2),d =|2t -t 2-4|5=t 2-2t +45=?t -1?2+35≥35=355.答案:35510.如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的长、短轴端点分别为A ,B ,F 1,F 2分别是点F 1,且AB其左、右焦点.从椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦与OM 是共线向量.(1)求椭圆的离心率e ;(2)设Q 是椭圆上异于左、右顶点的任意一点,求∠F 1QF 2的取值范围. 解:(1)∵F 1(-c,0),则x M =-c ,y M =b 2a , ∴k OM =-b 2ac .由题意,知k AB =-b a, ∵OM 与AB 是共线向量,∴-b 2ac =-b a ,∴b =c ,得e =22. (2)设|F 1Q |=r 1,|F 2Q |=r 2,∠F 1QF 2=θ,∴r 1+r 2=2a .又|F 1F 2|=2c ,由余弦定理,得cos θ=r 21+r 22-4c 22r 1r 2=?r 1+r 2?2-2r 1r 2-4c 22r 1r 2=a 2r 1r 2-1≥a 2⎝⎛⎭⎫r 1+r 222-1=0, 当且仅当r 1=r 2时等号成立,∴cos θ≥0,∴θ∈⎝⎛⎦⎤0,π2. 11.如图,焦距为2的椭圆E 的两个顶点分别为A ,B ,且AB 与n=(2,-1)共线.(1)求椭圆E 的标准方程;(2)若直线y =kx +m 与椭圆E 有两个不同的交点P 和Q ,且原点O 总在以PQ 为直径的圆的内部,求实数m 的取值范围.解:(1)因为2c =2,所以c =1,又AB =(-a ,b ),且AB ∥n ,所以2b =a ,所以2b 2=b 2+1,所以b 2=1,a 2=2,所以椭圆E 的标准方程为x 22+y 2=1. (2)设P (x 1,y 1),Q (x 2,y 2),把直线方程y =kx +m 代入椭圆方程x 22+y 2=1, 消去y ,得(2k 2+1)x 2+4kmx +2m 2-2=0, 所以x 1+x 2=-4km 2k 2+1,x 1x 2=2m 2-22k 2+1, Δ=16k 2-8m 2+8>0,即m 2<2k 2+1,(*)因为原点O 总在以PQ 为直径的圆的内部, 所以OP ·OQ <0, 即x 1x 2+y 1y 2<0,又y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=m 2-2k 22k 2+1,由2m 2-22k 2+1+m 2-2k 22k 2+1<0得m 2<23k 2+23, 依题意且满足(*)得m 2<23, 故实数m 的取值范围是⎝⎛⎭⎫-63,63. 12.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =32,连接椭圆的四个顶点得到的菱形的面积为4. (1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点A ,B .已知点A 的坐标为(-a,0),点Q (0,y 0)在线段AB 的垂4,求y 0的值. 解:(1)由e =c a =32,得3a 2=4c 2. 再由c 2=a 2-b 2,得a =2b .由题意可知12×2a ×2b =4,即ab =2. 解方程组⎩⎪⎨⎪⎧a =2b ,ab =2,得a =2,b =1. 所以椭圆的方程为x 24+y 2=1. (2)由(1)可知A (-2,0).设B 点的坐标为(x 1,y 1),直线l 的斜率为k ,则直线l 的方程为y =k (x +2).联立方程组⎩⎪⎨⎪⎧y =k ?x +2?,x 24+y 2=1消去y 并整理,得 (1+4k 2)x 2+16k 2x +(16k 2-4)=0.由-2x 1=16k 2-41+4k 2,得x 1=2-8k 21+4k 2. 从而y 1=4k 1+4k 2. 设线段AB 的中点为M ,则M 的坐标为⎝⎛⎭⎫-8k 21+4k 2,2k 1+4k 2. 以下分两种情况:①当k =0时,点B 的坐标为(2,0),线段AB 的垂直平分线为y 轴,(-2,-y 0)(2,-y 0).4,得y 0=±22.②当k ≠0时,线段AB 的垂直平分线方程为y -2k 1+4k 2=-1k ⎝⎛⎭⎫x +8k 21+4k 2. 令x =0,解得y 0=-6k 1+4k 2. 由=(-2,-y 0),=(x 1,y 1-y 0). ·=-2x 1-y 0(y 1-y 0)=-2×?2-8k 2?1+4k 2+6k 1+4k 2⎝⎛⎭⎫4k 1+4k 2+6k 1+4k 2 =4×?16k 4+15k 2-1??1+4k 2?2=4, 整理得7k 2=2,故k =±147.所以y 0=±2145. 综上,y 0=±22或y 0=±2145.。
直线与圆锥曲线的综合运用一、知识梳理1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0①直线与圆锥曲线相交;①Δ=0①直线与圆锥曲线相切;①Δ<0①直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点.①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;①若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=1+k2|x2-x1|=1+1k2|y2-y1|.3.过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线; 过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.二、课前预习1.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是____.2.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为____.3.直线mx +ny =4与①O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是____个.4.已知A 1,A 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,P 是椭圆C 上异于A 1,A 2的任意一点,若直线P A 1,P A 2的斜率的乘积为-49,则椭圆C 的离心率为____.5.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点)23,1(P ,离心率为12.(1) 求椭圆C 的方程. (2) 若斜率为32的直线l 与椭圆C 交于A ,B 两点,试探究OA 2+OB 2是否为定值?若为定值,求出此定值;若不是定值,请说明理由.三、典型例题题型一. 直线与圆锥曲线的位置关系例1已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.变式 在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.例2 如图,在平面直角坐标系xOy 中,已知焦点在x 轴上,离心率为12的椭圆E 的左顶点为A ,点A 到右准线的距离为6. (1)求椭圆E 的标准方程; (2)过点A 且斜率为32的直线与椭圆E 交于点B ,过点B 与右焦点F 的直线交椭圆E 于M 点,求M 点的坐标.题型二 弦长问题例3 如图,在平面直角坐标系xOy中,已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的离心率e =22,右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.变式 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4. (1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.BAOxy lP C题型三 定点问题例4 如图,在平面直角坐标系xOy中,离心率为2的椭圆:C 22221(0)x y a b a b+=>>的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与y 轴交于,M N 两点.若直线PQ斜率为2时,PQ = (1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.例5 已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :x 2+y 2-6x -2y +7=0相切.(1)求椭圆C 的方程;(2)若不过点A 的动直线l 与椭圆C 相交于P 、Q 两点,且AP →·AQ →=0,求证:直线l 过定点,并求出该定点N 的坐标.变式1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点1P (1,1),2P (0,1),)23,1(3 P ,)23,1(4P 中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.变式2 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上动点P 到一个焦点的距离的最小值为3(2-1).(1) 求椭圆C 的标准方程;(2) 已知过点M (0,-1)的动直线l 与椭圆C 交于A ,B 两点,试判断以线段AB 为直径的圆是否恒过定点,并说明理由.题型四 定值问题例6 已知椭圆)(:012222>>=+b a by a x C 的离心率为23,且过点),(12-P .(1)求椭圆C 的方程;(2)设点Q 在椭圆C 上,且PQ 与x 轴平行,过P 点作两条直线分别交椭圆C 于),(11y x A),(22y x B 两点,若直线PQ 平分APB ∠,求证:直线AB 的斜率是定值,并求出这个定值.变式 在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的焦距为2,离心率为22,椭圆的右顶点为A . (1)求该椭圆的方程;(2)过点(2,2)D -作直线PQ 交椭圆于两个不同点,P Q ,求证:直线,AP AQ 的斜 率之和为定值.例7 如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(0)a b >>,焦点到相应准线的距离为1. (1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =于点Q ,求2211OP OQ +的值.变式在平面直角坐标系xOy 中,已知圆222:O x y b +=经过椭圆222:14x y E b +=(02)b <<的焦点.(1)求椭圆E 的标准方程;(2)设直线:l y kx m =+交椭圆E 于,P Q 两点,T 为弦PQ 的中点,(1,0),(1,0)M N -,记直线,TM TN 的斜率分别为12,k k ,当22221m k -=时,求12k k ⋅的值.题型五 最值、范围问题例8 已知椭圆C :22221(0)x y a b a b+=>>的左焦点为F (-1,0),左准线方程为x =-2.(1) 求椭圆C 的标准方程;(2) 若椭圆C 上有A ,B 两点,满足OA ①OB (O 为坐标原点),求①AOB 面积的取值范围.例9 如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的左顶点为A ,点B 是椭圆C 上异于左、右顶点的任一点,P 是AB 的中点,过点B 且与AB 垂直的直线与直线OP 交于点Q ,已知椭圆C 的离心率为12,点A 到右准线的距离为6。
高三复习课圆锥曲线方程高考试题中,解析几何试题的分值一般占20%左右,而圆锥曲线的内容在试卷中所占比例又一直稳定在14%左右,选择、填空、解答三种题型均有.选择、填空题主要考查圆锥曲线的标准方程及几何性质等基础知识、基本技能和基本方法的运用;以圆锥曲线为载体的解答题设计中,重点是求曲线的方程和直线与圆锥曲线的位置关系讨论,它们是热中之热.解答题的题型设计主要有三类:(1)圆锥曲线的有关元素计算.关系证明或范围的确定;(2)涉及与圆锥曲线平移与对称变换、最值或位置关系的问题;(3)求平面曲线(整体或部分)的方程或轨迹.近年来,高考中解析几何综合题的难度有所下降.随着高考的逐步完善,结合上述考题特点分析,预测今后高考的命题趋势是:将加强对于圆锥曲线的基本概念和性质的考查,加强对于分析和解决问题能力的考查.因此,教学中要注重对圆锥曲线定义、性质、以及圆锥曲线基本量之间关系的掌握和灵活应用.高考第二阶段的复习,应在继续作好知识结构调整的同时,抓好数学基本思想、数学基本方法的提炼,进行专题复习;做好“五个转化”,即从单一到综合、从分割到整体、从记忆到应用、从慢速摸仿到快速灵活、从纵向知识到横向方法.这一复习过程,要充分体现分类指导、分类要求的原则,内容的选取一定要有明确的目的性和针对性,要充分发挥教师的创造性,更要充分考虑学生的实际,要密切注意学生的信息反馈,防止过分拔高,加重负担.因此,在圆锥曲线这一章的复习中,设计了分类复习、分层复习、层层递进的复习步骤.二、基础知识梳理(一)概念及性质1.椭圆及其标准方程第一定义、第二定义;标准方程(注意焦点在哪个轴上);椭圆的简单几何性质(a、b、c、e的几何意义,准线方程,焦半径);椭圆的参数方程x=acosθ,y=bsinθ,当点P在椭圆上时,可用参数方程设点的坐标,把问题转化为三角函数问题.2.双曲线及其标准方程:第一定义、第二定义(注意与椭圆类比);标准方程(注意焦点在哪个轴上);双曲线的简单几何性质(a、b、c、e的几何意义、准线方程、焦半径、渐近线). 3.抛物线及其标准方程:定义以及定义在解题中的灵活应用(抛物线上的点到焦点的距离问题经常转化为到准线的距离);标准方程(注意焦点在哪个轴上、开口方向、p 的几何意义)四种形式; 抛物线的简单几何性质(焦点坐标、准线方程、与焦点有关的结论). (二)常见结论、题型归类及应对思路:1.中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为Ax 2+Bx 2=1. 2.共渐近线x ab y ±=的双曲线标准方程为λλ(2222=-by ax 为参数,λ≠0).3.焦半径、焦点弦问题(1) 椭圆焦半径公式:在椭圆2222by a x +=1中,F 1、F 2分别左右焦点,P(x 0,y 0)是椭圆是一点,则:①|PF 1|=a+ex 0 ② |PF 2|=a-ex 0过椭圆12222=+by a x (a>b>0)左焦点的焦点弦为AB ,则)(221x x e a AB ++=,过右焦点的弦)(221x x e a AB +-=.(2)双曲线焦半径公式:设P (x 0,y 0)为双曲线12222=-by ax (a>0,b>0)上任一点,焦点为F 1(-c ,0),F 2(c ,0),则:①当P 点在右支上时,0201,ex a PF ex a PF +-=+=;②当P 点在左支上时,0201,ex a PF ex a PF -=--=;(e 为离心率) (3)抛物线焦半径公式:设P (x 0,y 0)为抛物线y 2=2px(p>0)上任意一点,F 为焦点,则20px PF +=;y 2=2px (p<0)上任意一点,F 为焦点,则20p x PF +-=;抛物线y 2=2px (p>0)的焦点弦(过焦点的弦)为AB ,A (x 1,y 1)、B(x 2,y 2),则有如下结论:①AB =x 1+x 2+p ;②y 1y 2=-p 2,x 1x 2=42p . (4)椭圆、双曲线的通径(最短弦)为a b 22,焦准距为p=cb 2,抛物线的通径为2p ,焦准距为p ; 双曲线12222=-by a x (a>0,b>0)的焦点到渐进线的距离为b. 4.直线和圆锥曲线相交时的一般弦长问题一般地,若斜率为k 的直线被圆锥曲线所截得的弦为AB , A 、B 两点分别为 A(x 1,y 1)、B(x 2,y 2),则弦长 ]4))[(1(1212212122x x x x k x x k AB -++=-⋅+=]4)[()11(11212212122y y y y ky y k -+⋅+=-⋅+=,这里体现了解析几何“设而不求”的解题思想. 5.中点弦问题处理椭圆、双曲线、抛物线的弦中点问题常用代点相减法,设A(x 1,y 1)、B(x 2,y 2)为椭圆12222=+by a x (a>b>0)上不同的两点,M(x 0,y 0)是AB 的中点,则K AB K OM =22a b -;对于双曲线12222=-by a x (a>0,b>0),类似可得:K AB K OM =22a b ;对于y 2=2px (p ≠0)抛物线有 K AB =212y y p +;另外,也可以用韦达定理来处理.6.求与圆锥曲线有关的轨迹问题的常用方法(1)直接法:直接通过建立x 、y 之间的关系,构成F(x ,y)=0,是求轨迹的最基本的方法;(2)定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程;(3)待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可;(4)代入法(相关点法或转移法):若动点P(x ,y)依赖于另一动点Q(x 1,y 1)的变化而变化,并且Q(x 1,y 1)又在某已知曲线上,则可先用x 、y 的代数式表示x 1、y 1,再将x 1、y 1带入已知曲线得要求的轨迹方程;(5)参数法:当动点P (x ,y )坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x 、y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程.三、重点、难点分析重点 圆锥曲线的概念、性质难点 圆锥曲线的概念、性质等的综合应用 四、课时安排第一课时 圆锥曲线的概念、性质类问题 第二课时 直线和圆锥曲线关系类问题 第三课时 与圆锥曲线有关的轨迹类问题说明:问题的类别、知识是相互联系的,因此课时分类也不是绝对的. 五、分课时讲解例题第一课时 圆锥曲线概念、性质类问题例1.(02北京)已知椭圆2222135x y m n +=和双曲线2222123x y m n -=有公共的焦点,那么双曲线 的渐近线方程是 ( )()A x y =()B y =()C x y =()D y x = 分析:本题主要考查圆锥曲线的几何性质,即椭圆、双曲线焦点求法和双曲线渐近线方程 求法.由双曲线方程判断出公共焦点在x轴上,∴椭圆焦点,双曲线焦点,∴22223523m n m n -=+,∴228m n =,又∵双曲线渐近线为y x =.∴代入228m n =,m n =,得4y x =±,∴选D. 例2.(02全国文11)设(0,)4πθ∈,则二次曲线x 2cot θ-y 2tan θ=1的离心率的取值范围为( )1()(0,)2A 1()(,22B ()(2C ()D +∞分析:本题主要考察三角函数和二次曲线的基本知识以及基本的推理计算技能.有一定的综合性,涉及的知识面比较大. 解一:因为(0,)4πθ∈,所以cot θ>0,tan θ>0,方程所表示的二次曲线是双曲线,离心率必然大于1.从而排除A 、B 、C ,得D.解二:依题设知二次曲线是双曲线,半实轴长a 和半虚轴长b 分别为a ==b ==所以半焦距c ,离心率为c e a ==因为(0,)4πθ∈,所以e 的取值范围为)+∞,选D .第二课时 直线和圆锥曲线关系类问题直线与圆锥曲线的位置关系,是高考考查的重中之重,在高考中多以高档题、压轴题出现.主要涉及弦长、弦中点、对称、参量的取值范围、求曲线方程等问题.解题中要充分重视韦达定理和判别式的应用,解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能.例3.<2004年天津高考·理工第22题,文史第22题[只做第(1)和(2)问],本小题满分14分> 椭圆的中心是原点O ,它的短轴长为F (c ,0)(0>c )的准线l 与x 轴相交于点A ,|OF|=2|FA|,过点A 的直线与椭圆相交于P 、Q 两点. (1)求椭圆的方程及离心率;(2)若0OP OQ ⋅=,求直线PQ 的方程;(3理工类考生做)设AP AQ λ=(1>λ),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明FM FQ λ=-.本小题主要考查椭圆的标准方程和几何性质,直线方程,平面向量的计算,曲线和方程的关系等解析几何的基本思想方法和综合解题能力.(I)解:由题意,可设椭圆的方程为22221(x y a a b+=>由已知得2222,2().a c a c c c ⎧-=⎪⎨=-⎪⎩解得2.a c =所以椭圆的方程为22162x y +=,离心率e =(II)解: 由(I)可得(3,0).A设直线PQ 的方程为(3).y k x =-由方程组22162(3)x y y k x ⎧+=⎪⎨⎪=-⎩得2222(31)182760.k x k x k +-+-= 依题意212(23)0,k ∆=->得k <<设 1122(,),(,),P x y Q x y 则212218,31k x x k +=+ ① 2122276..31k x x k -=+ ②由直线PQ 的方程得 1122(3),(3).y k x y k x =-=-于是2212121212(3)(3)[3()9].y y k x x k x x x x =--=-++ ③1212.0,0.OPOQ x x y y =∴+= ④ 由①②③④得251,k =从而(k = 所以直线PQ 的方程为30x -=或30.x -=(III)证明:1122(3,),(3,).AP x y AQ x y =-=-由已知得方程组1212221122223(3),,162 1.62x x y y x y x y λλ-=-⎧⎪=⎪⎪⎨+=⎪⎪+=⎪⎩ 注意1,λ>解得 251.2x λλ-= 因11(2,0),(,),F M x y -故112112(2,)((3)1,)11(,)(,).22FM x y x y y y λλλλλ=--=-+---=-=-而2221(2,)(,),2FQ x y y λλ-=-= 所以 .FM FQ λ=-例4.已知双曲线G 的中心在原点,它的渐近线与圆2210200x y x +-+=相切.过点()4,0P -作斜率为14的直线l ,使得l 和G 交于,A B 两点,和y 轴交于点C ,并且点P 在线段AB 上,又满足2PA PB PC ⋅=.(Ⅰ)求双曲线G 的渐近线的方程; (Ⅱ)求双曲线G 的方程;(Ⅲ)椭圆S 的中心在原点,它的短轴是G 的实轴.如果S 中垂直于l 的平行弦的中点的轨迹恰好是G 的渐近线截在S 内的部分,求椭圆S 的方程.讲解:(Ⅰ)设双曲线G 的渐近线的方程为:y kx =,则由渐近线与圆2210200x y x +-+=相=所以,12k =±.双曲线G 的渐近线的方程为:12y x =±.(Ⅱ)由(Ⅰ)可设双曲线G 的方程为:224x y m -=. 把直线l 的方程()144y x =+代入双曲线方程,整理得2381640x x m ---=.则8164, 33A B A B mx x x x ++==- (*)∵ 2PA PB PC ⋅=,,,,P A B C 共线且P 在线段AB 上,∴ ()()()2PA B P P C x x x x x x --=-,即:()()4416B A x x +--=,整理得:()4320A B A B x x x x +++= 将(*)代入上式可解得:28m =.所以,双曲线的方程为221287x y -=. (Ⅲ)由题可设椭圆S的方程为:(222128x y a a+=>.下面我们来求出S 中垂直于l 的平行弦中点的轨迹.设弦的两个端点分别为()()1122,,,M x y N x y ,MN 的中点为()00,P x y ,则2211222222128128x y a x y a ⎧+=⎪⎪⎨⎪+=⎪⎩. 两式作差得:()()()()12121212228x x x x y y y y a -+-++=由于12124y y x x -=--,1201202,2x x x y y y +=+= 所以,0024028x y a-=, 所以,垂直于l 的平行弦中点的轨迹为直线24028x ya-=截在椭圆S 内的部分.又由题,这个轨迹恰好是G 的渐近线截在S 内的部分,所以,211122a =.所以,256a =,椭圆S 的方程为:2212856x y +=. 点评:解决直线与圆锥曲线的问题时,把直线投影到坐标轴上(也即化线段的关系为横坐标(或纵坐标)之间的关系)是常用的简化问题的手段;有关弦中点的问题,常常用到“设而不求”的方法;判别式和韦达定理是解决直线与圆锥曲线问题的常用工具).第三课时 与圆锥曲线有关的轨迹类问题解析几何主要研究两大类问题:一是根据题设条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质.求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.解答轨迹问题时,若能充分挖掘几何关系,则往往可以简化解题过程. 例5.(2004. 福建理)(本小题满分12分)如图,P 是抛物线C :y=12x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程;(Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求||||||||SQ ST SP ST +的取值范围.本题主要考查直线、抛物线、不等式等基础知识,求轨迹方程的方法,解析几何的基本思想和综合解题能力. 解:(Ⅰ)设P(x 1,y 1),Q(x 2,y 2),M(x 0,y 0),依题意x 1≠0,y 1>0,y 2>0.由y=21x 2, ①得y '=x .∴过点P 的切线的斜率k 切= x 1,∴直线l 的斜率k l =-切k 1=-11x , ∴直线l 的方程为y -21x 12=-11x (x -x 1),方法一:联立①②消去y ,得x 2+12x x -x 12-2=0. ∵M 是PQ 的中点 x 0=221x x +=-11x , ∴ y 0=21x 12-11x (x 0-x 1). 消去x 1,得y 0=x 02+221x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y=x 2+221x +1(x ≠0).方法二: 由y 1=21x 12,y 2=21x 22,x 0=221x x +, 得y 1-y 2=21x 12-21x 22=21(x 1+x 2)(x 1-x 2)=x 0(x 1-x 2), 则x 0=2121x x y y --=k l =-11x , ∴x 1=-1x , 将上式代入②并整理,得y 0=x 02+221x +1(x 0≠0),∴PQ 中点M 的轨迹方程为y=x 2+221x +1(x ≠0).(Ⅱ)设直线l:y=kx+b ,依题意k ≠0,b ≠0,则T(0,b). 分别过P 、Q 作PP '⊥x 轴,QQ '⊥y 轴,垂足分别为P '、Q ',则=+||||||||SQ ST SP ST ||||||||||||||||21y b y b Q Q OT P P OT +='+'. y=21x 2 由 消去x ,得y 2-2(k 2+b)y+b 2=0. ③y=kx+by 1+y 2=2(k 2+b),则y 1y 2=b 2.方法一:∴=+||||||||SQ ST SP ST |b|(2111y y +)≥2|b|211y y =2|b|21b =2. ∵y 1、y 2可取一切不相等的正数, ∴||||||||SQ ST SP ST +的取值范围是(2,+∞). 方法二:∴||||||||SQ ST SP ST +=|b|2121y y y y +=|b|22)(2b b k +. 当b>0时,||||||||SQ ST SP ST +=b 22)(2b b k +=b b k )(22+=b k 22+2>2;当b<0时,||||||||SQ ST SP ST +=-b 22)(2bb k +=b b k -+)(22. 又由方程③有两个相异实根,得△=4(k 2+b)2-4b 2=4k 2(k 2+2b)>0,于是k 2+2b>0,即k 2>-2b. 所以||||||||SQ ST SP ST +>b b b -+-)2(2=2.∵当b>0时,bk 22可取一切正数,∴||||||||SQ ST SP ST +的取值范围是(2,+∞). 方法三:由P 、Q 、T 三点共线得k TQ =K TP , 即22x b y -=11x by -. 则x 1y 2-b x 1=x 2y 1-b x 2,即b(x 2-x 1)=(x 2y 1-x 1y 2).于是b =122212122121x x x x x x -⋅-⋅=-21x 1x 2. ∴||||||||SQ ST SP ST +=||||||||21y b y b +|1|21x x -+|1|21x x -||12x x +||21x x ≥2.∵||12x x 可取一切不等于1的正数, ∴||||||||SQ ST SP ST +的取值范围是(2,+∞). 下面是探究型的存在性问题:例6.(2004湖北理)(本小题满分12分)直线22:1:21l y kx C x y =+-=与双曲线的右支交于不同的两点A 、B.(I )求实数k 的取值范围;(II )是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.本小题主要考查直线、双曲线的方程和性质,曲线与方程的关系,及其综合应用能力. 解:(Ⅰ)将直线22121,l y kx C x y =+-=的方程代入双曲线的方程后整理得22(2)220.k x kx -++=……①依题意,直线l 与双曲线C 的右支交于不同两点,故.22.022022,0)2(8)2(,0222222-<<-⎪⎪⎪⎩⎪⎪⎪⎨⎧>->-->--=∆≠-k k k k k k k k 的取值范围是解得(Ⅱ)设A 、B 两点的坐标分别为11(,)x y 、22(,)x y ,则由①式得⎪⎪⎩⎪⎪⎨⎧-=⋅-=+.22,22222221k x x k k x x ……② 假设存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F (c,0).则由FA ⊥FB 得:.0)1)(1())((.0))((21212121=+++--=+--kx kx c x c x y y c x c x 即整理得.01))(()1(221212=+++-++c x x c k x x k ……③把②式及2c =代入③式化简得 .066252=-+k k解得66(2,)55k k =-=∉-舍去可知65k +=-使得以线段AB 为直径的圆经过双曲线C 的右焦点. 高考中的探索性问题主要考查学生探索解题途径,解决非传统完备问题的能力,是命题者根据学科特点,将数学知识有机结合并赋予新的情境创设而成的,要求考生自己观察、分析、创造性地运用所学知识和方法解决问题.四、思维能力训练(一)选择题1.(04年天津理4、文5)设P 是双曲线22219x y a -=上一点,双曲线的一条渐近线方程为1320,x y F -=、F2分别是双曲线的左、右焦点,若1||3PF =,则2||PF = ( )A. 1或5B. 6C. 7D. 92.(04重庆高考理10、文10)已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为 ( )A .43B .53C .2D .733.(04湖北理)已知椭圆221169x y +=的左、右焦点分别为F 1、F 2,点P 在椭圆上,若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为 ( )A .95B .3CD .94 4.(04 福建理)如图,B 地在A 地的正东方向4 km 处,C地在B 地的北偏东30°方向2 km 处,河流的没岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2 km.现要在曲线PQ 上选一处M 建一座码头,向B 、C 两地转运货物.经测算,从M 到B 、M 到C 修建公路的费用分别是a 万元/km 、2a 万元/km ,那么修建这两条公路的总费用最低是( )A .(27-2)a 万元B .5a 万元C .(27+1) a 万元D .(23+3) a 万5.(04 辽宁卷)已知点(2,0)A -、(3,0)B ,动点2(,)P x y PA PB x ⋅= 满足,则点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线6.[04全国(山东山西河南河北江西安徽)理8、文8]设抛物线y2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是 ( )A .[-12,12] B .[-2,2] C .[-1,1] D .[-4,4] (二)填空题1.(2004年重庆高考·理工类第16题)对任意实数K ,直线:y kx b =+与椭圆:)20(sin 41c o s 23πθθθ<≤⎩⎨⎧+=+=y x 恒有公共点,则b 取值范围是_______________.2.(2004年湖南高考·理工类第16题)设F 是椭圆22176x y +=的右焦点,且椭圆上至少有21个不同的点Pi (i=1,2,3,…),使|FP 1|,|FP 2|,|FP 3|,…组成公差为d 的等差数列,则d 的取值范围为 .(三)解答题1.设抛物线过定点()1,0A -,且以直线1x =为准线.(Ⅰ)求抛物线顶点的轨迹C 的方程;(Ⅱ)若直线l 与轨迹C 交于不同的两点,M N ,且线段MN 恰被直线12x =-平分,设弦MN 的垂直平分线的方程为y kx m =+,试求m 的取值范围.2.(2004. 辽宁卷)(本小题满分12分) 设椭圆方程为2214y x +=,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点, 点P 满足1()2OP OA OB =+ ,点N 的坐标为11(,)22,当l 绕点M 旋转时,求: (1)动点P 的轨迹方程;(2)||NP 的最小值与最大值.3.已知常数0>a ,向量(0,)(1,0)c a i ==,,经过原点O 以c i λ+为方向向量的直线与经过定点(0,)A a 以2i c λ-为方向向量的直线相交于点P ,其中R ∈λ.试问:是否存在两个定点E F 、,使得PE PF +为定值,若存在,求出E F 、的坐标;若不存在,说明理由.五、小结圆锥曲线方程这章扩展开的内容比较多,比较繁杂,对学生来说不一定要把所有的结论一一记住,关键是掌握圆锥曲线的概念实质以及直线和圆锥曲线的关系.因此,在复习过程中要注意下述几个问题:(1)在解答有关圆锥曲线问题时,首先要考虑圆锥曲线焦点的位置,对于抛物线还应同时注意开口方向,这是减少或避免错误的一个关键,同时勿忘用定义解题.(2)在考查直线和圆锥曲线的位置关系或两圆锥曲线的位置关系时,可以利用方程组消元后得到二次方程,用判别式进行判.但对直线与抛物线的对称轴平行时,直线与双曲线的渐近线平行时,不能使用判别式,为避免繁琐运算并准确判断特殊情况,此时要注意用好分类讨论和数形结合的思想方法.画出方程所表示的曲线,通过图形求解.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.(3)求圆锥曲线方程通常使用待定系数法,若能据条件发现符合圆锥曲线定义时,则用定义求圆锥曲线方程非常简捷.在处理与圆锥曲线的焦点、准线有关问题,也可反用圆锥曲线定义简化运算或证明过程. 一般求已知曲线类型的曲线方程问题,可采用“先定形,后定式,再定量”的步骤.定形——指的是二次曲线的焦点位置与对称轴的位置;定式——根据“形”设方程的形式,注意曲线系方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m >0,n >0);定量——由题设中的条件找到“式”中特定系数的等量关系,通过解方程得到量的大小.(4)在解与焦点三角形(椭圆、双曲线上任一点与两焦点构成的三角形称为焦点三角形)有关的命题时,一般需使用正余弦定理、和分比定理及圆锥曲线定义.(5)要熟练掌握一元二次方程根的判别式和韦达定理在求弦长、中点弦、定比分点弦、弦对定点张直角等方面的应用.(6)求动点轨迹方程是解析几何的重点内容之一,它是各种知识的综合运用,具有较大的灵活性,求动点轨迹方程的实质是将“曲线”化成“方程”,将“形”化成“数”,使我们通过对方程的研究来认识曲线的性质. 求动点轨迹方程的常用方法有:直接法、定义法、几何法、代入转移法、参数法、交轨法等.解题时,注意求轨迹的步骤:建系、设点、列式、化简、确定点的范围.(7)参数方程和极坐标的内容,请大家熟练掌握公式,后用化归的思想转化到普通方程即可求解.高考是注重能力的考试,特别是学生运用数学知识和方法分析问题和解决问题的能力,更是考查的重点. 数学能力的提高在于解题的质量而非解题的数量,复习过程中要重在研究解题方向和策略、推理,要着眼抽象思维水平的提高.要善于从题目的条件和求解(或求证)的过程中提取有用的信息,作为于记忆系统中的数学认知结构,提取相关的知识,推动题目信息的延伸,归结到某个确定的数学关系,从而形成一个解题的行动序列,这就是解题方向.题目信息与不同数学知识的结合,可能会形成多个解题方向,先取其中简捷的路径,就得到题目的最优解法.解题过程中不断进行这样的思考和操作,将使数学能力得到有效地提高.。