九年级开学初数学质量检测
- 格式:doc
- 大小:142.50 KB
- 文档页数:5
山东省青岛4中2024年九年级数学第一学期开学检测试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,PA 、PB 分别与⊙O 相切于点A 、B ,若∠P=50°,则∠C 的值是()A .50°B .55°C .60°D .65°2、(4分)计算(ab 2)2的结果是()A .a 2b 4B .ab 4C .a 2b 2D .a 4b 23、(4分)下列说法中错误的是()A .直角三角形斜边上的中线等于斜边的一半B .等底等高三角形的面积相等C .三角形的中位线平行于第三边,并且等于第三边的一半D .如果三角形两条边的长分别是a 、b ,第三边长为c ,则有a 2+b 2=c 24、(4分)如图,中,是边上的高,若,,,则的长为()A .0.72B .1.125C .2D .不能确定5、(4分)如图,第一个正方形的顶点A 1(﹣1,1),B 1(1,1);第二个正方形的顶点A 2(﹣3,3),B 2(3,3);第三个正方形的顶点A 3(﹣6,6),B 3(6,6)按顺序取点A 1,B 2,A 3,B 4,A 5,B 6…,则第12个点应取点B 12,其坐标为()A .(12,12)B .(78,78)C .(66,66)D .(55,55)6、(4分)下列关于一元二次方程x 2+bx +c =0的四个命题①当c =0,b≠0时,这个方程一定有两个不相等的实数根;②当c≠0时,若p 是方程x 2+bx +c =0的一个根,则1p 是方程cx 2+bx +1=0的一个根;③若c <0,则一定存在两个实数m <n ,使得m 2+mb +c <0<n 2+nb +c ;④若p ,q 是方程的两个实数根,则p ﹣q ,其中是假命题的序号是()A .①B .②C .③D .④7、(4分)如图,已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111A B C D ;把正方形1111A B C D 边长按原法延长一倍得到正方形2222A B C D ;以此进行下去⋯,则正方形n n n n A B C D 的面积为()A .nB .n 5C .n 15-D .n 15+8、(4分)点M (-2,3)关于x 轴对称点的坐标为A .(-2,-3)B .(2,-3)C .(-3,-2)D .(2,3)二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)小玲在一次班会中参加知识抢答活动,现有语文题5道,数学题6道,综合题7道,她从中随机抽取1道,抽中数学题的概率是_________.10、(4分)如图,在菱形ABCD 中,AB =4,线段AD 的垂直平分线交AC 于点N ,△CND 的周长是10,则AC 的长为__________.11、(4分)我区有15所中学,其中九年级学生共有3000名.为了了解我区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题要经历的几个重要步骤进行排序.①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.则正确的排序为________(填序号)12、(4分)如图,四边形ABCD 是菱形,AC=24,BD=10,DH ⊥AB 于点H ,则线段BH的长为______.13、(4分)某公司招聘一名公关人员甲,对甲进行了笔试和面试,其面试和笔试的成绩分别为86分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为__分.三、解答题(本大题共5个小题,共48分)14、(12分)如图平面直角坐标系中,点A ,B 在x 轴上,AO BO =,点C 在x 轴上方,AC BC ⊥,30CAB ∠=︒,线段AC 交y 轴于点D ,DO =BD ,BD 平分ABC ∠,过点D 作DE AB ∥交BC 于E .(1)点C 的坐标为.(2)将ADO △沿线段DE 向右平移得A D O '''△,当点D ¢与E 重合时停止运动,记A D O '''△与DEB 的重叠部分面积为S ,点P 为线段BD 上一动点,当3S =时,求12CD D P PB ''++的最小值;(3)当A D O '''△移动到点D ¢与E 重合时,将A D O '''△绕点E 旋转一周,旋转过程中,直线BD 分别与直线A D ''、直线D O ''交于点G 、点H ,作点D 关于直线A D ''的对称点0D ,连接0D 、G 、H .当0GD H △为直角三角形时,直接写出....线段0D H 的长.15、(8分)如图,四边形ABCD 是平行四边形,E 、F 是对角线AC 上的两点,且AE =CF ,顺次连接B 、E 、D ,F .求证:四边形BEDF 是平行四边形.16、(8分)在直角坐标系中,直线l 1经过(2,3)和(-1,-3):直线l 2经过原点O,且与直线l 1交于点P(-2,a).(1)求a 的值;(2)(-2,a)可看成怎样的二元一次方程组的解?17、(10分)在四边形ABCD 中,E 、F 分别是边BC 、CD 的中点,连接AE,A F.(1)如图1,若四边形ABCD 的面积为5,则四边形AECF 的面积为____________;(2)如图2,延长AE 至G,使EG=AE ,延长A F 至H ,使FH=AF,连接BG、GH、HD、DB.求证:四边形B GHD 是平行四边形;(3)如图3,对角线AC 、BD 相交于点M ,AE 与BD 交于点P,AF 与BD 交于点N.直接写出BP、P M 、MN、ND 的数量关系.18、(10分)已知关于x 的方程53x m +﹣12x -=m 的解为非负数,求m 的取值范围.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于y ax by kx=+⎧=⎨⎩的二元一次方程组的解是______.20、(4分)如图,先画一个边长为1的正方形,以其对角线为边画第二个正方形,再以第二个正方形的对角线为边画第三个正方形,…,如此反复下去,那么第n个正方形的对角线长为_____.21、(4分)如图是某超市一层到二层电梯的示意图,其中AB、CD分别表示超市一层、二层电梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘电梯从点B到点C上升的高度h约为________米.22、(4分)如图,四边形ABCP是边长为4的正方形,点E在边CP上,PE=1;作EF∥BC,分别交AC、AB于点G、F,M、N分别是AG、BE的中点,则MN的长是_________.23、(4分)关于t 的分式方程m 5t 22t +--=1的解为负数,则m 的取值范围是______.二、解答题(本大题共3个小题,共30分)24、(8分)如图,已知过点B (1,0)的直线1l 与直线2l :24y x =+相交于点P (-1,a ).且l 1与y 轴相交于C 点,l 2与x 轴相交于A 点.(1)求直线1l 的解析式;(2)求四边形PAOC 的面积;(3)若点Q 是x 轴上一动点,连接PQ 、CQ ,当△QPC 周长最小时,求点Q 坐标.25、(10分)如图,ABC ∆在平面直角坐标系内,三个顶点的坐标分别为()1,5A -,()4,2B -,()2,2C -.(1)平移ABC ∆,使点B 移动到点()11,1B -,画出平移后的111A B C ∆,并写出点1A ,1C 的坐标;(2)画出ABC ∆关于原点O 对称的222A B C ∆;(3)线段1AA 的长度为______.26、(12分)已知在ABC ∆中,D 是BC 的中点,DE BC ⊥,垂足为D ,交AB 于点E ,且222BE AE AC -=.(1)求A ∠的度数;(2)若3DE =,4BD =,求AE 的长.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D 【解析】连接OA 、OB ,由已知的PA 、PB 与圆O 分别相切于点A 、B ,根据切线的性质得到OA ⊥AP ,OB ⊥PB ,从而得到∠OAP=∠OBP=90°,然后由已知的∠P 的度数,根据四边形的内角和为360°,求出∠AOB 的度数,最后根据同弧所对的圆周角等于它所对圆心角度数的一半即可得到∠C 的度数.【详解】解:连接OA 、OB ,∵PA 、PB 与圆O 分别相切于点A 、B ,∴OA ⊥AP ,OB ⊥PB ,∴∠OAP=∠OBP=90°,又∠P=50°,∴∠AOB=360°-90°-90°-50°=130°,又∵∠ACB 和∠AOB 分别是弧AB 所对的圆周角和圆心角,∴∠C=12∠AOB=12×130°=65°.故选:D .此题考查了切线的性质,以及圆周角定理.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题,同时要求学生掌握同弧所对的圆周角等于所对圆心角的一半.2、A【解析】根据积的乘方的运算法则计算即可得出答案.【详解】2224()ab a b故选:A .本题主要考查积的乘方,掌握积的乘方的运算法则是解题的关键.3、D 【解析】根据三角性有关的性质可逐一分析选项,即可得到答案.【详解】A 项正确,直角三角形斜边上的中线等于斜边的一半;B 项正确,等底等高三角形的面积相等;C 项正确,三角形的中位线平行于第三边,并且等于第三边的一半;D 项错误如果三角形两条边的长分别是a 、b ,第三边长为c ,则不一定是a 2+b 2=c 2,有可能不是直角三角形.本题考查了三角形的的性质、三角形的面积及勾股定理相关的知识,学生针对此题需要认真掌握相关定理,即可求解.4、A 【解析】先根据勾股定理的逆定理证明是直角三角形,根据计算直角三角形的面积的两种计算方法求出斜边上的高.【详解】,,,,,,,是边上的高,,,.故选.该题主要考查了勾股定理的逆定理、三角形的面积公式及其应用问题,解题的方法是运用勾股定理首先证明为直角三角形,解题的关键是灵活运用三角形的面积公式来解答.5、B 【解析】根据选点的规律,罗列出部分点的坐标,根据这些点的坐标找出规律“A n (-()12n n +,()12n n +),B n (()12n n +,()12n n +)(n 为正整数)”,再根据该规律解决问题.【详解】解:观察,发现规律:A 1(-1,1),B 1(1,1),A 2(-3,3),B 2(3,3),A 3(-6,6),B 3(6,6),B 4(10,10),A 5(-15,15),…,∴A n (-()12n n +,()12n n +),B n (()12n n +,()12n n +)(n 为正整数).∴B 12(()121212+,()121212+),即(78,78).故选B 本题考查了规律型中的点的坐标,解题的关键是找出规律“A n (-()12n n +,()12n n +),B n (()12n n +,()12n n +)(n 为正整数)”.本题属于中档题,难度不大,解决该题型题目时,根据选点的规律列出部分点的坐标,根据这些点的坐标发现规律是关键.6、D 【解析】根据一元二次方程根的判别式、方程的解的定义、二次函数与一元二次方程的关系、根与系数的关系判断即可.【详解】当c =0,b≠0时,△=b 2>0,∴方程一定有两个不相等的实数根,①是真命题;∵p 是方程x 2+bx+c =0的一个根,∴p 2+bp+c =0,∴1+b p +2c p =0,∴1p 是方程cx 2+bx+1=0的一个根,②是真命题;当c <0时,抛物线y =x 2+bx+c 开口向上,与y 轴交于负半轴,则当﹣2b <m <0<n 时,m 2+mb+c <0<n 2+nb+c ,③是真命题;p+q =﹣b ,pq =c ,(p ﹣q )2=(p+q )2﹣4pq =b 2﹣4c ,则|p ﹣q|=,④是假命题,故选:D .本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7、B 【解析】根据三角形的面积公式,可知每一次延长一倍后,得到的一个直角三角形的面积和延长前的正方形的面积相等,即每一次延长一倍后,得到的图形是延长前的正方形的面积的5倍,从而解答.【详解】解:如图,已知小正方形ABCD 的面积为1,则把它的各边延长一倍后,11AA D 的面积21212AB AB AB =⨯⨯==,新正方形1111A B C D 的面积是4115⨯+=,从而正方形2222A B C D 的面积为5525⨯=,以此进行下去⋯,则正方形n n n n A B C D 的面积为5n .故选:B .此题考查了正方形的性质和三角形的面积公式,能够从图形中发现规律,利用规律解决问题.8、A【解析】两点关于x 轴对称,那么让横坐标不变,纵坐标互为相反数即可.解:∵3的相反数是-3,∴点M(-2,3)关于x 轴对称点的坐标为(-2,-3),故答案为A 点评:考查两点关于x 轴对称的坐标的特点:横坐标不变,纵坐标互为相反数二、填空题(本大题共5个小题,每小题4分,共20分)9、13【解析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.【详解】解:抽中数学题的概率为615673=++,故答案为:13.本题考查了概率,正确利用概率公式计算是解题的关键.10、6【解析】∵菱形ABCD 中,AB=4,AD 的垂直平分线交AC 于点N ,∴CD=AB=4,AN=DN ,∵△CDN 的周长=CN+CD+DN=10,∴CN+4+AN=10,∴CN+AN=AC=6.故答案为6.11、②①④⑤③【解析】根据统计调查的一般过程:①问卷调查法……收集数据,②列统计表……整理数据,③画统计图……描述数据,所以解决上述问题要经历的及格重要步骤进行排序为:②设计调查问卷,①收集数据,④整理数据,⑤分析数据,③用样本估计总体,故答案为:②①④⑤③.12、5013【解析】解:∵四边形ABCD 是菱形,AC =24,BD =10,∴AO =12,OD =5,AC ⊥BD ,∴AD =AB =13,∵DH ⊥AB ,∴AO ×BD =DH ×AB ,∴12×10=13×DH ,∴DH =12013,∴BH =5013.故答案为:5013.13、87.1.【解析】根据加权平均数的含义和求法,可求出甲的平均成绩.【详解】面试和笔试的成绩分别为81分和90分,面试成绩和笔试成绩的权分别是1和4,∴甲的平均成绩为:64869087.61010⨯+⨯=(分).故答案为:87.1.考查加权平均数的计算,掌握加权平均数的计算方法是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)C (3,;(3)最小值为(3)D 3H 的值为-3或或1-1或+1.【解析】(1)想办法求出A ,D ,B 的坐标,求出直线AC ,BC 的解析式,构建方程组即可解决问题.(3)如图3中,设BD 交O′D′于G ,交A′D′于F .作PH ⊥OB 于H .利用三角形的面积公式求出点D 坐标,再证明PH=12PB ,把问题转化为垂线段最短即可解决问题.(3)在旋转过程中,符号条件的△GD 3H 有8种情形,分别画出图形一一求解即可.【详解】(1)如图1中,在Rt △AOD 中,∵∠AOD=93°,∠OAD=33°,∴OA=OD=6,∠ADO=63°,∴∠ODC=133°,∵BD 平分∠ODC ,∴∠ODB=12∠ODC=63°,∴∠DBO=∠DAO=33°,∴OA=OB=6,∴A (-6,3),D (3,,B (6,3),∴直线AC 的解析式为y=3,∵AC ⊥BC ,∴直线BC 的解析式为,由3y x y ⎧+⎪⎨⎪+⎩=,解得3x y ⎧⎪⎨⎪⎩==∴C (3,).(3)如图3中,设BD 交O′D′于G ,交A′D′于F .作PH ⊥OB 于H .∵∠FD′G=∠D′GF=63°,∴△D′FG 是等边三角形,∵S △D′FG 2D G '=,∴D′G=233,∴GD′=3,∴D′(3,),∵C (3,),∴=3,在Rt △PHB 中,∵∠PHB=93°,∠PBH=33°,∴PH=12PB ,∴CD'+D'P+12∴CD'+D'P+12PB 的最小值为.(3)如图3-1中,当D 3H ⊥GH 时,连接ED 3.∵ED=ED 3,EG=EG .DG=D 3G ,∴△EDG ≌△ED 3G (SSS ),∴∠EDG=∠ED 3G=33°,∠DEG=∠D 3EG ,∵∠DEB=133°,∠A′EO′=63°,∴∠DEG+∠BEO′=63°,∵∠D 3EG+∠D 3EO′=63°,∴∠D 3EO′=∠BEO′,∵ED 3=EB ,E=EH ,∴△EO′D 3≌△EO′B (SAS ),∴∠ED 3H=∠EBH=33°,HD 3=HB ,∴∠CD 3H=63°,∵∠D 3HG=93°,∴∠D 3GH=33°,设HD 3=BH=x ,则DG=GD 3=3x ,GH=x ,∵DB=1,∴3x+,∴-3.如图3-3中,当∠D 3GH=93°时,同法可证∠D 3HG=33°,易证四边形DED 3H 是等腰梯形,∵DE=ED 3=DH=1,可得D 3如图3-3中,当D 3H ⊥GH 时,同法可证:∠D 3GH=33°,在△EHD 3中,由∠D 3HE=15°,∠HD 3E=33°,ED 3=1,可得D 3H=1×14222+=+,如图3-1中,当D G ⊥GH 时,同法可得∠D 3HG=33°,设DG=GD 3=x ,则HD 3=BH=3x ,,∴3x+∴-3,∴D 3.如图3-5中,当D 3H ⊥GH 时,同法可得D 3-3.如图3-6中,当D G G ⊥GH 时,同法可得D 3.如图3-7中,如图当D 3H ⊥HG 时,同法可得D 3H=3+3.如图3-8中,当D 3G ⊥GH 时,同法可得HD 3-1.综上所述,满足条件的D 3H 的值为3或或或+1.此题考查几何变换综合题,解直角三角形,旋转变换,一次函数的应用,等边三角形的判定和性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会构建一次函数确定交点坐标,学会用分类讨论的思想思考问题.15、见解析【解析】首先连接BD ,交AC 于点O ,由四边形ABCD 是平行四边形,根据平行四边形的对角线互相平分,即可求得OA =OC ,OB =OD ,又由AE =CF ,可得OE =OF ,然后根据对角线互相平分的四边形是平行四边形得出结论.【详解】解:证明:连接BD ,交AC 于点O ,如图所示,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵AE =CF ,∴OA ﹣AE =OC ﹣CF ,即OE =OF ,∴四边形DEBF 是平行四边形.本题考查了平行四边形的判定与性质,此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.16、(1)a=-5;(2)可以看作二元一次方程组212.5y x y x =-⎧⎨=⎩的解.【解析】(1)首先利用待定系数法求得直线的解析式,然后直接把P 点坐标代入可求出a 的值;(2)利用待定系数法确定l 2得解析式,由于P (-2,a )是l 1与l 2的交点,所以点(-2,-5)可以看作是解二元一次方程组212.5y x y x =-⎧⎨=⎩所得.【详解】.解:(1)设直线1l 的解析式为y=kx+b ,将(2,3),(-1,-3)代入,233k b k b +=⎧⎨-+=-⎩,解得21k b =⎧⎨=-⎩,所以y=2x-1.将x=-2代入,得到a=-5;(2)由(1)知点(-2,-5)是直线1l 与直线2l 交点,则2l :y=2.5x ;因此(-2,a )可以看作二元一次方程组212.5y x y x =-⎧⎨=⎩的解.故答案为:(1)a=-5;(2)可以看作二元一次方程组212.5y x y x =-⎧⎨=⎩的解.本题综合考查待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及一次函数与二元一次方程组.17、(1)52(2)证明见解析(3)BP ND PM MN.【解析】(1)连接AC ,根据三角形中线把三角形分成两个面积相等的三角形进行解答即可得;(2)连接EF ,根据三角形中位线定理可得到BD 与GH 平行且相等,由此即可得证;(3)如图,延长PE 至点Q ,使EQ=EP ,连接CQ ,延长NF 至点O ,使OF=NG ,连接CO ,通过证明△BPE ≌△CQE 可得BP=CQ ,BP//CQ ,同理:CO=ND ,CO//ND ,从而可得Q 、C 、O 三点共线,继而通过证明△APM ∽△AQC ,可得PM :CQ=AM :AC ,同理:MN :CO=AM :AC ,即可得答案.【详解】(1)如图,连接AC ,则有S △ABC +S △ACD =S 四边形ABCD =5,∵E 、F 分别为BC 、CD 中点,∴S △AEC =12S △ABC ,S △AFC =12S △ADC ,∴S 四边形AECF =S △AEC +S △AFC =12S △ABC +12S △ADC =12S 四边形ABCD =52,故答案为:52;(2)如图,连接EF ,∵E 、F 分别是BC ,CD 的中点,∴EF ∥BD ,EF=12BD.,∵EG=AE ,FH=AF ,∴EF ∥GH ,EF=12GH.,∴BD ∥GH ,BD=GH.,∴四边形BGHD 是平行四边形;(3)如图,延长PE 至点Q ,使EQ=EP ,连接CQ ,延长NF 至点O ,使OF=NG ,连接CO ,在△BPE 和△CQE 中PE QE PEB QEC BE CE =⎧⎪∠=∠⎨⎪=⎩,∴△BPE ≌△CQE (SAS ),∴BP=CQ ,∠PBE=∠QCE ,∴BP//CQ ,同理:CO=ND ,CO//ND ,∴Q 、C 、O 三点共线,∴BD//OQ ,∴△APM ∽△AQC ,∴PM :CQ=AM :AC ,同理:MN :CO=AM :AC ,∴BP NDPM MN=.本题考查了三角形中线的性质、三角形中位线定理、平行四边形的判定、全等三角形的判定与性质、相似三角形的判定与性质等,综合性较强,熟练掌握相关知识、正确添加辅助线是解题的关键.18、m≥34【解析】分析:先按解一元一次方程的一般步骤解原方程得到用含m 的代数式表达的x 的值,再根据题意列出不等式,解不等式即可求得m 的取值范围.详解:解关于x 的方程:5132x m x m +--=,去分母得:102336x m x m +-+=,移项、合并同类项得:743x m =-,∴437m x -=又∵原方程的解为非负数,∴4307m x -=≥,解得:34m ≥,∴m 的取值范围是34m ≥.点睛:本题的解题要点是:(1)解关于x 的方程5132x m x m +--=得到:437m x -=,(2)由原方程的解为非负数列出不等式4307m -≥.一、填空题(本大题共5个小题,每小题4分,共20分)19、11x y =⎧⎨=⎩【解析】由图可知:两个一次函数的交点坐标为(1,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】解:∵函数y=ax+b 和y=kx 的图象的交点P 的坐标为(1,1),∴关于y ax b y kx =+⎧⎨=⎩的二元一次方程组的解是11x y =⎧⎨=⎩.故答案为11x y =⎧⎨=⎩.本题考查一次函数与二元一次方程组的关系,学生们认真认真分校即可.20、)n .【解析】第1个正方形的边长是1,;,对角线长为)2=2,第3个正方形的对角线长为()3;得出规律,即可得出结果.【详解】第1个正方形的边长是1;)2=2第3个正方形的边长是2,对角线长为=()3;…,∴第n )n ;)n .本题主要考查了正方形的性质、勾股定理;求出第一个、第二个、第三个正方形的对角线长,得出规律是解决问题的关键.21、1【解析】过点C 作CE ⊥AB ,交AB 的延长线于E ,∵∠ABC =150°,∴∠CBE =30°,在Rt △BCE 中,∵BC =12,∠CBE =30°,∴CE =BC =1.故答案是1.点睛:本题考查了含30°角的直角三角形的性质,解题的关键是作辅助线构造直角三角形.22、2.5【解析】先判断四边形BCEF 的形状,再连接FM FC 、,利用正方形的性质得出AFG 是等腰直角三角形,再利用直角三角形的性质得出12MN FC =即可.【详解】∵四边形ABCP 是边长为4的正方形,//EF BC ,∴四边形BCEF 是矩形,∵1PE =,∴3CE =,连接FM FC 、,如图所示:∵四边形ABCP 是正方形,∴=45BAC ∠,AFG 是等腰直角三角形,∵M 是AG 的中点,即有AM MG =,∴FM AG ⊥,FMC 是直角三角形,又∵N 是FC 中点,12MN FC =,∵5FC ==∴ 2.5MN =,故答案为:2.5.本题考查了正方形的性质,矩形的判定,等腰三角形和直角三角形的性质,解题的关键在于合理作出辅助线,通过直角三角形的性质转化求解.23、m <1【解析】分式方程去分母转化为整式方程,求出方程的解,由分式方程的解是负数确定出m 的范围即可.【详解】去分母得:m-5=t-2,解得:t=m-1,由分式方程的解为负数,得到m-1<0,且m-1≠2,解得:m <1,故答案为:m <1.此题考查了解分式方程以及解一元一次不等式,熟练掌握运算法则是解本题的关键.二、解答题(本大题共3个小题,共30分)24、(1)y=-x+1;(2)52;(3)点Q 坐标为(-13,0)时△QPC 周长最小【解析】(1)根据点P 在直线l 2上,求出P 的坐标,然后用待定系数法即可得出结论;(2)根据四边形∆∆=-PAB BOC PAOC S S S 计算即可;(3)作点C 关于x 轴对称点C ',直线C ’P 与x 轴的交点即为所求的点Q ,求出点Q 的坐标即可.【详解】(1)∵点P (-1,a )在直线l 2:y =2x +4上,∴2(1)4⨯-+=a ,即2a =,则P 的坐标为(-1,2),设直线1l 的解析式为:y kx b =+(0)k ≠,那么02k b k b +=⎧⎨-+=⎩,解得:11k b =-⎧⎨=⎩,∴1l 的解析式为:1y x =-+.(2)∵直线1l 与y 轴相交于点C ,∴C 的坐标为(0,1).又∵直线2l 与x 轴相交于点A ,∴A 点的坐标为(-2,0),则AB =3,而四边形∆∆=-PAB BOC PAOC S S S ,∴PAOC S 四边形1153211222=⨯⨯-⨯⨯=.(3)作点C 关于x 轴对称点C ′,易求直线C ′P :y =-3x -1.当y =0时,x =13-,∴点Q坐标为(13-,0)时,△QPC 周长最小.本题考查了一次函数的应用.掌握用待定系数法求一次函数的解析式、不规则图形面积的求法是解答本题的关键.25、(1)如图见解析,()14,2A ,()13,1C -;(2)如图见解析;【解析】(1)作出A 、C 的对应点A 1、C 1即可解决问题;(2)根据中心对称的性质,作出A 、B 、C 的对应点A 2、B 2、C 2即可;(3)利用两点之间的距离公式计算即可.【详解】(1)平移后的△A 1B 1C 1如图所示,点A 1(4,2),C 1(3,-1).(2)△ABC 关于原点O 对称的△A 2B 2C 2如图所示.(3)AA 1==.本题考查了平移变换、旋转变换、两点之间的距离公式等知识,解题的关键是正确作出对应点解决问题,属于中考常考题型.26、(1)90°(1)1.4【解析】(1)连接CE ,根据线段垂直平分线的性质转化线段BE 到△AEC 中,利用勾股定理的逆定理可求∠A 度数;(1)设AE =x ,则AC 可用x 表示,在Rt △ABC 中利用勾股定理得到关于x 的方程求解AE 值.【详解】(1)连接CE ,∵D 是BC 的中点,DE ⊥BC ,∴CE =BE .∵BE 1−AE 1=AC 1,∴AE 1+AC 1=CE 1.∴△AEC 是直角三角形,∠A =90°;(1)在Rt △BDE 中,BE 2.所以CE =BE =2.设AE =x ,则在Rt △AEC 中,AC 1=CE 1−AE 1,所以AC 1=12−x 1.∵BD =4,∴BC =1BD =3.在Rt △ABC 中,根据BC 1=AB 1+AC 1,即64=(2+x )1+12−x 1,解得x =1.4.即AE =1.4.本题主要考查了勾股定理及其逆定理,解题的关键是利用勾股定理求解线段长度,选择直角三角形借助勾股定理构造方程是解这类问题通用方法.。
湖南省醴陵市2024-2025学年九年级数学第一学期开学教学质量检测模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列事件中,必然事件是()A .“奉贤人都爱吃鼎丰腐乳”B .“2018年上海中考,小明数学考试成绩是满分150分”C .“10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”D .“在一副扑克牌中任意抽10张牌,其中有5张A ”2、(4分)已知两点的坐标分别是(-2,3)和(2,3),则说法正确的是()A .两点关于x 轴对称B .两点关于y 轴对称C .两点关于原点对称D .点(-2,3)向右平移两个单位得到点(2,3)3、(4分)如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A .23B .16C .13D .124、(4分)如图,在▱ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,若BG=,则△CEF 的面积是()A .BC .D .5、(4分)如图,矩形ABCD 的两条对角线相交于点O ,∠AOD=60°,AD=2,则AC 的长是()A .2B .4C .D .6、(4分)用配方法解一元二次方程2810x x --=时,下列变形正确的是()A .()2417x -=B .()2415x -=C .()2415x +=D .()2417x +=7、(4分)下列二次根式中,最简二次根式是()A .B C D .8、(4分)下列二次根式中,不是最简二次根式的是()A .B C D .二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD=_____度.10、(4分)如图,在平行四边形ABCD 中,以点A 为圆心,AB 长为半径画弧交AD 于点F ,再分别以点B 、F 为圆心,大于12BF 的相同长度为半径画弧,两弧交于点P ;连接AP 并延长交BC 于点E ,连接EF .若四边形ABEF 的周长为16,∠C =60°,则四边形ABEF 的面积是___.11、(4分)已知点P (x 1,y 1),Q (x 2,y 2)是反比例函数y =3x (x >0)图象上两点,若y 1>y 2,则x 1,x 2的大小关系是_____.12、(4分)满足a 2+b 2=c 2的三个正整数,称为勾股数.写出你比较熟悉的两组勾股数:①_____;②_____.13、(4分)已知分式方程21x x -+231x x -=72,设21x y x -=,那么原方程可以变形为__________三、解答题(本大题共5个小题,共48分)14、(12分)某石化乙烯厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:出厂价成本价排污处理费甲种塑料2100(元/吨)800(元/吨)200(元/吨)乙种塑料2400(元/吨)1100(元/吨)100(元/吨)另每月还需支付设备管理、维护费20000元(1)设该车间每月生产甲、乙两种塑料各x 吨,利润分别为y 1元和y 2元,分别求出y 1和y 2与x 的函数关系式(注:利润=总收入-总支出);(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨时,获得的总利润最大?最大利润是多少?15、(8分)如图1,已知矩形ABED ,点C 是边DE 的中点,且AB=2AD .(1)由图1通过观察、猜想可以得到线段AC 与线段BC 的数量关系为___,位置关系为__;(2)保持图1中的△ABC 固定不变,绕点C 旋转DE 所在的直线MN 到图2中的位置(当垂线AD 、BE 在直线MN 的同侧).试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明(第一问中得到的猜想结论可以直接在证明中使用);(3)保持图2中的△ABC 固定不变,继续绕点C 旋转DE 所在的直线MN 到图3中的位置(当垂线段AD 、BE 在直线MN 的异侧).试探究线段AD 、BE 、DE 长度之间有___关系.16、(8分)已知实数a ,b ,c 在数轴上的位置如图所示,化简:||a 17、(10分)某商场统计了每个营业员在某月的销售额,绘制了如下的条形统计图以及不完整的扇形统计图:解答下列问题:(1)设营业员的月销售额为x(单位:万元),商场规定:当x <15时为不称职,当15≤x <20时,为基本称职,当20≤x <25为称职,当x≥25时为优秀.则扇形统计图中的a =_____,b =_____.(2)所有营业员月销售额的中位数和众数分别是多少?(3)为了调动营业员的积极性,决定制定一个月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得营业员的半数左右能获奖,奖励标准应定为多少万元?并简述其理由.18、(10分)解方程①2x (x -1)=x -1;②(y+1)(y+2)=2B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在湖的两侧有A,B 两个消防栓,为测定它们之间的距离,小明在岸上任选一点C,并量取了AC 中点D 和BC 中点E 之间的距离为16米,则A,B之间的距离应为_________米.20、(4分)()03-=▲.21、(4分)如图,矩形ABCD 中,点E 、F 分别在AB 、CD 上,EF ∥BC ,EF 交BD 于点G.若EG =5,DF =2,则图中两块阴影部分的面积之和为______.22、(4分)已知关于x 的方程260x kx --=的一个根为2-,则实数k 的值为()A .1B .1-C .2D .2-23、(4分)不等式组623223x x x x a +>-⎧⎪+⎨<-⎪⎩恰有两个整数解,则实数a的取值范围是______.二、解答题(本大题共3个小题,共30分)24、(8分)(阅读理解)对于任意正实数a 、b ,∵20≥,∴0a b +-≥∴a b +≥,只有当a b =时,等号成立.(数学认识)在a b +≥a 、b 均为正实数)中,若ab 为定值k ,则a b +≥a b =时,+a b 有最小值(解决问题)(1)若0x >时,当x =_____________时,1x x +有最小值为_____________;(2)如图,已知点A 在反比例函数3(0)y x x =>的图像上,点B 在反比例函数1(0)y x x =->的图像上,//AB y 轴,过点A 作AD y ⊥轴于点D ,过点B 作BC y ⊥轴于点C .求四边形ABCD 周长的最小值.25、(10分)若抛物线上21y ax bx c =++,它与y 轴交于()0,4C ,与x 轴交于()1,0A -、(),0B k ,P 是抛物线上B 、C 之间的一点,(1)当4k =时,求抛物线的方程,并求出当BPC ∆面积最大时的P 的横坐标.(2)当1a =时,求抛物线的方程及B 的坐标,并求当BPC ∆面积最大时P 的横坐标.(3)根据(1)、(2)推断P 的横坐标与B 的横坐标有何关系?26、(12分)感知:如图①,在平行四边形ABCD 中,对角线AC 、BD 交于点O .过点O 的直线EF 分别交边AB 、CD 于点E 、F .易证:BOE DOF ∆∆≌(不需要证明).探究:若图①中的直线EF 分别交边CB 、AD 的延长线于点E 、F ,其它条件不变,如图②.求证:BOE DOF ∆∆≌.应用:在图②中,连结AE .若90ADB ∠=︒,10AB =,6AD =,12BE BC =,则EF 的长是__________,四边形AEBD 的面积是__________.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、“奉贤人都爱吃鼎丰腐乳”是随机事件;B、“2018年上海中考,小明数学考试成绩是满分150分”是随机事件;C、“10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”是必然事件;D、“在一副扑克牌中任意抽10张牌,其中有5张A”是不可能事件.故选C.本题考查了事件发生的可能性大小的判断.2、B【解析】几何变换.根据关于y轴对称的点坐标横坐标互为相反数,纵坐标相等,可得答案.【详解】解:∵两点的坐标分别是(-2,3)和(2,3),横坐标互为相反数,纵坐标相等,∴两点关于y轴对称,故选:B.本题考查了关于y轴对称的点坐标,利用关于y轴对称的点坐标横坐标互为相反数,纵坐标相等是解题关键.3、D【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵共6个数,大于3的有3个,∴P(大于3)=31 62 .故选D .点睛:本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n .4、A 【解析】解:∵AE 平分∠BAD ,∴∠DAE=∠BAE ;又∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠BEA=∠DAE=∠BAE ,∴AB=BE=6,∵BG ⊥AE ,垂足为G ,∴AE=2AG .在Rt △ABG 中,∵∠AGB=90°,AB=6,BG=,∴AG==2,∴AE=2AG=4;∴S △ABE =12AE•BG=142⨯⨯=∵BE=6,BC=AD=9,∴CE=BC ﹣BE=9﹣6=3,∴BE :CE=6:3=2:1,∵AB ∥FC ,∴△ABE ∽△FCE ,∴S △ABE :S △CEF =(BE :CE )2=4:1,则S △CEF =14S △ABE=.故选A .本题考查1.相似三角形的判定与性质;2.平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键.5、B 【解析】解:在矩形ABCD 中,OA=OC ,OB=OD ,AC=BD ,∴OA=OC .∵∠AOD=60°,∴△OAB 是等边三角形.∴OA=AD=1.∴AC=1OA=1×1=2.故选B .6、A 【解析】根据完全平方公式即可进行求解.【详解】∵()2281417x x x --=--=0∴方程化为()2417x -=故选A.此题主要考查配方法,解题的关键是熟知完全平方公式的应用.7、B 【解析】化简得到结果,即可做出判断.【详解】,不是最简二次根式;B 、是最简二次根式;C 、=7,不是最简二次根式;D =22,不是最简二次根式;故选:B.此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.8、C 【解析】根据最简二次根式的定义对各选项分析判断即可.【详解】解:A 是最简二次根式,不合题意,故本选项错误;B 、是最简二次根式,不合题意,故本选项错误;C =2不是最简二次根式,符合题意,故本选项正确;D 故选C .本题考查了最简二次根式的定义,根据定义,最简二次根式必须满足被开方数不含分母且不含能开得尽方的因数或因式.二、填空题(本大题共5个小题,每小题4分,共20分)9、30°【解析】根据旋转的性质得到∠BOD=45°,再用∠BOD 减去∠AOB 即可.【详解】∵将△AOB 绕点O 按逆时针方向旋转45°后,得到△COD ,∴∠BOD=45°,又∵∠AOB=15°,∴∠AOD=∠BOD -∠AOB=45°-15°=30°.故答案为30°.10、.【解析】由作法得AE 平分∠BAD ,AB=AF ,所以∠1=∠2,再证明AF=BE ,则可判断四边形AFEB为平行四边形,于是利用AB=AF 可判断四边形ABEF 是菱形;根据菱形的性质得AG=EG ,BF ⊥AE ,求出BF 和AG 的长,即可得出结果.【详解】由作法得AE 平分∠BAD ,AB =AF ,则∠1=∠2,∵四边形ABCD 为平行四边形,∴BE ∥AF ,∠BAF =∠C =60°,∴∠2=∠BEA ,∴∠1=∠BEA =30°,∴BA =BE ,∴AF =BE ,∴四边形AFEB 为平行四边形,△ABF 是等边三角形,而AB =AF ,∴四边形ABEF 是菱形;∴BF ⊥AE ,AG =EG ,∵四边形ABEF 的周长为16,∴AF =BF =AB =4,在Rt △ABG 中,∠1=30°,∴BG =12AB =2,AG =,∴AE =2AG =,∴菱形ABEF 的面积11422BF AE =⨯=⨯⨯=故答案为:本题考查了基本作图、平行四边形的性质与判定、菱形的判定与性质、等边三角形的判定与性质;证明四边形ABEF 是菱形是解题的关键.11、x 1<x 1.【解析】根据题目中的函数解析式可以判断函数图象在第几象限和y 随x 的变化趋势,从而可以解答本题.【详解】∵反比例函数y =3x (x >0),∴该函数图象在第一象限,y 随x 的增大而减小,∵点P (x 1,y 1),Q (x 1,y 1)是反比例函数y =3x (x >0)图象上两点,y 1>y 1,∴x 1<x 1,故答案为:x 1<x 1.本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.12、3,4,56,8,10【解析】根据勾股数的定义即可得出答案.【详解】∵3、4、5是三个正整数,且满足222345+=,∴3、4、5是一组勾股数;同理,6、8、10也是一组勾股数.故答案为:①3,4,5;②6,8,10.本题考查了勾股数.解题的关键在于要判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.13、3y y +=72【解析】【分析】运用整体换元法可得到结果.【详解】设21x y x -=,则分式方程21x x -+231x x -=72,可以变形为3y y +=72故答案为:3y y +=72【点睛】本题考核知识点:分式方程.解题关键点:掌握整体换元方法.三、解答题(本大题共5个小题,共48分)14、(1)1y与x的函数关系式为1y=1100x;2y与x的函数关系式为2y=1200x-20000;(2)该月生产甲、乙两种塑料分别为300吨和2吨时总利润最大,最大总利润是790000元.【解析】(1)因为利润=总收入﹣总支出,由表格可知,y1=(2100﹣800﹣200)x=1100x,y2=(22﹣1100﹣100)x﹣20000=1200x﹣20000;(2)可设该月生产甲种塑料x吨,则乙种塑料(700﹣x)吨,总利润为W元,建立W与x 之间的解析式,又因甲、乙两种塑料均不超过2吨,所以x≤2,700﹣x≤2,这样就可求出x的取值范围,然后再根据函数中y随x的变化规律即可解决问题.【详解】详解:(1)依题意得:y1=(2100﹣800﹣200)x=1100x,y2=(22﹣1100﹣100)x﹣20000=1200x﹣20000;(2)设该月生产甲种塑料x吨,则乙种塑料(700﹣x)吨,总利润为W元,依题意得:W=1100x+1200(700﹣x)﹣20000=﹣100x+1.∵400 700400xx≤⎧⎨-≤⎩,解得:300≤x≤2.∵﹣100<0,∴W随着x的增大而减小,∴当x=300时,W最大=790000(元).此时,700﹣x=2(吨).因此,生产甲、乙塑料分别为300吨和2吨时总利润最大,最大利润为790000元.本题需仔细分析表格中的数据,建立函数解析式,值得一提的是利用不等式组求自变量的取值范围,然后再利用函数的变化规律求最值这种方法.15、(1)AC=BC,AC⊥BC,;(2)DE=AD+BE,理由见解析;(3)DE=BE−AD.【解析】(1)根据矩形的性质及勾股定理,即可证得△ADC≌△BEC,根据全等三角形的性质即可得到结论;(2)通过证明△ACD≌△CBE,根据全等三角形的性质得出即可得线段AD、BE、DE长度之间的关系;(3)通过证明△ACD≌△CBE,根据全等三角形的性质得出即可得线段AD、BE、DE长度之间的关系.【详解】(1)AC=BC,AC⊥BC,在△ADC与△BEC中,AD BED E DC EC⎧=∠=∠=⎪⎨⎪⎩,∴△ADC≌△BEC(SAS),∴AC=BC,∠DCA=∠ECB.∵AB=2AD=DE,DC=CE,∴AD=DC,∴∠DCA=45°,∴∠ECB=45°,∴∠ACB=180°−∠DCA−∠ECB=90°.∴AC⊥BC,故答案为:AC=BC,AC⊥BC;(2)DE=AD+BE.理由如下:∵∠ACD=∠CBE=90°−∠BCE,在△ACD与△CBE中,ACD CBE ADC BEC AC BC∠=∠∠=∠=⎧⎪⎨⎪⎩,∴△ACD≌△CBE(AAS),∴AD=CE,DC=EB.∴DC+CE=BE+AD,即DE=AD+BE.(3)DE=BE−AD.理由如下:∵∠ACD=∠CBE=90°−∠BCE,在△ACD与△CBE中,ACD CBE ADC BEC AC BC ∠=∠∠=∠=⎧⎪⎨⎪⎩,∴△ACD ≌△CBE(AAS),∴AD=CE ,DC=EB.∴DC−CE=BE−AD ,即DE=BE−AD ,故答案为:DE=BE−AD.此题考查全等三角形的判定与性质,解题关键在于掌握判定定理.16、-a b 【解析】直接利用数轴判断得出:a<0,a+c<0,c-a<0,b>0,进而化简即可.【详解】由数轴,得0a <,0a c +<,0c a -<,0b >.则原式()a a c c a b a b =-++---=-.此题考查二次根式的性质与化简,数轴,解题关键在于利用数轴进行解答.17、(1)10;60;(2)中位数为21、众数为20;(3)奖励标准应定为21万元,理由见解析【解析】试题分析:(1)由统计图中的信息可知:不称职的有2人,占总数的6.7%,由此可得总人数为:2÷6.7%=30(人);而条形统计图中的信息显示:优秀的有3人,称职的有18人,由此可得3÷30×100%=10%,18÷30×100%=60%,即a=10,b=60;(2)由条形统计图可知,这组数据的众数为20,中位数是按大小排列后的第15和16个数据的平均数,而由第15和16个数据都是21可知中位数是21;(3)由题意可知:奖励标准应该定为21万元,因为由(2)可知,这组数据的中位数是21万,因此按要使一半左右的人获得奖励,应该以中位数作为奖励的标准.试题解析:(1)由统计图中信息可得:该商场进入统计的营业员总数=2÷6.7%=30(人);∵优秀的有3人,∴a%=3÷30×100%=10%,∴a=10;∵称职的有18人,∴b%=18÷30×100%=60%,∴b=60;(2)由条形统计图可知,这组数据的众数为20;由条件下统计图可知,这30个数据按从小到大排列后,第15个数和第16个数都是21,∴这组数据的中位数为21;(3)∵要使一半左右的人获得奖励,∴奖励标准应该以中位数为准,∴奖励标准应定为21万元.点睛:这是一道综合应用条形统计图和扇形统计图中的信息来解决相关问题的统计图,解题的关键是弄清两幅统计图中数据间的对应关系,再进行细心计算即可.18、(1)x1=1,x2=12;(2)y1=0,y2=-3【解析】【分析】()用因式分解法求解;(2)先去括号整理,再用因式分解法求解.【详解】解:①2x(x-1)=x-1(2x-1)(x-1)=0所以,2x-1=0或x-1=0所以,x1=1,x2=1 2;②(y+1)(y+2)=2y2+3y=0y(y+3)=0所以,y=0或y+3=0所以,y1=0,y2=-3【点睛】本题考核知识点:解一元二次方程.解题关键点:用因式分解法解方程.一、填空题(本大题共5个小题,每小题4分,共20分)19、32【解析】分析:可得DE 是△ABC 的中位线,然后根据三角形的中位线定理,可得DE∥AB,且AB=2DE,再根据DE 的长度为16米,即可求出A、B 两地之间的距离.详解:∵D、E 分别是CA,CB 的中点,∴DE 是△ABC 的中位线,∴DE∥AB,且AB=2DE,∵DE=16米,∴AB=32米.故答案是:32.点睛:本题考查了三角形的中位线定理的应用,解答本题的关键是:明确三角形的中位线平行于第三边,并且等于第三边的一半.20、1.【解析】针对零指数幂,二次根式化简和运算等考点分别进行计算,然后根据实数的运算法则求得计算结果:()03-.21、1.【解析】由矩形的性质可得S △EBG =S △BGN ,S △MDG =S △DFG ,S △ABD =S △BDC ,S △AEG =12S 四边形AEGM ,S △FGC =12S 四边形GFCN ,可得S 四边形AEGM =S 四边形GFCN ,可得S △AEG =S △FGC =5,即可求解.【详解】解:如图,过点G 作MN ⊥AD 于M ,交BC 于N ,∵EG=5,DF=2,∴S △AEG =12×5×2=5∵AD ∥BC ,MN ⊥AD ∴MN ⊥BC ,且∠BAD=∠ADC=∠DCB=∠ABC=90°,EF ∥BC ,易证:四边形AMGE 是矩形,四边形MDFG 是矩形,四边形GFCN 是矩形,四边形EGNB 是矩形∴S △EBG =S △BGN ,S △MDG =S △DFG ,S △ABD =S △BDC ,S △AEG =12S 四边形AEGM ,S △FGC =12S 四边形GFCN ,∴S 四边形AEGM =S 四边形GFCN ,∴S △AEG =S △FGC =5∴两块阴影部分的面积之和为1.故答案为:1.本题考查矩形的性质,证明S △AEG =S △FGC =5是解题的关键.22、A 【解析】根据一元二次方程的根的定义,将根代入进行求解.【详解】∵x =−2是方程的根,由一元二次方程的根的定义,可得(−2)2+2k −6=0,解此方程得到k =1.故选:A.考查一元二次方程根的定义,使方程左右两边相等的未知数的值就是方程的解,又叫做方程的根.23、4533a ≤<【解析】首先利用不等式的基本性质解不等式组,从不等式的解集中找出适合条件的整数解,再进一步确定字母的取值范围即可.【详解】解:对于623223x x x x a +>-⎧⎪⎨+<-⎪⎩①②,解不等式①得:9x <,解不等式②得:32x a >+,因为原不等式组有解,所以其解集为329a x +<<,又因为原不等式组恰有两个整数解,所以其整数解应为7,8,所以实数a 应满足6327a ≤+<,解得4533a ≤<.故答案为4533a ≤<.本题考查了不等式组的解法和整数解的确定,解题的关键是熟练掌握不等式的基本性质,尤其是性质3,即不等式的两边都乘以或除以一个负数时,不等号的方向要改变,这在解不等式时要随时注意.二、解答题(本大题共3个小题,共30分)24、(1)1,1;(1)2.【解析】(1)根据题意,利用完全平方式即可求解;(1)根据反比例函数的解析式,设出A 和B 的坐标,然后表示出周长,再根据上面的知识求解即可;【详解】解:(1)1,1.(1)解:设3(,)A a a ,则1(,B a a -,∴四边形ABCD 周长42()a a =+2428⨯=⨯= .∴四边形ABCD 周长的最小值为2.此题属于反比例函数综合题,考查了几何不等式的应用,理解在a b +≥(a,b 均为正实数)中,若ab 为定值k ,则a b +≥只有当a=b 时,a+b 有最小值.25、(1)2;(2)-2;(3)P 的横坐标等于B 的横坐标的一半【解析】(1)将k=4代入21y ax bx c =++化成交点式,然后将C (0,4)代入确定a 的值,求得B 点坐标,连接OP ;设()2,34P m m m -++,即可求出△BCP 的面积表达式,然后求最值即可.(2)设24y x bx =++,将()1,0A -代入得5b =,得到二次函数解析式;令y=0,求出直线BC 所在的直线方程;过P 作PH 平行于y 轴,交直线BC 于H ,设()2,54P n n n ++、(),4H n n +,求出△BCP 的面积表达式,然后求最值即可.(3)由(1)(2)的解答过程,进行推断即可.【详解】解:(1)4k =时,由交点式得()()14y a x x =+-,()0,4代入得1a =-,∴234y x x =-++,∵k=4∴B 点坐标()4,0;连OP ,设()2,34P m m m -++,BCP OPB OPC OBC S S S S ∆∆∆∆=+-()2434444222m m m -++⋅=+-()2228m =--+2m =时,最大值为8,∴P 的横坐标为2时有最大值.(2)当1a =时,4c =,设24y x bx =++,()1,0A -代入得5b =,∴254y x x =++.令0y =求得()4,0B -,易求直线BC 方程为4y x =+,过P 作PH 平行于y 轴交直线BC 于H ,设()2,54P n n n ++、(),4H n n +,12PBC S PH OB ∆=⋅()2145442n n n =+---⋅()2228n =-++2n =-面积最大值为8,此时P 的横坐标为-2.(3)根据(1)(2)得,面积最大时P 的横坐标等于B 的横坐标的一半.本题考查了二次函数图像的性质,解题的关键在于根据题意确定△BPC 面积的表达式.26、探究:证明见解析;应用:10,26【解析】探究:根据平行四边形的性质得到AB ∥CD ,OB =OD ,根据AAS 可证明△BOE ≌△DOF .应用:根据平行四边形的性质、梯形的面积公式计算即可.【详解】探究:如图②.∵四边形ABCD 是平行四边形,∴AD ∥BC ,OD =OB ,∴∠ODF =∠OBE ,∠E =∠F .在△BOE 和△DOF 中,∵OBE ODF E F OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOE ≌△DOF (AAS ).应用:∵∠ADB =90°,AB =10,AD =6,∴BD ==1.∵BE =12BC ,BC =AD =6,∴BE =2.∵AD ∥BE ,∴BD ⊥CE .在Rt △OBE 中,OB 12=BD =4,BE =2,∴OE =5,由探究得:△BOE ≌△DOF ,∴OE =OF =5,∴EF =10,四边形AEBD 的面积()()1136822AD BE BD =+⋅=+⨯=26.故答案为:10,26.本题是四边形的综合题,考查的是平行四边形的性质、勾股定理、梯形的面积计算,掌握平行四边形的性质定理是解题的关键.。
江西省新余九中学2024-2025学年九年级数学第一学期开学质量检测模拟试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)五箱梨的质量(单位:千克)分别为:18,20,21,18,19,则这五箱梨质量的中位数和众数分是()A .20和18B .20和19C .18和18D .19和182、(4分)已知等腰三角形的底角为65°,则其顶角为()A .50°B .65°C .115°D .50°或65°3、(4分)把直线y=-x+1向上平移3个单位长度后得到的直线的解析式为()A .4y x =-+B .2y x =--C .4y x =+D .2y x =-4、(4分)在下列各组数中,是勾股数的是()A .1、2、3B .2、3、4C .3、4、5D .4、5、65、(4分)下列式子中,表示y 是x 的正比例函数的是()A .y=2x 2B .y=C .y=D .y 2=3x 6、(4分)为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()中位数众数平均数方差9.29.39.10.3A .中位数B .众数C .平均数D .方差7、(4分)如图,矩形,ABCD E 是BA 延长线上一点,F 是CE 上一点,,.ACF AFC FAE FEA ∠=∠∠=∠若24,ACB ∠=︒则ECD ∠的度数是()A .21o B .22o C .23D .248、(4分)若从n 边形的一个顶点出发,最多可以作3条对角线,则该n 边形的内角和是()A .540︒B .720︒C .900︒D .1080︒二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在反比例函数()40y x x =>的图象上有四个点A ,B ,C ,D ,它们的横坐标依次为a ,2a ,3a ,4a ,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和为______.10、(4分)根据图中的程序,当输入5x =时,输出的结果y =______.11、(4分)我们知道:当2x =时,不论k 取何实数,函数(2)3y k x =-+的值为3,所以直线(2)3y k x =-+一定经过定点(2,3);同样,直线(2)3y k x k =-+一定经过的定点为______.12、(4分)如图,直线y=﹣2x+2与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO′B′,则直线AB′的函数解析式是_____.13、(4分)已知一元二次方程:2x 2+5x+1=0的两个根分别是x 1、x 2,则221212x x x x +=________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,将矩形纸沿着CE 所在直线折叠,B 点落在B’处,CD 与EB’交于点F ,如果AB=10cm ,AD=6cm ,AE=2cm ,求EF 的长。
福建省2024年数学九上开学质量检测试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)某校八(5)班为筹备班级端午节纪念爱国诗人屈原联谊会,班长对全班学生爱吃哪几种水果作了民意调查,最终决定买哪些水果.下面的调查数据中您认为最值得关注的是()A .中位数B .平均数C .众数D .方差2、(4分)如图,△ABC 的周长为17,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为点N ,∠ACB 的平分线垂直于AD ,垂足为点M ,若BC =6,则MN 的长度为()A .32B .2C .52D .33、(4分)代数式2x ,3a b +,x+3y ,1x y -中分式有()A .1个B .2个C .3个D .4个4、(4分)如图所示的四边形,与选项中的四边形一定相似的是()A .B .C .D .5、(4分)在平面直角坐标系中,点M (﹣2,1)在()A .第一象限B .第二象限C .第三象限D .第四象限6、(4分)一个正多边形每个外角都是30°,则这个多边形边数为()A .10B .11C .12D .137、(4分)已知一组数据a .b .c 的平均数为5,方差为4,那么数据2a -,2b -,2c -的平均数和方差分别是()A .3,2B .3,4C .5,2D .108、(4分)下列调查中,最适合采用抽样调查的是()A .对某地区现有的16名百岁以上老人睡眠时间的调查B .对“神舟十一号”运载火箭发射前零部件质量情况的调查C .对某校九年级三班学生视力情况的调查D .对某市场上某一品牌电脑使用寿命的调查二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:S 甲2=2,S 乙2=1.5,则射击成绩较稳定的是(填“甲”或“乙“).10、(4分)一次函数y=kx+b 的图象如图所示,若点A(3,m)在图象上,则m 的值是__________.11、(4分)定义运算“★”:对于任意实数,a b ,都有2a b a b =+å,如:224248=+=å.若(1)37x -=å,则实数x 的值是_____.12、(4分)勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”.中国是发现和研究勾股定理最古老的国家之一.中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理.三国时期吴国赵爽创制了“勾股圆方图”(如图)证明了勾股定理.在这幅“勾股圆方图”中,大正方形ABCD 是由4个全等的直角三角形再加上中间的那个小正方形EFGH 组成的.若小正方形的边长是1,每个直角三角形的短的直角边长是3,则大正方形ABCD 的面积是_____.13、(4分).三、解答题(本大题共5个小题,共48分)14、(12分)(1)﹣3|+2sin45(﹣12)﹣1(2)(1122x x +-+)÷2244x x x -+15、(8分)在ABCD 中,60D ∠=︒,4AD DC ==,动点M 以每秒1个单位的速度从点A 出发运动到点B ,点N 以相同的速度从点B 出发运动到点C ,两点同时出发,过点M 作MP CD ⊥交直线CD 于点P ,连接NM 、NP ,设运动时间为t 秒.(1)当2t =和3t =时,请你分别在备用图1,备用图2中画出..符合题意的图形;(2)当点P 在线段CD 上时,求t 为何值时,以A 、M 、C 、P 为顶点的四边形是平行四边形;(3)当点P 在线段DC 的延长线上时,是否存在某一时刻t 使90PMC ∠=︒,若存在,请求出t 的值;若不存在,请说明理由.16、(8分)如图,在△ABC 中,点D 是AB 的中点,点F 是BC 延长线上一点,连接DF ,交AC 于点E ,连接BE ,∠A=∠ABE .(1)求证:DF 是线段AB 的垂直平分线;(2)当AB=AC ,∠A=46°时,求∠EBC 及∠F 的度数.17、(10分)为了预防流感,某学校在休息日用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y 与t 之间的函数解析式为y=(a 为常数),如图所示.根据图中提供的信息,解答下列问题:(1)写出从释放药物开始,y 与t 之间的两个函数解析式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.25mg 以下时,学生方可进入教室,那么药物释放开始,至少需要经过多少小时,学生才能进入教室?18、(10分)已知y +6与x 成正比例,且当x =3时,y =-12,求y 与x 的函数关系式.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)某鞋店试销一种新款女鞋,销售情况如下表所示:型号2222.52323.52424.525数量(双)351015832鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A .平均数B .众数C .中位数D .方差20、(4分)如图,一次函数 2 4y x =-+的图象交x 轴于点A ,交y 轴于点B ,点P 在线段AB 上,过点P 分别作PD x ⊥轴于点D ,PC y ⊥轴于点C .若矩形OCPD 的面积为32,则P 点的坐标为______.21、(4分)如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .22、(4分)因式分解:3222x x y xy +=﹣__________.23、(4分)观察:①)231-=,②25-=-,③(272-=-,…,请你根据以上各式呈现的规律,写出第6个等式:__________.二、解答题(本大题共3个小题,共30分)24、(8分)菱形ABCD 中,两条对角线AC 、BD 相交于点O,点E 和点F 分别是BC 和CD上一动点,且∠EOF+∠BCD=180°,连接EF.(1)如图2,当∠ABC=60°时,猜想三条线段CE 、CF 、AB 之间的数量关系___;(2)如图1,当∠ABC=90°时,若AC=4,BE=,求线段EF 的长;(3)如图3,当∠ABC=90°,将∠EOF 的顶点移到AO 上任意一点O ′处,∠EO ′F 绕点O ′旋转,仍满足∠EO ′F+∠BCD=180°,O ′E 交BC 的延长线一点E,射线O ′F 交CD 的延长线上一点F,连接EF 探究在整个运动变化过程中,线段CE 、CF,O ′C 之间满足的数量关系,请直接写出你的结论.25、(10分)在△ABC 中,∠C =90°,AC =6,BC =8,D 、E 分别是斜边AB 和直角边CB 上的点,把△ABC 沿着直线DE 折叠,顶点B 的对应点是B ′.(1)如图(1),如果点B ′和顶点A 重合,求CE 的长;(2)如图(2),如果点B ′和落在AC 的中点上,求CE 的长.26、(12分)如图,已知双曲线ky x ,经过点D (6,1),点C 是双曲线第三象限上的动点,过C 作CA ⊥x 轴,过D 作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC .(1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式;(3)判断AB 与CD 的位置关系,并说明理由.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C 【解析】根据平均数、中位数、众数、方差的意义进行分析选择.【详解】解:平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是为筹备班级端午节纪念爱国诗人屈原联谊会做准备,那么买的水果肯定是大多数人爱吃的才行,故最值得关注的是众数.故选:C .此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.2、C 【解析】证明BNA BNE ≅,得到BA BE =,即BAE △是等腰三角形,同理CAD 是等腰三角形,根据题意求出DE ,根据三角形中位线定理计算即可.【详解】BN 平分ABC ∠,BN AE ⊥,ABN EBN ∴∠=∠,ANB ENB ∠=∠,在BNA 和BNE 中,ABN EBNBN BN ANB ENB∠=∠⎧⎪=⎨⎪∠=∠⎩,BNA BNE ∴≅,BA BE ∴=,BAE ∴是等腰三角形,同理CAD 是等腰三角形,∴点N 是AE 中点,点M 是AD 中点(三线合一),MN ∴是ADE 的中位线,17611BE CD AB AC +=+=-=,1165DE BE CD BC ∴=+-=-=,1522MN DE ∴==.故选C .本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.3、A 【解析】直接利用分式的定义分析得出答案.【详解】解:代数式2x ,3a b+,x+3y ,1x y -中分式有:1x y -.故选A .本题考查了分式的定义,正确把握定义是解题关键.4、D 【解析】根据勾股定理求出四边形ABCD 的四条边之比,根据相似多边形的判定方法判断即可.【详解】作AE ⊥BC 于E ,则四边形AECD 为矩形,∴EC =AD =1,AE =CD =3,∴BE =4,由勾股定理得,AB =5,∴四边形ABCD 的四条边之比为1:3:5:5,D 选项中,四条边之比为1:3:5:5,且对应角相等,故选:D .此题考查相似多边形的判定定理,两个多边形的对应角相等,对应边成比例,则这两个多边形相似,此题求出多边形的剩余边长是解题的关键,利用矩形的性质定理,勾股定理求出边长.5、B 【解析】∵点P 的横坐标为负,纵坐标为正,∴该点在第二象限.故选B .6、C 【解析】根据多边形的边数等于360°除以每一个外角的度数列式计算即可得解.解答:360°÷30°=1.故选C.“点睛”本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.7、B 【解析】根据数据a,b,c 的平均数以及方差即可求出a-2,b-2,c-2的平均数和方差.【详解】∵数据a,b,c 的平均数是5,∴()153a b c ++=,∴()()11222252333a b c a b c -+-+-=++-=-=,∴数据a-2,b-2,c-2的平均数是3,∵数据a,b,c 的方差为4,∴()()()222155543a b c ⎡⎤-+-+-=⎣⎦∴a-2,b-2,c-2的方差()()()222123232343a b c ⎡⎤=--+--+--=⎣⎦所以B 选项正确.主要考查平均数和方差的公式计算以及灵活运用.8、D 【解析】试题分析:A .人数不多,容易调查,适合普查.B .对“神舟十一号”运载火箭发射前零部件质量情况的调查必须准确,故必须普查;C .班内的同学人数不多,很容易调查,因而采用普查合适;D .数量较大,适合抽样调查;故选D .考点:全面调查与抽样调查.二、填空题(本大题共5个小题,每小题4分,共20分)9、乙【解析】解:∵S 甲2=2,S 乙2=1.5,∴S 甲2>S 乙2,∴乙的射击成绩较稳定.故答案为乙.本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差通常用s 2来表示,计算公式是:s 2=1n [(x 1﹣x¯)2+(x 2﹣x¯)2+…+(x n ﹣x¯)2];方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.10、2.5【解析】先用待定系数法求出直线解析式,再将点A 代入求解可得.【详解】解:将(-2,0)、(0,1)代入y=kx+b,得:201k bb-+⎧⎨⎩==,解得:121 kb⎧⎪⎨⎪⎩==∴y=12x+1,将点A(3,m)代入,得:312m +=即 2.5m=故答案为:2.5本题主要考查直线上点的坐标特点,熟练掌握待定系数法求函数解析式是解题的关键.11、3或﹣1.【解析】根据新定义运算法则得到关于x的方程,通过解方程来求x的值.【详解】解:依题意得:(x﹣1)2+3=7,整理,得(x﹣1)2=4,直接开平方,得x﹣1=±2,解得x1=3,x2=﹣1.故答案是:3或﹣1.本题主要考查了直接开平方法解一元二次方程的知识,解答本题的关键是掌握新定义a★b=a2+b,此题难度不大.12、25【解析】由BF=BE+EF结合“小正方形的边长是1,每个直角三角形的短的直角边长是3”即可得出直角三角形较长直角边的长度,结合三角形的面积公式以及正方形面积公式即可得出结论.【详解】∵EF=1,BE=3,∴BF=BE+EF=4,∴S 正方形ABCD=4⋅S △BCF+S 正方形EFGH=4×12×4×3+1×1=25.故答案为:25.此题考查勾股定理的证明,解题关键在于掌握勾股定理的应用13、【解析】==.三、解答题(本大题共5个小题,共48分)14、(1)-1(2)22x x -+【解析】(1)根据实数混合运算顺序和运算法则计算可得;(2)先计算括号内分式的加法、除法转化为乘法,再约分即可得.【详解】解:(1)原式=3+2×2﹣2﹣2=3﹣4=﹣1;(2)原式=222(2)(2)(2)2x x x x x x ++--⋅+-,=22(2)(2)(2)2x x x x x -⋅+-,=22x x -+.本题主要考查分式的混合运算与实数的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.15、(1)见解析;(2)当1t =时,以A M C P 、、、为顶点的四边形是平行四边形;(3)103t =时,90PNC ∠=︒.【解析】(1)根据AM =t ⨯1可得,再根据题意过点过点M 作MP CD ⊥交直线CD 于点P ,连接NM 、NP 即可;(2)过A 作AE CD ⊥于E ,先证明四边形AMPE 是平行四边形,从而得到AM=PE,在Rt△ADE 中法求得DE=2,再求出PC=2-t,根据要使以A M C P 、、、为顶点的四边形是平行四边形则AM=PC,得到关于t 的方程,解方程即可;(3)当P 在线段DC 延长线上时,可得())24,4BG t MG t =-=-,()2438GN t t t =--=-,()383GP t =-,再根据MG GP +得到关于t 的方程,解方程即可.【详解】(1)如备用图1、2所示;(2)若点P 在线段CD 上时,过A 作AE CD ⊥于E ,如图∵MP CD⊥∴MP AE∕∕又在平行四边形ABCD 中,AB CD ∕∕,即AM PE∕∕∴四边形AMPE 是平行四边形,∴AM PE=由运动可知AM t=∴PE t =,在Rt DEA ∆中60,4D AD ∠=︒=∴12,2DE AD AE ===2PC DC DE PE t =--=-,要使四边形AMCP 为平行四边形,则只需AM PC =,即2t t =-,解得,1t =,当1t =时,以A M C P 、、、为顶点的四边形是平行四边形;(3)当P 在线段DC 延长线上时,假设时,如图易知())24,4BG t MG t =-=-,()2438GN t t t =--=-,()383GP t =-,∵PM =,∴MG GP +=,)()4383t t -+-=,解得103t =,故103t =时,90PNC ∠=︒.考查了平行四边形的动点问题,解题关键是灵活运用勾股定理、平行四边形的性质等知识,认真分析题意.16、(1)见解析;(2)∠EBC =21°,∠F=23°.试题分析:(1)、根据题意得出AE=BE ,然后结合AD=BD 得出答案;(2)、根据等腰三角形的性质得出∠ABC=∠ACB=67°,根据∠EBC=∠ABC ﹣∠ABE 和∠F=90°﹣∠ABC 得出角度.试题解析:(1)、证明:∵∠A=∠ABE ,∴EA=EB ,∵AD=DB ,∴DF 是线段AB 的垂直平分线;(2)、解:∵∠A=46°,∴∠ABE=∠A=46°,∵AB=AC ,∴∠ABC=∠ACB=67°,∴∠EBC=∠ABC ﹣∠ABE=21°,∠F=90°﹣∠ABC=23°.17、(1)y =t (0≤t≤)(2)6小时【解析】(1)将点代入函数关系式,解得,有将代入,得,所以所求反比例函数关系式为;再将代入,得,所以所求正比例函数关系式为.(2)解不等式,解得,所以至少需要经过6小时后,学生才能进入教室.18、y=﹣2x ﹣1.【解析】试题分析:先根据y+1与x 成正比例关系,假设函数解析式,再根据已知的一对对应值,求得系数k 即可.解:∵y+1与x 成正比例,∴设y+1=kx (k≠0),∵当x=3时,y=﹣12,∴﹣12+1=3k ,解得k=﹣2∴y+1=﹣2x ,∴函数关系式为y=﹣2x ﹣1.一、填空题(本大题共5个小题,每小题4分,共20分)19、B根据题意可得:鞋店经理最关心的是,哪种型号的鞋销量最大,即各型号的鞋的众数.【详解】鞋店经理最关心的是,哪种型号的鞋销量最大,而众数是数据中出现次数最多的数,故鞋店经理关心的是这组数据的众数.故选:B.20、(32,1)或(12,3)【解析】由点P在一次函数y=﹣2x+4的图象上,可设P(x,﹣2x+4),由矩形OCPD的面积是3 2可求解.【详解】解:∵点P在一次函数y=﹣2x+4的图象上,∴设P(x,﹣2x+4),∴x(﹣2x+4)=3 2,解得:x1=32,x2=12,∴P(32,1)或(12,3).故答案是:(32,1)或(12,3)本题运用了一次函数的点的特征的知识点,关键是运用了数形结合的数学思想.21、1.【解析】∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=BD=12cm,在Rt△ACB中,=13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=1故答案为1.考点:旋转的性质.22、()2x x y -【解析】先提取公因式x ,再对余下的多项式利用完全平方公式继续分解.【详解】解:原式()()2222x x xy y x x y =-+=-,故答案为:()2x x y -本题考查提公因式,熟练掌握运算法则是解题关键.23、213-=【解析】第n 个等式左边的第1个数为2n+1,根号下的数为n (n+1),利用完全平方公式得到第n 个等式右边的式子为2(n ≥1的整数),直接利用已知数据得出数字变化规律,进而得出答案.【详解】解:∵①232111)-=⨯+-=,②25221-=⨯+-=,③7231-=⨯+-=-,……∴第n 个式子为:221n +-=,∴第6个等式为:213-=故答案为:213-=.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.二、解答题(本大题共3个小题,共30分)24、(1)CE+CF=AB ;(2);(3)CF−CE =O`C.【解析】(1)如图1中,连接EF ,在CO 上截取CN=CF ,只要证明△OFN ≌△EFC ,即可推出CE+CF=OC ,再证明OC=AB 即可.(2)先证明△OBE ≌△OCF 得到BE=CF ,在Rt △CEF 中,根据CE +CF =EF 即可解决问题.(3)结论:CF-CE=O`C ,过点O`作O`H ⊥AC 交CF 于H ,只要证明△FO`H ≌△EO C ,推出FH=CE ,再根据等腰直角三角形性质即可解决问题.【详解】(1)结论CE+CF=AB.理由:如图1中,连接EF ,在CO 上截取CN=CF.∵∠EOF+∠ECF=180°,∴O 、E.C.F 四点共圆,∵∠ABC=60°,四边形ABCD 是菱形,∴∠BCD=180°−∠ABC=120°,∴∠ACB=∠ACD=60°,∴∠OEF=∠OCF ,∠OFE=∠OCE ,∴∠OEF=∠OFE=60°,∴△OEF 是等边三角形,∴OF=FE ,∵CN=CF,∠FCN=60°,∴△CFN 是等边三角形,∴FN=FC ,∠OFE=∠CFN ,∴∠OFN=∠EFC ,在△OFN 和△EFC 中,,∴△OFN ≌△EFC ,∴ON=EC ,∴CE+CF=CN+ON=OC ,∵四边形ABCD 是菱形,∠ABC=60°,∴∠CBO=30°,AC ⊥BD ,在RT △BOC 中,∵∠BOC=90°,∠OBC=30°,∴OC=BC=AB,∴CE+CF=AB.(2)连接EF∵在菱形ABCD 中,∠ABC=90°,∴菱形ABCD 是正方形,∴∠BOC=90°,OB=OC,AB=AC,∠OBE=∠OCF=45°,∠BCD=90°∵∠EOF+∠BCD=180°,∴∠EOF=90°,∴∠BOE=∠COF ∴△OBE ≌△OCF ,∴BE=CF ,∵BE=,∴CF=,在Rt △ABC 中,AB +BC =AC ,AC=4∴BC=4,∴CE=,在Rt △CEF 中,CE +CF =EF ,∴EF=答:线段EF 的长为,(3)结论:CF−CE=O`C.理由:过点O`作O`H ⊥AC 交CF 于H ,∵∠O`CH=∠O`HC=45°,∴O`H=O`C ,∵∠FO`E=∠HO`C,∴∠FO`H=∠CO`E ,∵∠EO`F=∠ECF=90°,∴O`.C.F.E 四点共圆,∴∠O`EF=∠OCF=45°,∴∠O`FE=∠O`EF=45°,∴O`E=O`F ,在△FO`H 和△EO`C 中,,∴△FO`H ≌△EO C ,∴FH=CE ,∴CF−CE=CF−FH=CH=O`C.本题考查正方形的性质、全等三角形的判定和性质、勾股定理、四点共圆等知识,解题的关键是发现四点共圆,添加辅助线构造全等三角形,属于中考压轴题.25、(1);(2)【解析】(1)如图(1),设CE =x ,则BE =8﹣x ;根据勾股定理列出关于x 的方程,解方程即可解决问题.(2)如图(2),首先求出CB ′=3;类比(1)中的解法,设出未知数,列出方程即可解决问题.【详解】(1)如图(1),设CE =x ,则BE =8﹣x ;由题意得:AE =BE =8﹣x ,由勾股定理得:x 2+62=(8﹣x )2,解得:x =,即CE 的长为:.(2)如图(2),∵点B ′落在AC 的中点,∴CB ′=AC =3;设CE =x ,类比(1)中的解法,可列出方程:x 2+32=(8﹣x )2解得:x =.即CE 的长为:.该题主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图形中隐含的等量关系;借助勾股定理等几何知识点来分析、判断、推理或解答.26、(1)k=6;(2)直线CD 的解析式为1y x 22=-;(3)AB ∥CD ,理由见解析.【解析】(1)把点D 的坐标代入双曲线解析式,进行计算即可得解.(2)先根据点D 的坐标求出BD 的长度,再根据三角形的面积公式求出点C 到BD 的距离,然后求出点C 的纵坐标,再代入反比例函数解析式求出点C 的坐标,然后利用待定系数法求一次函数解析式解答.(3)根据题意求出点A 、B 的坐标,然后利用待定系数法求出直线AB 的解析式,可知与直线CD 的解析式k 值相等,所以AB 、CD 平行.【详解】解:(1)∵双曲线k y x =经过点D (6,1),∴k16=,解得k=6.(2)设点C 到BD 的距离为h ,∵点D 的坐标为(6,1),DB ⊥y 轴,∴BD=6,∴S △BCD =12×6•h=12,解得h=4.∵点C 是双曲线第三象限上的动点,点D 的纵坐标为1,∴点C 的纵坐标为1-4=-3.∴63x =,解得x=-2.∴点C 的坐标为(-2,-3).设直线CD 的解析式为y=kx +b ,则2k b 3{6k b 1-+=-+=,解得1k {2b 2==-.∴直线CD 的解析式为1y x 22=-.(3)AB ∥CD.理由如下:∵CA ⊥x 轴,DB ⊥y 轴,点C 的坐标为(-2,-3),点D 的坐标为(6,1),∴点A 、B 的坐标分别为A (-2,0),B (0,1).设直线AB 的解析式为y=mx+n ,则2m n 0{n 1-+==,解得1m {2n 1==.∴直线AB 的解析式为1y x 12=+.∵AB 、CD 的解析式k 都等于12相等.∴AB 与CD 的位置关系是AB ∥CD.。
福建省龙岩市第一中学2024-2025学年数学九年级第一学期开学教学质量检测试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若分式21x x -无意义,则x 的值为()A .1x =±B .1x >C .1x =D .1x =-2、(4分)如图,一油桶高0.8m ,桶内有油,一根木棒长1m ,从桶盖小口斜插入桶内,一端到桶底,另一端到小口,拍出木棒,量得棒上没油部分长0.8m ,则桶内油的高度为()A .0.28m B .0.64m C .0.58m D .0.32m 3、(4分)如图是甲、乙两个探测气球所在位置的海拔高度y (单位:m )关于上升时间x (单位:min )的函数图像.有下列结论:①当10x =时,两个探测气球位于同一高度②当10x >时,乙气球位置高;③当010x ≤<时,甲气球位置高;其中,正确结论的个数是()A .0个B .1个C .2个D .3个4、(4分)已知()A 3,m -,()B 2,n 是一次函数y 2x 1=-的图象上的两个点,则m ,n 的大小关系是()A .m n <B .m n =C .m n >D .不能确定5、(4分)向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是()A .B .C .D .6、(4分)在ABC ∆中,点D 、E 分别为边AB 、AC 的中点,则ADE ∆与ABC ∆的面积之比为()A .12B .13C .14D .167、(4分)如图,在矩形ABCD 中,AB=3,AD=4,点P 在AB 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF 等于()A .75B .125C .135D .1458、(4分)当0b <时,一次函数y x b =+的图象大致是()A .B .C .D .二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)菱形的两条对角线长分别为10cm 和24cm ,则该菱形的面积是_________;10、(4分)如图,是一个长为30m ,宽为20m 的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为532m 2,那么小道进出口的宽度应为米.11、(4分)若关于x 的不等式组2()102153x m x +->⎧⎨+<⎩的解集为﹣172<x <﹣6,则m 的值是_____.12、(4分)如图,直线l 1∶y =ax 与直线l 2∶y =kx+b 交于点P ,则不等式ax >kx+b 的解集为_________.13、(4分)一种运算:规则是x ※y =1x -1y ,根据此规则化简(m+1)※(m -1)的结果为_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,四边形ABCD 为菱形,E 为对角线AC 上的一个动点,连结DE 并延长交射线AB 于点F ,连结BE .(1)求证:∠AFD=∠EBC ;(2)若∠DAB=90°,当△BEF 为等腰三角形时,求∠EFB 的度数.15、(8分)如图,四边形ABCD 中,//AD BC ,AD BC ≠,AC DB =.(1)求证:AB DC =;(2)若E ,F ,G ,H 分别是AD ,BC ,DB ,AC 的中点,求证:线段EF 与线段GH 互相平分.16、(8分)如图,四边形ABCD 是平行四边形,E 、F 是对角线AC 上的两点,且AE =CF ,顺次连接B 、E 、D ,F .求证:四边形BEDF 是平行四边形.17、(10分)将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB =∠DEB =90°,∠A =∠D =30°,点E 落在AB 上,DE 所在直线交AC 所在直线于点F .(1)连接BF ,求证:CF =EF .(2)若将图①中的△DBE 绕点B 按顺时针方向旋转角α,且0°<α<60°,其他条件不变,如图②,求证:AF+EF =DE .(3)若将图①中的△DBE 绕点B 按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③,你认为(2)中的结论还成立吗?若成立,写出证明过程;若不成立,请直接写出AF 、EF 与DE 之间的数量关系.18、(10分)已知:如图,平面直角坐标系xOy 中,点A 、B 的坐标分别为A (2,0),B (0,﹣2),P 为y 轴上B 点下方一点,以AP 为边作等腰直角三角形APM ,其中PM =PA ,点M 落在第四象限,过M 作MN ⊥y 轴于N .(1)求直线AB 的解析式;(2)求证:△PAO ≌△MPN ;(3)若PB =m (m >0),用含m 的代数式表示点M 的坐标;(4)求直线MB 的解析式.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,四边形ABCD 是菱形,∠BAD =60°,AB =6,对角线AC 与BD 相交于点O ,点E 在AC 上,若OE =CE 的长为_______20、(4分)如图,将△ABC 向右平移到△DEF 位置,如果AE =8cm ,BD =2cm ,则△ABC 移动的距离是___.21、(4分)如图,已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2;以此下去…,则正方形A 4B 4C 4D 4的面积为_____.22、(4分)已知一次函数24y x =+的图象经过点(m,6),则m=____________23、(4分)如图,在△ABC 中,∠ACB=90°,AC=4,BC=3,将△ABC 绕点A 顺时针旋转得到△ADE (其中点B 恰好落在AC 延长线上点D 处,点C 落在点E 处),连接BD ,则四边形AEDB 的面积为______.二、解答题(本大题共3个小题,共30分)24、(8分)“大美武汉,畅游江城”.某校数学兴趣小组就“最想去的武汉市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有1200名学生,请估计“最想去景点B“的学生人数.25、(10分)某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示:应聘者面试笔试甲8790乙9182若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?26、(12分)解不等式组:()3242+113x xx x⎧--≥⎪⎨-⎪⎩>,并把它的解集在数轴上表示出来参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】根据分式无意义的条件即可求出答案.【详解】由题意可知:x-1=0,即x=1,分式无意义,故选:C.此题考查分式无意义的条件,解题的关键是熟练运用分式无意义的条件,本题属于基础题型.2、B【解析】根据题意,画出图形,因为油面和桶底是平行的,所以可构成相似三角形,根据对应边成比例列方程即可解答.【详解】如图:AB表示木棒长,BC表示油桶高,DE表示油面高度,AD表示棒上浸油部分长,∴DE∥BC∴△ADE∽△ABC∴AD:AB=DE:BC∵AD=0.8m,AB=1m,BC=0.8m∴DE=0.64m∴桶内油面的高度为0.64m.故选B.本题考查勾股定理的运用,熟练掌握计算法则是解题关键.【解析】根据图象进行解答即可.【详解】解:①当x=10时,两个探测气球位于同一高度,正确;②当x>10时,乙气球位置高,正确;③当0≤x<10时,甲气球位置高,正确;故选:D.本题考查了一次函数的应用、解题的关键是根据图象进行解答.4、A【解析】根据一次函数中k的值确定函数的增减性,然后比较m、n的大小即可.【详解】解:∵一次函数y=2x-1中的k=2>0,∴y随x的增大而增大,∵图象经过A(-3,m),B(2,n)两点,且-3<2,∴m<n,故选A.本题考查了一次函数的性质,熟练掌握一次函数的性质是解决此类问题的关键.一次函数y=kx+b(k≠0),当k>0时,y随着x的增大而增大,当k<0时,y随着x的增大而减小.5、D【解析】注水需要60÷10=6分钟,注水2分钟后停止注水1分钟,共经历6+1=7分钟,排除A、B;再根据停1分钟,再注水4分钟,排除C.故选D.6、C【解析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,则DE∥BC,进而得出△ADE ∽△ABC ,再利用相似三角形的性质即可求出△ADE 与△ABC 的面积之比.【详解】如图所示,∵点D 、E 分别为边AB 、AC 的中点,∴DE 为△ABC 的中位线,∴DE ∥BC ,DE =12BC ,∴△ADE ∽△ABC ,∴214ADE ABC S DE S BC ⎛⎫== ⎪⎝⎭.故选C .本题考查了相似三角形的判定与性质、三角形中位线定理,利用三角形的中位线定理找出DE ∥BC 是解题的关键.7、B 【解析】试题解析:因为AB =3,AD =4,所以AC =5,1522AO AC ==,由图可知1122AOB S AO PE BO PF =⋅+⋅,AO =BO ,则()12AOB S AO PE PF =+,因此223122.55AOB S PE PF AO ⨯+===,故本题应选B.8、A 【解析】根据k=1>0可得图象的斜率,根据b <0可得直线与y 轴的交点在x 轴的下方.【详解】解:∵k=1>0,∴y 随x 的增大而增大,又∵b <0,∴函数图象与y 轴交于负半轴.故选A.本题主要考查一次函数的图象性质,当=kx+b (k ,b 为常数,k≠0)时:当k>0,b>0,这时此函数的图象经过一,二,三象限;当k>0,b<0,这时此函数的图象经过一,三,四象限;当k<0,b>0,这时此函数的图象经过一,二,四象限;当k<0,b<0,这时此函数的图象经过二,三,四象限.二、填空题(本大题共5个小题,每小题4分,共20分)9、110cm 1.【解析】试题解析:S=12×10×14=110cm 1.考点:菱形的性质.10、1.【解析】试题分析:设小道进出口的宽度为x 米,依题意得(32-2x )(22-x )=532,整理,得x 2-35x+3=2.解得,x 1=1,x 2=3.∵3>32(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.考点:一元二次方程的应用.11、1【解析】先解不等式组得出其解集为1262m x -<<﹣,结合1762x -<<﹣可得关于m 的方程,解之可得答案.【详解】解不等式()210x m +->,得:122mx ->,解不等式2153x +<,得:6x <-,∵不等式组的解集为1762x -<<﹣,∴121722m -=-,解得9m =,故答案为:1.本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12、x >1;【解析】观察图象,找出直线l 1∶y=ax 在直线l 2∶y=kx+b 上方部分的x 的取值范围即可.【详解】∵直线l 1∶y=ax 与直线l 2∶y=kx+b 交于点P 的横坐标为1,∴不等式ax >kx+b 的解集为x>1,故答案为x>1.本题考查了一次函数与一元一次不等式的关系,正确把握数形结合思想是解此类问题的关键.13、221m --【解析】根据题目中的运算法则把(m+1)※(m -1)化为1111m m -+-,再利用异分母分式的加减运算法则计算即可.【详解】∵x ※y =1x -1y ,∴(m+1)※(m -1)=1111m m -+-=11(1)(1)(1)(1)m m m m m m -+-+-+-=11(1)(1)m m m m ---+-=221m --故答案为:221m --.本题考查了新定义运算,根据题目中的运算法则把(m+1)※(m -1)化为1111m m -+-是解本题的关键.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)∠EFB=30°或120°.【解析】(1)直接利用全等三角形的判定方法得出△DCE ≌△BCE (SAS ),即可得出答案;(2)利用正方形的性质结合等腰三角形的性质得出:①当F 在AB 延长线上时;②当F 在线段AB 上时;分别求出即可.【详解】(1)证明:∵四边形ABCD 是菱形,∴CD=AB ,∠ACD=∠ACB ,在△DCE 和△BCE 中,∴△DCE ≌△BCE (SAS ),∴∠CDE=∠CBE ,∵CD ∥AB ,∴∠CDE=∠AFD ,∴∠EBC=∠AFD.(2)分两种情况,①如图1,当F 在AB 延长线上时,∵∠EBF 为钝角,∴只能是BE=BF ,设∠BEF=∠BFE=x°,可通过三角形内角形为180°得:90+x+x+x=180,解得:x=30,∴∠EFB=30°.②如图2,当F 在线段AB 上时,∵∠EFB 为钝角,∴只能是FE=FB ,设∠BEF=∠EBF=x°,则有∠AFD=2x°,可证得:∠AFD=∠FDC=∠CBE ,得x+2x=90,解得:x=30,∴∠EFB=120°.综上:∠EFB=30°或120°.此题主要考查了菱形的性质以及正方形的性质以及全等三角形的判定与性质等知识,利用分类讨论得出是解题关键.15、(1)见解析;(2)见解析【解析】(1)过点D 作DM ∥AC 交BC 的延长线于点M ,由平行四边形的性质易得AC=DM=DB ,∠DBC=∠M=∠ACB ,由全等三角形判定定理及性质得出结论;(2)连接EH ,FH ,FG ,EG ,E ,F ,G ,H 分别是AD ,BC ,DB ,AC 的中点,易得四边形HFGE 为平行四边形,由平行四边形的性质及(1)结论得□HFGE 为菱形,易得EF 与GH 互相垂直平分.【详解】解:(1)证明:(1)过点D 作DM ∥AC 交BC 的延长线于点M ,如图1,∵AD ∥CB ,∴四边形ADMC 为平行四边形,∴AC=DM=DB ,∠DBC=∠M=∠ACB ,在△ACB 和△DBC 中,AC DB ACB DBC CB BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACB ≌△DBC (SAS ),∴AB=DC ;(2)连接EH ,FH ,FG ,EG ,如图2,∵E ,F ,G ,H 分别是AD ,BC ,DB ,AC 的中点,∴GE ∥AB ,且GE=12AB ,HF ∥AB ,且HF=12AB ,∴GE ∥HF ,GE=HF ,∴四边形HFGE 为平行四边形,由(1)知,AB=DC ,∴GE=HE ,∴□HFGE 为菱形,∴EF 与GH 互相垂直平分.本题主要考查了平行四边形的性质及判定,全等三角形的性质与判定,菱形的判定及性质,综合运用平行四边形的性质及判定,全等三角形的性质与判定是解答此题的关键.16、见解析【解析】首先连接BD ,交AC 于点O ,由四边形ABCD 是平行四边形,根据平行四边形的对角线互相平分,即可求得OA =OC ,OB =OD ,又由AE =CF ,可得OE =OF ,然后根据对角线互相平分的四边形是平行四边形得出结论.【详解】解:证明:连接BD ,交AC 于点O ,如图所示,∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD ,∵AE =CF ,∴OA ﹣AE =OC ﹣CF ,即OE =OF ,∴四边形DEBF 是平行四边形.本题考查了平行四边形的判定与性质,此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.17、(1)详见解析;(2)详见解析;(3)详见解析.【解析】(1)连接BF ,证明Rt △BCF ≌Rt △BEF ,根据全等三角形的性质即可证得CF =EF ;(2)连接BF ,证明Rt △BCF ≌Rt △BEF ,根据全等三角形的性质可得CF =EF ,由此即可证得结论;(3)连接BF ,证明Rt △BCF ≌Rt △BEF ,根据全等三角形的性质可得CF =EF ,由此即可证得结论.【详解】(1)证明:如图1,连接BF ,∵△ABC ≌△DBE ,∴BC =BE ,∵∠ACB =∠DEB =90°,在Rt △BCF 和Rt △BEF 中,BC BE BF BF =⎧⎨=⎩,∴Rt △BCF ≌Rt △BEF (HL ),∴CF =EF ;(2)如图2,连接BF ,∵△ABC ≌△DBE ,∴BC =BE ,AC =DE,∵∠ACB =∠DEB =90°,在Rt △BCF 和Rt △BEF 中,BC BE BF BF=⎧⎨=⎩,∴Rt △BCF ≌Rt △BEF (HL ),∴EF =CF ,∴AF +EF =AF +CF =AC =DE ;(3)如图3,连接BF ,∵△ABC ≌△DBE ,∴BC =BE ,AC =DE ,∵∠ACB =∠DEB =90°,∴△BCF 和△BEF 是直角三角形,在Rt △BCF 和Rt △BEF 中,BC BE BF BF =⎧⎨=⎩,∴Rt △BCF ≌Rt △BEF (HL ),∴CF =EF ,∵AC =DE ,∴AF =AC +FC =DE +EF .本题考查了全等三角形的性质与判定,证明Rt △BCF ≌Rt △BEF 是解决问题的关键.18、(3)y =x ﹣3.(3)详见解析;(3)(3+m ,﹣4﹣m );(4)y =﹣x ﹣3.【解析】(3)直线AB 的解析式为y =kx +b (k ≠2),利用待定系数法求函数的解析式即可;(3)先证∠APO =∠PMN ,用AAS 证△PAO ≌△MPN ;(3)由(3)中全等三角形的性质得到OP =NM ,OA =NP .根据PB =m ,用m 表示出NM 和ON =OP +NP ,根据点M 在第四象限,表示出点M 的坐标即可.(4)设直线MB 的解析式为y =nx ﹣3,根据点M (m +3,﹣m ﹣4).然后求得直线MB 的解析式.【详解】(3)解:设直线AB :y =kx +b (k ≠2)代入A (3,2),B (2,﹣3),得202k b b +=⎧⎨=-⎩,解得k 1b 2=⎧⎨=-⎩,∴直线AB 的解析式为:y =x ﹣3.(3)证明:作MN ⊥y 轴于点N .∵△APM 为等腰直角三角形,PM =PA ,∴∠APM =92°.∴∠OPA +∠NPM =92°.∵∠NMP +∠NPM =92°,∴∠OPA =∠NMP .在△PAO 与△MPN 中90AOP PNM OPA NMP PA MP ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△PAO ≌△MPN (AAS ).(3)由(3)知,△PAO ≌△MPN ,则OP =NM ,OA =NP .∵PB =m (m >2),∴ON =3+m +3=4+m MN =OP =3+m .∵点M 在第四象限,∴点M 的坐标为(3+m ,﹣4﹣m ).(4)设直线MB 的解析式为y =nx ﹣3(n ≠2).∵点M (3+m ,﹣4﹣m ).在直线MB 上,∴﹣4﹣m =n (3+m )﹣3.整理,得(m +3)n =﹣m ﹣3.∵m >2,∴m +3≠2.解得n =﹣3.∴直线MB 的解析式为y =﹣x ﹣3.本题综合考查了一次函数与几何知识的应用,运用待定系数法求一次函数解析式,全等三角形的判定与性质,函数图象上点的坐标特征等知识解答,注意“数形结合”数学思想的应用.一、填空题(本大题共5个小题,每小题4分,共20分)19、或【解析】分析:由菱形的性质证出△ABD 是等边三角形,得出BD =AB =6,132OB BD ==,由勾股定理得出OC OA ===,即可得出答案.详解:∵四边形ABCD 是菱形,∴AB =AD =6,AC ⊥BD ,OB =OD ,OA =OC ,∵60BAD ∠=︒,∴△ABD 是等边三角形,∴BD =AB =6,∴132OB BD ==,∴OC OA ===∴2AC OA ==∵点E 在AC 上,OE =∴当E 在点O 左边时CE OC =+=当点E 在点O 右边时CE OC =-=∴CE =故答案为.点睛:考查菱形的性质,注意分类讨论思想在数学中的应用,不要漏解.20、3cm.【解析】根据平移的性质,对应点间的距离等于平移距离求出AD 、BE ,然后求解即可.【详解】∵将△ABC 向右平移到△DEF 位置,∴BE =AD ,又∵AE =8cm ,BD =2cm ,∴AD =82322AE DB --==cm .∴△ABC 移动的距离是3cm ,故答案为:3cm.本题考查了平移的性质,熟记对应点间的距离等于平移距离是解题的关键.21、1【解析】先求出每次延长后的面积,再发现规律即可求解.【详解】解:最初边长为1,面积1,5,再延长为51=5,面积52=25,下一次延长为5,面积53=125,以此类推,当N =4时,正方形A 4B 4C 4D 4的面积为:54=1.故答案为:1.此题主要考查勾股定理的应用,解题的关键是根据题意找到规律进行求解.22、1【解析】把(m,6)代入y=2x+4中,得到关于m的方程,解方程即可.【详解】解:把(m,6)代入y=2x+4中,得6=2m+4,解得m=1.故答案为1.本题主要考查了一次函数图象上点的坐标特征,解题方法一般是代入这个点求解.23、27 2【解析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用面积公式解答即可.【详解】∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AD=AB=5,∴CD=AD−AC=1,∴四边形AEDB的面积为1127 24313222⨯⨯⨯+⨯⨯=,故答案为27 2.本题考查的知识点是旋转的性质,解题关键是熟记旋转前后的对应边相等.二、解答题(本大题共3个小题,共30分)24、(1)40;(2)详见解析,72°;(3)420人.【解析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用1200乘以样本中最想去B景点的人数所占的百分比即可.【详解】解:(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D 景点的人数为40-8-14-4-6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D ”的扇形圆心角的度数为840×360°=72°;(3)1200×1440=420,所以估计“最想去景点B “的学生人数为420人.故答案为(1)40;(2)图形见解析,72°;(3)420人.本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了扇形统计图和利用样本估计总体.25、甲将被录取【解析】试题分析:根据题意先算出甲、乙两位应聘者的加权平均数,再进行比较,即可得出答案.试题解析:甲的平均成绩为:(87×6+90×4)÷10=88.2(分),乙的平均成绩为:(91×6+82×4)÷10=87.4(分),因为甲的平均分数较高,所以甲将被录取.考点:加权平均数.26、14x ≤<.【解析】分析:按照解一元一次不等式组的一般步骤进行解答,并把解集规范的表示在数轴上即可.详解:解不等式3(2)4x x --≥得:1x ≥;解不等式2113x x +>-得:4x <;∴原不等式组的解集为:14x ≤<,将解集表示在数轴上如下图所示:点睛:熟记“一元一次不等式组的解法和不等式组的解集在数轴上的表示方法”是解答本题的关键.。
湖北省咸宁市2024年数学九年级第一学期开学质量检测试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知关于x 的一次函数y =kx +2k -3的图象经过原点,则k 的值为()A .0B .32C .23D .32、(4分)如图,在△ABC 中,∠C =90°,点E 是斜边AB 的中点,ED ⊥AB ,且∠CAD :∠BAD =5:2,则∠BAC =()A .60°B .70°C .80°D .90°3、(4分)在同一平面直角坐标系中,函数y =ax 2+bx 与y =﹣bx +a 的图象可能是()A .B .C .D .4、(4分)的结果是()A .B .8C .4D .±45、(4分)如图,四边形ABCD 中,AC ⊥BC ,AD ∥BC ,BC =3,AC =4,AD =1.M 是BD 的中点,则CM 的长为()A .32B .2C .52D .36、(4分)如图,已知函数y =x +1和y =ax +3图象交于点P ,点P 的横坐标为1,则关于x ,y 的方程组13x y ax y -=-⎧⎨-=-⎩的解是()A .12x y =⎧⎨=⎩B .21x y =⎧⎨=⎩C .12x y =⎧⎨=-⎩D .21x y =-⎧⎨=⎩7、(4分)使式子2x +有意义的x 的取值范围是().A .x≤1B .x≤1且x≠﹣2C .x≠﹣2D .x <1且x≠﹣28、(4分)如图,过点A 0(1,0)作x 轴的垂线,交直线l :y =2x 于B 1,在x 轴上取点A 1,使OA 1=OB 1,过点A 1作x 轴的垂线,交直线l 于B 2,在x 轴上取点A 2,使OA 2=OB 2,过点A 2作x 轴的垂线,交直线l 于B 3,…,这样依次作图,则点B 8的纵坐标为()A .)7B .27C .2(8D .()9二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)方程22150x x --=的解为_________.10、(4分)在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m ,其行走路线如图所示,第1次移动到1A ,第2次移动到2A ……,第n 次移动到n A ,机器人移动第2018次即停止,则22018OA A △的面积是______.11、(4分)如图,数轴上点O 对应的数是0,点A 对应的数是3,AB ⊥OA ,垂足为A ,且AB =2,以原点O 为圆心,以OB 为半径画弧,弧与数轴的交点为点C ,则点C 表示的数为_____.12、(4分)某中学组织八年级学生进行“绿色出行,低碳生活”知识竞赛,为了了解本次竞赛的成绩,把学生成绩分成,,,,A B C D E 五个等级,并绘制如图所示的扇形统计图(不完整)统计成绩,则C 等级所在扇形的圆心角是_______º.13、(4分)已知平行四边形ABCD 中,∠A ﹣∠B=50°,则∠C=_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 是AD 上的点,且AE=EF=FD .连接BE 、BF ,使它们分别与AO 相交于点G 、H .(1)求EG :BG 的值;(2)求证:AG=OG ;(3)设AG=a ,GH=b ,HO=c ,求a :b :c 的值.15、(8分)某服装制造厂要在开学前赶制3000套服装,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的校服比原计划多了20%,结果提前4天完成任务.问原计划每天能完成多少套校服?16、(8分)如图,在正方形ABCD 中,E 、F 是对角线BD 上两点,且∠EAF=45°,将△ADF 绕点A 顺时针旋转90°后,得到△ABQ ,连接EQ ,求证:(1)EA 是∠QED 的平分线;(1)EF 1=BE 1+DF 1.17、(10分)如图,在ABC △中,AB AC =,点M 、N 分别在BC 所在的直线上,且BM=CN ,求证:△AMN 是等腰三角形.18、(10分)先化简,再求值:35(2242a a a a -÷+---其中12a =-B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)“如果a =b ,那么a 2=b 2”,写出此命题的逆命题_______.20、(4分)已知直线(0)y kx k =≠与反比例函数4y x =的图象交于A 、B 两点,当线段AB的长最小时,以AB 为斜边作等腰直角三角形△ABC ,则点C 的坐标是__________.21、(4分)为了了解我县八年级学生的视力情况,从中随机抽取1200名学生进行视力情况检查,这个问题中的样本容量是___.22、(4分)为了解我市中学生的视力情况,从我市不同地域,不同年级中抽取1000名中学生进行视力测试,在这个问题中的样本是_____.23、(4分)对分式12x ,14y ,218xy 进行通分时,最简公分母是_____二、解答题(本大题共3个小题,共30分)24、(8分)甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距离y (km )与行驶的时间t (h )之间的函数关系如图所示.(1)求乙车离开A 城的距离y 关于t 的函数解析式;(2)求乙车的速度.25、(10分)如图,已知□ABCD .(1)作图:延长BC ,并在BC 的延长线上截取线段CE ,使得CE =BC .(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE ,交CD 于点F ,求证:△AFD ≌△EFC .26、(12分)在一条直线上依次有A 、B 、C 三个海岛,某海巡船从A 岛出发沿直线匀速经B 岛驶向C 岛,执行海巡任务,最终达到C 岛.设该海巡船行驶x (h)后,与.B .港的距离....为y (km),y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为km,;(2)求y 与x 的函数关系式,并请解释图中点P 的坐标所表示的实际意义;(3)在B 岛有一不间断发射信号的信号发射台,发射的信号覆盖半径为15km,求该海巡船能接受到该信号的时间有多长?参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B 【解析】将原点()0,0代入一次函数的解析式中,建立一个关于k 的方程,解方程即可得出答案.【详解】∵关于x 的一次函数y =kx +2k -3的图象经过原点()0,0,∴230k -=,解得32k =,故选:B .本题主要考查一次函数,掌握一次函数图像上的点符合一次函数的解析式是解题的关键.2、B 【解析】点E 是斜边AB 的中点,ED ⊥AB,∠B=∠DAB,∠DAB=2x,故2x +2x +5x =90°,故x =10°,∠BAC =70°.故选B.3、B 【解析】首先根据图形中给出的一次函数图象确定a 、b 的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【详解】解:A 、对于直线y=-bx+a 来说,由图象可以判断,a <0,b >0;而对于抛物线y=ax 2+bx来说,图象应开口向下,故不合题意;B 、对于直线y=-bx+a 来说,由图象可以判断,a >0,b <0;而对于抛物线y=ax 2+bx 来说,图象开口向上,对称轴x=-2b a >0,在y 轴的右侧,符合题意,图形正确;C 、对于直线y=-bx+a 来说,由图象可以判断,a <0,b <0;而对于抛物线y=ax 2+bx 来说,对称轴x=-2b a <0,应位于y 轴的左侧,故不合题意;D 、对于直线y=-bx+a 来说,由图象可以判断,a >0,b <0;而对于抛物线y=ax 2+bx 来说,图象应开口向下,故不合题意.故选:B .此题主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a 、b 的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.4、C 【解析】根据二次根式乘法法则进行计算即可.【详解】原式=4,故选C.本题考查了二次根式的乘法,正确把握二次根式乘法的运算法则是解题的关键.5、C 【解析】延长BC 到E 使BE =AD ,利用中点的性质得到CM =12DE =12AB ,再利用勾股定理进行计算即可解答.【详解】解:延长BC 到E 使BE =AD ,∵BC//AD,∴四边形ACED 是平行四边形,∴DE=AB,∵BC =3,AD =1,∴C 是BE 的中点,∵M 是BD 的中点,∴CM =12DE =12AB ,∵AC ⊥BC ,∴AB ,∴CM =52,故选:C .此题考查平行四边形的性质,勾股定理,解题关键在于作辅助线.6、A 【解析】先把x =1代入y =x +1,得出y =2,则两个一次函数的交点P 的坐标为(1,2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】解:把x =1代入y =x +1,得出y =2,函数y =x +1和y =ax +3的图象交于点P (1,2),即x =1,y =2同时满足两个一次函数的解析式.所以关于x ,y 的方程组13x y ax y -=-⎧⎨-=-⎩的解是12x y =⎧⎨=⎩.故选:A .考查了一次函数与二元一次方程组的联系,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.7、B【解析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】解:由题意得,1﹣x≥0且1+x≠0,解得x≤1且x≠﹣1.故选B .考点:二次根式有意义的条件;分式有意义的条件.8、B 【解析】根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.【详解】解:∵A 0(1,0),∴OA 0=1,∴点B 1的横坐标为1,∵B 1,B 2、B 3、…、B 8在直线y =2x 的图象上,∴B 1纵坐标为2,∴OA 1=OB 1,∴A 10),∴B 2点的纵坐标为于是得到B 3的纵坐标为22…∴B 8的纵坐标为27故选:B .本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出B n 的坐标的变化规律.二、填空题(本大题共5个小题,每小题4分,共20分)9、125,3x x ==-【解析】此题采用因式分解法最简单,解题时首先要观察,然后再选择解题方法.配方法与公式法适用于所用的一元二次方程,因式分解法虽有限制,却最简单.【详解】∵2215x x -=∴22+115+1x x -=∴()2116x -=∴14x -=±∴125,3x x ==-故答案为:125,3x x ==-.此题考查解一元二次方程-配方法,解题关键在于掌握运算法则.10、504m 2【解析】由OA 4n =2n 知OA 2017=20162+1=1009,据此得出A 2A 2018=1009-1=1008,据此利用三角形的面积公式计算可得.【详解】由题意知OA 4n =2n ,∵2018÷4=504…2,∴OA 2017=20162+1=1009,∴A 2A 2018=1009-1=1008,则△O A 2A 2018的面积是12×1×1008=504m 2此题考查规律型:数字变换,解题关键在于找到规律【解析】首先利用勾股定理计算出OB 的长,然后再由题意可得BO=CO ,进而可得CO 的长.【详解】∵数轴上点A 对应的数为3,∴AO =3,∵AB ⊥OA 于A ,且AB =2,∴BO ,∵以原点O 为圆心,OB 为半径画弧,交数轴于点C ,∴OC ,.此题主要考查了实数与数轴,勾股定理,关键是利用勾股定理计算出BO的长.12、72°【解析】根据扇形统计图计算出C等级所在的扇形的圆心角,即可解答【详解】C等级所在的扇形的圆心角=(1−25%−35%−8%−12%)⋅360°=72°,故答案为:72°此题考查扇形统计图,难度不大13、115°.【解析】根据平行四边形的邻角互补可得∠A+∠B=180°,和已知∠A﹣∠B=50°,就可建立方程求出∠A的度数,再由平行四边形的性质即可得∠C的度数.【详解】在平行四边形ABCD中,∠A+∠B=180°,又∵∠A﹣∠B=50°,把这两个式子相加即可求出∠A=115°,∴∠A=∠C=115°,故答案为115°.本题考查了平行四边形的性质:邻角互补,对角相等,熟知性质是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)1:3;(1)见解析;(3)5:3:1.【解析】(1)根据平行四边形的性质可得AO=12AC,AD=BC,AD∥BC,从而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根据相似三角形的性质,即可求出EG:BG的值;(1)根据相似三角形的性质可得GC=3AG,则有AC=4AG,从而可得AO=12AC=1AG,即可得到GO=AO﹣AG=AG;(3)根据相似三角形的性质可得AG=14AC,AH=25AC,结合AO=12AC,即可得到a=14AC,b=320AC,c=110AC,就可得到a:b:c的值.【详解】(1)∵四边形ABCD是平行四边形,∴AO=12AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴EG AG AE GB GC BC==.∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3;(1)∵GC=3AG(已证),∴AC=4AG,∴AO=12AC=1AG,∴GO=AO﹣AG=AG;(3)∵AE=EF=FD,∴BC=AD=3AE,AF=1AE.∵AD∥BC,∴△AFH∽△CBH,∴2233 AH AF AEHC BC AE===,∴AHAC=25,即AH=25AC.∵AC=4AG,∴a=AG=14AC,b=AH﹣AG=25AC﹣14AC=320AC,c=AO﹣AH=12AC﹣25AC=110AC,∴a:b:c=14:320:110=5:3:1.15、原计划每天能完成125套.【解析】试题解析:设原计划每天能完成x 套衣服,由题意得()300030004,120%x x -=+解得:125.x =经检验,125x =是原分式方程的解.答:原计划每天能完成125套.16、详见解析.【解析】(1)、直接利用旋转的性质得出△AQE ≌△AFE (SAS ),进而得出∠AEQ=∠AEF ,即可得出答案;(1)、利用(1)中所求,再结合勾股定理得出答案.【详解】(1)、∵将△ADF 绕点A 顺时针旋转90°后,得到△ABQ ,∴QB=DF ,AQ=AF ,∠ABQ=∠ADF=45°,∴△AQE ≌△AFE (SAS ),∴∠AEQ=∠AEF ,∴EA 是∠QED 的平分线;(1)、由(1)得△AQE ≌△AFE ,∴QE=EF ,在Rt △QBE 中,QB 1+BE 1=QE 1,则EF 1=BE 1+DF 1.考点:(1)、旋转的性质;(1)、正方形的性质.17、详见解析【解析】根据已知条件易证△ABM ≌△ACN ,由全等三角形的性质可得AM=AN ,即可证得△AMN 是等腰三角形.【详解】证明:∵AB=AC ,∴∠ABC=∠ACB ,∴∠ABM=∠ACN ,在△ABM 和△ACN 中,AB AC ABM ACN BM CN =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△ACN ,∴AM=AN ,即△AMN 是等腰三角形.本题考查了全等三角形的判定与性质及等腰三角形的判定,利用全等三角形的的判定证得△ABM ≌△CAN 是解决问题的关键.18、15-【解析】先去括号,再把除法统一为乘法把分式化简,再把数代入.【详解】解:原式23452422a a a a a ⎛⎫--=÷- ⎪---⎝⎭239242a a a a --=÷--(3)22(2)(3)(3)a a a a a ---=⨯-+-1123a -=⨯+126a =-+当12a =-时,原式15=-.本题考查分式的混合运算,通分、分解因式、约分是关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、如果a 2=b 2,那么a=b.【解析】把原命题的题设与结论交换即可得解.【详解】“如果a=b ,那么a 2=b 2”的逆命题是“如果a 2=b 2,那么a=b”故答案为:如果a 2=b 2,那么a=b.此题考查命题与定理,解题关键在于掌握其定义20、(2,2)-或(2,2)-【解析】联立方程组,求出A 、B的坐标,分别用k 表示,然后根据等腰直角三角形的两直角边相等求出k 的值,即可求出结果.【详解】由题可得4yx y kx ⎧=⎪⎨=⎪⎩,可得x k y ⎧=±⎪⎨⎪=±⎩,根据△ABC 是等腰直角三角形可得:(22k k ⎛+=+ ⎪⎝⎭,解得1k =±,当k=1时,点C 的坐标为(2,2)-,当k=-1时,点C 的坐标为(2,2)-,故答案为(2,2)-或(2,2)-.本题主要考查了一次函数与反比例函数的综合应用,利用好等腰直角三角形的条件很重要.21、1200【解析】根据样本容量则是指样本中个体的数目,可得答案.【详解】为了了解我县八年级学生的视力情况,从中随机抽取1200名学生进行视力情况检查,在这个问题中,样本容量是1200,故答案为:1200.本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.22、从中抽取的1000名中学生的视力情况【解析】根据从总体中取出的一部分个体叫做这个总体的一个样本解答即可.【详解】解:这个问题中的样本是从中抽取的1000名中学生的视力情况,故答案为从中抽取的1000名中学生的视力情况.本题考查的是样本的概念,掌握从总体中取出的一部分个体叫做这个总体的一个样本是解题的关键.23、8xy 1【解析】由于几个分式的分母分别是1x 、4y 、8xy 1,首先确定1、4、8的最小公倍数,然后确定各个字母的最高指数,由此即可确定它们的最简公分母.【详解】根据最简公分母的求法得:分式12x ,14y ,218xy 的最简公分母是8xy 1,故答案为8xy 1.此题主要考查了几个分式的最简公分母的确定,确定公分母的系数找最小公倍数,确定公分母的字母找最高指数.二、解答题(本大题共3个小题,共30分)24、(1)乙车离开A 城的距离y 关于t 的函数解析式y=100t-100;(2)乙车的速度为100km/h .【解析】(1)根据题意和函数图象中的数据可以求得甲、乙相遇点的坐标,从而可以求出车离开A 城的距离y 关于t 的函数解析式(2)根据(1)中的函数解析式,可以得出乙车到达终点时的时间,从而求乙车的速度。
福建省南安市2024-2025学年九年级数学第一学期开学质量检测试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列各组数中不能作为直角三角形三边长的是()A .7,9,12B .5,12,13C .1,D .3,4,52、(4分)小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC 、BD 的中点重叠并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是()A .对角线互相平分的四边形是平行四边形B .一组对边平行且相等的四边形是平行四边形C .两组对边分别相等的四边形是平行四边形D .两组对边分别平行的四边形是平行四边形3、(4分)如图,CD 是Rt△ABC 斜边AB 上的高,将△BCD 沿CD 折叠,点B 恰好落在AB 的中点E 处,则∠A 等于()A .25°B .30°C .45°D .60°4、(4分)已知反比例函数y =的图象上有两点A (x 1,y 1),B (x 2,y 2),当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是()A .m <0B .m >0C .m <D .m >5、(4分)某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的()A .平均数B .中位数C .众数D .方差6、(4分)给出下列化简①()2=2=2=;12=,其中正确的是()A .①②③④B .①②③C .①②D .③④7、(4分)如图,E 是正方形ABCD 的边BC 的延长线上一点,若CE=CA ,AE 交CD 于F ,则∠FAC 的度数是()A .22.5°B .30°C .45°D .67.5°8、(4分)下列说法:①“掷一枚质地均匀的硬币,朝上一面可能是正面”;②“从一副普通扑克牌中任意抽取一张,点数一定是3”()A .只有①正确B .只有②正确C .①②都正确D .①②都错误二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,把边长为1的正方形ABCD 绕顶点A 逆时针旋转30°到正方形AB′C′D′,则它们的公共部分的面积等于_____.10、(4分)本市5月份某一周毎天的最高气温统计如下表:则这组数据的众数是___.温度/℃22242629天数213111、(4分)如图,已知60XOY ∠=︒,点A 在边OX 上,2OA =.过点A 作AC OY ⊥于点C ,以AC 为一边在XOY ∠内作等边ABC ∆,点P 是ABC ∆围成的区域(包括各边)内的一点,过点P 作//PD OY 交OX 于点D ,作//PE OX 交OY 于点E .设OD a =,OE b =,则2+a b 最大值是_______.12、(4分)如图,菱形ABCD 的周长为20,对角线AC 与BC 相交于点O ,AC=8,则BD=________.13、(4分)在分式2x x +中,当x=___时分式没有意义.三、解答题(本大题共5个小题,共48分)14、(12分)已知,如图E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE ,四边形ABCD 是平行四边形吗?请说明理由.15、(8分)如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE 相交于点F .(1)求证:∠ABE =∠CAD ;(2)如图2,以AD 为边向左作等边△ADG ,连接BG .ⅰ)试判断四边形AGBE 的形状,并说明理由;ⅱ)若设BD =1,DC =k (0<k <1),求四边形AGBE 与△ABC 的周长比(用含k 的代数式表示).16、(8分)为加快城市群的建设与发展,在A 、B 两城市间新建一条城际铁路,建成后,铁路运行里程由现在的210km 缩短至180km ,平均时速要比现行的平均时速快200km ,运行时间仅是现行时间的29,求建成后的城际铁路在A 、B 两地的运行时间?17、(10分)某学校八年级七班学生要去实验基地进行实践活动,估计乘车人数为10人到40人之间,现在欲租甲、乙两家旅行社的车辆,已知甲、乙两家旅行社的服务质量相同,且报价都是每人120元,经过协商,甲旅行社表示可给予每位学生七五折优惠;乙旅行社表示可先免去一位同学的车费,然后给予其他同学八折优惠.(1)若用x 表示乘车人数,请用x 表示选择甲、乙旅行社的费用y 甲与y 乙;(2)请你帮助学校选择哪一家旅行社费用合算?18、(10分)如图,AB 是⊙O 的直径,AC ⊥AB ,E 为⊙O 上的一点,AC =EC ,延长CE 交AB 的延长线于点D .(1)求证:CE 为⊙O 的切线;(2)若OF ⊥AE ,OF =1,∠OAF =30°,求图中阴影部分的面积.(结果保留π)B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在△ABC 中,BC=a .作BC 边的三等分点C 1,使得CC 1:BC 1=1:2,过点C 1作AC 的平行线交AB 于点A 1,过点A 1作BC 的平行线交AC 于点D 1,作BC 1边的三等分点C 2,使得C 1C 2:BC 2=1:2,过点C 2作AC 的平行线交AB 于点A 2,过点A 2作BC 的平行线交A 1C 1于点D 2;如此进行下去,则线段A n D n 的长度为______________.20、(4分)如图,在平行四边形ABCD 中,AB =4,BC =6,分别以A ,C 为圆心,以大于12A C 的长为半径作弧,两弧相交于MN 两点,作直线MN 交AD 于点E ,则△CDE 的周长是_____.21、(4分)若方程2410x x -+=的两根12,x x ,则122(1)x x x ++的值为__________.22、(4分)已知关于x 的方程2x+m =x ﹣3的根是正数,则m 的取值范围是_____.23、(4分)若代数式1x -有意义,则x 的取值范围为__________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在□ABCD 中,E 、F 为对角线BD 上的两点,且∠DAE =∠BCF.(1)求证:AE =CF ;(2)求证:AE ∥CF.25、(10分)如图,反比例函数y=k x (k >0)的图象与一次函数y=34x 的图象交于A 、B 两点(点A 在第一象限).(1)当点A 的横坐标为4时.①求k 的值;②根据反比例函数的图象,直接写出当-4<x <1(x≠0)时,y 的取值范围;(2)点C 为y 轴正半轴上一点,∠ACB=90°,且△ACB 的面积为10,求k 的值.26、(12分)在平面直角坐标系中,点A ,B 分别是x 轴正半轴与y 轴正半轴上一点,OA =m ,OB =n ,以AB 为边在第一象限内作正方形ABCD .(1)若m =4,n =3,直接写出点C 与点D 的坐标;(2)点C 在直线y =kx (k >1且k 为常数)上运动.①如图1,若k =2,求直线OD 的解析式;②如图2,连接AC 、BD 交于点E ,连接OE ,若OE =OA ,求k 的值.一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】根据勾股定理逆定理即可求解.【详解】∵72+92≠122,所以A组不能作为直角三角形三边长故选A.此题主要考查勾股定理,解题的关键是熟知勾股定理的逆定理进行判断.2、A【解析】根据对角线互相平分的四边形是平行四边形即可得出结论.【详解】解:∵O是AC、BD的中点,∴OA=OC,OB=OD,∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形);故选:A.本题考查了平行四边形的判定定理;熟练掌握平行四边形的判定定理是解题的关键.3、B【解析】先根据图形折叠的性质得出BC=CE,再由直角三角形斜边的中线等于斜边的一半即可得出CE=AE,进而可判断出△BEC是等边三角形,由等边三角形的性质及直角三角形两锐角互补的性质即可得出结论.【详解】解:∵△ABC沿CD折叠B与E重合,∴BC=CE,∵E为AB中点,△ABC是直角三角形,∴△BEC是等边三角形.∴∠B=60°,∴∠A=30°,故选B.本题考查折叠的性质,直角三角形的性质,等边三角形的判定和性质,解题的关键是熟练掌握折叠的性质:折叠前后的对应边相等,对应角相等.4、C【解析】试题分析:根据反比例函数图象上点的坐标特征得到图象只能在一、三象限,故,则1-2m>0,∴m>.故选C.考点:反比例函数图象上点的坐标特征.5、B【解析】总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.【详解】要想知道自己是否入选,老师只需公布第五名的成绩,即中位数.故选B.6、C【解析】根据二次根式的性质逐一进行计算即可求出答案.【详解】①原式=2,故①正确;②原式=2,故②正确;③原式==④原式2==,故④错误,故选C.本题考查二次根式的性质和化简,熟练掌握二次根式的性质是解题的关键.7、A【解析】解:∵四边形ABCD是正方形,∴∠ACB=45°,∴∠E+∠∠FAC=∠ACB=45°,∵CE=CA,∴∠E=∠FAC,∴∠FAC=12∠ACB=22.5°.故选A.8、A【解析】根据不可能事件,随机事件,必然事件发生的概率以及概率的意义找到正确选项即可.【详解】掷一枚质地均匀的硬币,朝上一面可能是正面,可能是反面,所以①正确;从一副普通扑克牌中任意抽取一张,点数不一定是3,所以②错误,故选A.本题考查了随机事件与确定事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.确定事件包括必然事件和不可能事件:(1)必然事件指在一定条件下一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件.(2)不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(本大题共5个小题,每小题4分,共20分)9、3【解析】连接AW,如图所示:根据旋转的性质得:AD=AB′,∠DAB′=60°,在Rt △ADW 和Rt △AB′W 中,AB AD AW AW ='⎧⎨=⎩,∴Rt △ADW ≌Rt △AB′W (HL ),∴∠B′AW=∠DAW=1302DAB '︒∠=又AD=AB′=1,在RT △ADW 中,tan ∠DAW=WD AD ,即tan30°=WD 解得:WD=3∴126ADW AB W S S WD AD ∆'∆==⋅=,则公共部分的面积为:3ADW AB W S S ∆∆'+=,故答案为3.10、1.【解析】根据众数的定义来判断即可,众数:一组数据中出现次数最多的数据叫做众数.【详解】解:数据1出现了3次,次数最多,所以这组数据的众数是1.故答案为:1.众数的定义是本题的考点,属于基础题型,熟练掌握众数的定义是解题的关键.11、5【解析】过P 作PH ⊥OY 于点H ,构建含30°角的直角三角形,先证明四边形EODP 是平行四边形,得EP=OD=a ,在Rt △HEP 中,由∠EPH =30°,可得EH 的长,从而可得a +2b 与OH 的关系,确认OH 取最大值时点H 的位置,可得结论.【详解】解:过P 作PH ⊥OY 于点H ,∵PD ∥OY ,PE ∥OX ,∴四边形EODP 是平行四边形,∠HEP =∠XOY =60°,∴EP=OD=a ,∠EPH =30°,∴EH =12EP =12a ,∴a +2b =2(12a b +)=2(EH +EO )=2OH ,∴当P 在点B 处时,OH 的值最大,此时,OC =12OA =1,AC =BC ,CH =3222BC ==,∴OH =OC +CH =1+32=52,此时a +2b 的最大值=2×52=5.故答案为5.本题考查了等边三角形的性质、30°的直角三角形的性质和平行四边形的判定和性质,掌握求a +2b 的最大值就是确定OH 的最大值,即可解决问题.12、1【解析】分析:根据菱形的四条边都相等可得AB =5,根据菱形的两条对角线互相垂直且平分可得AC ⊥BD ,AO=12AC =4,BO =DO ,再利用勾股定理计算出BO 长,进而可得答案.详解:∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =12,AC =4,BO =DO ,AD =AB =DC =BC ,∵菱形ABCD 的周长为20,∴AB=5,∴BO =3,∴DO =3,∴DB =1,故答案为:1.点睛:此题主要考查了菱形的性质,关键是掌握菱形的性质①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.13、-1.【解析】根据分式无意义,分母等于0得,1+x=0,解得x=﹣1,故答案为﹣1.三、解答题(本大题共5个小题,共48分)14、见解析【解析】解:结论:四边形ABCD 是平行四边形证明:∵DF ∥BE∴∠AFD =∠CEB又∵AF =CE DF =BE ,∴△AFD ≌△CEB (SAS )∴AD =CB ∠DAF =∠BCE∴AD ∥CB ∴四边形ABCD 是平行四边形15、(1)详见解析;(2)ⅰ)四边形AGBE 是平行四边形,证明详见解析;ⅱ)233k k ++.【解析】(1)只要证明△BAE ≌△ACD ;(2)ⅰ)四边形AGBE 是平行四边形,只要证明BG=AE ,BG ∥AE 即可;ⅱ)求出四边形BGAE 的周长,△ABC 的周长即可;【详解】(1)证明:如图1中,∵△ABC 是等边三角形,∴AB =AC ,∠BAE =∠C =60°,∵AE =CD ,∴△BAE ≌△ACD ,∴∠ABE =∠CAD .(2)ⅰ)如图2中,结论:四边形AGBE 是平行四边形.理由:∵△ADG ,△ABC 都是等边三角形,∴AG =AD ,AB =AC ,∴∠GAD =∠BAC =60°,∴△GAB ≌△DAC ,∴BG =CD ,∠ABG =∠C ,∵CD =AE ,∠C =∠BAE ,∴BG =AE ,∠ABG =∠BAE ,∴BG ∥AE ,∴四边形AGBE 是平行四边形,ⅱ)如图2中,作AH ⊥BC 于H .∵BH =CH =1(1)2k +∴1111(1),(1)2222DH k k AH k =-+=-==+∴AD ==∴四边形BGAE 的周长=2k +△ABC 的周长=3(k +1),∴四边形AGBE 与△ABC 的周长比=233k k ++本题考查全等三角形的判定和性质、平行四边形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.16、23h.【解析】设城际铁路现行速度是xkm/h ,则建成后时速是(x+200)xkm/h ;现行路程是210km ,建成后路程是180km ,由时间=路程速度,运行时间=29现行时间,列方程即可求出x 的值,进而可得建成后的城际铁路在A 、B 两地的运行时间.【详解】设城际铁路现行速度是xkm/h ,则建成后时速是(x+200)xkm/h ;根据题意得:210x ×29=180200x +,解得:x=70,经检验:x=70是原方程的解,且符合题意,∴180200x +=18070200+=23(h )答:建成后的城际铁路在A 、B 两地的运行时间为23h.本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.17、(1)y 甲=0.75×120x=90x ,y 乙=0.8×120(x-1)=96x-96;(2)当人数为10-16人时,选择乙旅行社合算;当人数16-40人时,选择甲旅行社合算;当人数正好是16人时,选择甲、乙旅行社一样.【解析】(1)设共有x 人由题意得:甲旅行社的花费=120×人数×七五折;乙旅行社的花费=120×(人数-1)×八折;(2)分三种情况:①y 甲=y 乙时,②y 甲>y 乙时,③y 甲<y 乙时,分别列出方程或不等式进行计算即可.【详解】(1)设共有x 人,则y 甲=0.75×120x=90x ,y 乙=0.8×120(x-1)=96x-96;(2)由y 甲=y 乙得,90x=96x-96,解得:x=16,y 甲>y 乙得,90x >96x-96,解得:x <16,y 甲<y 乙得,90x <96x-96,解得:x >16,所以,当人数为10-16人时,选择乙旅行社合算;当人数16-40人时,选择甲旅行社合算;当人数正好是16人时,选择甲、乙旅行社一样.此题考查一元一次不等式和方程的应用,关键是正确理解题意,找出题目中不等关系,再列出不等式.18、(1)见解析;(2)43π【解析】(1)首先连接OE ,由AC ⊥AB ,,可得∠CAD =90°,又由AC=EC,OA=OE ,易证得∠CAE =∠CEA ,∠FAO =∠FEO ,即可证得CD 为⊙O 的切线;(2)根据题意可知∠OAF =30°,OF=1,可求得AE 的长,又由S 阴影=EAO S 扇形-EAO S ∆,即可求得答案.【详解】(1)证明:连接OE ∵AC=EC,OA=OE ∴∠CAE =∠CEA ,∠FAO =∠FEO ∵AC ⊥AB ,∴∠CAD =90°∴∠CAE +∠EAO =90°∴∠CEA +∠AEO =90°即∠CEA =90°∴OE ⊥CD ∴CE 为⊙O 的切线(2)解:∵∠OAF =30°,OF =1∴AO =2∴AF 即AE =∴112EAO S ∆=⨯=∵∠AOE =120°,AO =2∴1204==43603EAO S ππ⨯⨯扇形∴S 阴影=43π此题考查垂径定理及其推论,切线的判定与性质,扇形面积的计算,解题关键在于作辅助线.一、填空题(本大题共5个小题,每小题4分,共20分)19、1 23nna-【解析】根据平行四边形的判定定理得到四边形A1C1CD1为平行四边形,根据平行四边形的性质得到A1D1=C1C,总结规律,根据规律解答.【详解】∵A1C1∥AC,A1D1∥BC,∴四边形A1C1CD1为平行四边形,∴A1D1=C1C=13a=11123a-,同理,四边形A2C2C1D2为平行四边形,∴A2D2=C1C2=29a=21223a-,……∴线段A n D n=123nna-,故答案为:123nna-.本题考查的是平行四边形的判定和性质、图形的变化规律,掌握平行四边形的判定定理和性质定理是解题的关键.20、1【解析】利用垂直平分线的作法得MN 垂直平分AC ,则EA =EC ,利用等线段代换得到△CDE 的周长=AD +CD ,然后根据平行四边形的性质可确定周长的值.【详解】解:利用作图得MN 垂直平分AC ,∴EA =EC ,∴△CDE 的周长=CE+CD+ED =AE+ED+CD =AD+CD ,∵四边形ABCD 为平行四边形,∴AD =BC =6,CD =AB =4,∴△CDE 的周长=6+4=1.故答案为1.本题考查了作图−基本作图,也考查了平行四边形的性质.解题的关键是熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).21、1【解析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=ca =1∴122(1)x x x ++=1122x x x x ++=1212x x x x ++=4+1=1,故答案为:1.此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a 的运用.22、m <﹣1【解析】根据关于x 的方程2x+m =x ﹣1的根是正数,可以求得m 的取值范围.【详解】解:由方程2x+m =x ﹣1,得x =﹣m ﹣1,∵关于x 的方程2x+m =x ﹣1的根是正数,∴﹣m ﹣1>0,解得,m <﹣1,故答案为:m <﹣1.本题考查解一元一次方程和一元一次不等式,解答本题的关键是明确题意,求出m 的取值范围.23、 0x ≥且1x ≠.【解析】根据二次根式和分式有意义的条件进行解答即可.【详解】解:∵代数式1x -有意义,∴x ≥0,x-1≠0,解得x ≥0且x ≠1.故答案为x ≥0且x ≠1.本题考查了二次根式和分式有意义的条件,二次根式的被开方数为非负数,分式的分母不为零.二、解答题(本大题共3个小题,共30分)24、(1)证明见解析(2)证明见解析【解析】试题分析:(1)根据平行四边形性质得出AB=DC,AD=BC,AB∥CD,AD∥BC,推出∠ABF=∠CDE,∠ADE=∠CBF,根据全等三角形的判定推出△DAE≌△BCF,即可得;(2)由△DAE ≌△BCF ,得出∠DEA =∠BFC ,从而得∠AEF =∠DFC ,继而得AE ∥CF.试题解析:(1)∵四边形ABCD 是平行四边形,∴AB =DC ,AD =BC ,AB ∥CD ,AD ∥BC ,∴∠ABF =∠CDE ,∠ADE =∠CBF ,在△DAE 和△B CF 中,DAE BCF AD BC ADE CBF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DAE ≌△BCF (ASA ),∴AE =CF ;(2)∵△DAE ≌△BCF ,∴∠DEA =∠BFC ,∴∠AEF =∠DFC ,∴AE ∥CF.25、(1)①12,②y <-3或y >12;(2)1【解析】(1)①根据点A 的横坐标是4,可以求得点A 的纵坐标,从而可以求得k 的值;②根据反比例函数的性质,可以写出y 的取值范围;(2)根据点C 为y 轴正半轴上一点,∠ACB=90°,且△ACB 的面积为10,灵活变化,可以求得点A 的坐标,从而可以求得k 的值.【详解】解:(1)①将x=4代入y=34x 得,y=3,∴点A (4,3),∵反比例函数y=k x (k >0)的图象与一次函数y=34x 的图象交于A 点,∴3=k 4,∴k=12;②∵x=-4时,y=124-=-3,x=1时,y=121=12,∴由反比例函数的性质可知,当-4<x <1(x≠0)时,y 的取值范围是y <-3或y >12;(2)设点A 为(a ,3a 4),则OA==5a4,∵点C 为y 轴正半轴上一点,∠ACB=90°,且△ACB 的面积为10,∴OA=OB=OC=5a 4,∴S △ACB =15a 2a 24⨯⨯=10,解得,a=∴点A 为(,2),∴2,解得,k=1,即k 的值是1.本题考查一次函数与反比例函数的交点问题,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.26、(1)C (3,7),D (7,4);(2)①y =12x ;②43.【解析】(1)根据题意把m=4,n=3代入解答即可;(2)①利用待定系数法确定函数关系式即可;②根据B 、D 坐标表示出E 点坐标,由勾股定理可得到m 、n 之间的关系式,用m 表示出C 点坐标,根据函数关系式解答即可.【详解】解:(1)∵OA =m ,OB =n ,以AB 为边在第一象限内作正方形ABCD ,∴C (n ,m +n ),D (m +n ,m ),把m =4,n =3代入可得:C (3,7),D (7,4),(2)①设C (a ,2a ),由题意可得:2n am n a =⎧⎨+=⎩,解得:m =n =a ,∴D (2a ,a ),∴直线OD 的解析式为:y =12x ,②由B (0,n ),D (m +n ,m ),可得:E (2m n +,2m n +),OE =,∴(2m n +)2+(2m n +)2=8m 2,可得:(m +n )2=16m 2,∴m +n =4m ,n =3n ,∴C (3m ,4m ),∴直线OC 的解析式为:y =43x ,可得:k =43.故答案为(1)C (3,7),D (7,4);(2)①y =12x ;②43.此题是考查一次函数的综合题,关键是根据待定系数法确定函数关系式和勾股定理解答.。
福建省南平市2024-2025学年数学九年级第一学期开学质量检测试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列给出的条件中不能判定一个四边形是矩形的是()A .一组对边平行且相等,一个角是直角B .对角线互相平分且相等C .有三个角是直角D .一组对边平行,另一组对边相等,且对角线相等2、(4分)如图,在点,,,M N P Q 中,一次函数y =kx +2(k <0)的图象不可能经过的点是()A .M B .N C .P D .Q 3、(4分)如图,是某市6月份日平均气温情况,在日平均气温这组数据中,众数和中位数分别是()A .21,22B .21,21.5C .10,21D .10,224、(4分)若a >b ,则下列不等式成立的是()A .33a b B .a +5<b +5C .-5a >-5b D .a -2<b -25、(4分)边长为4的等边三角形的面积是()A .4B .C .D .6、(4分)如图,将一个含有45角的直角三角板的直角顶点放在一张宽为2cm 的矩形纸带边沿上,另一个顶点在纸带的另一边沿上,若测得三角板的一边与纸带的一边所在的直线成30角,则三角板最长的长是()A .2cm B .4cm C .D .7、(4分)甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起销售,若要想销售收入保持不变,则售价大概应定为每千克()A .7元B .6.8元C .7.5元D .8.6元8、(4分)如图,在△ABC 中,AB =5,BC =6,AC =7,点D ,E ,F 分别是△ABC 三边的中点,则△DEF 的周长为()A .12B .11C .10D .9二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别为(-2,0),(-1,0),BC ⊥x 轴,将△ABC 以y 轴为对称轴作轴对称变换,得到△A’B’C’(A 和A’,B 和B’,C 和C’分别是对应顶点),直线y x b =+经过点A ,C’,则点C’的坐标是.10、(4分)某种药品原价75元盒,经过连续两次降价后售价为45元/盒.设平均每次降价的百分率为x ,根据题意可列方程为_____.11、(4分)直线y =2x +3与x 轴相交于点A ,则点A 的坐标为_____.12、(4分)我国很多城市水资源短缺,为了加强居民的节水意识,某自来水公司采取分段收费标准.某市居民月交水费y (单位:元)与用水量x (单位:吨)之间的关系如图所示,若某户居民4月份用水18吨,则应交水费_____元.13、(4分)已知12xy =-,5x y +=,则2x 3y+4x 2y 2+2xy 3=_________.三、解答题(本大题共5个小题,共48分)14、(12分)如图,△ABC 中,D 是BC 上的一点.若AB =10,BD =6,AD =8,AC =17,求△ABC 的面积.15、(8分)已知一次函数y=(3-k)x-2k 2+18.(1)当k 为何值时,它的图象经过原点?(2)当k 为何值时,它的图象经过点(0,-2)?(3)当k 为何值时,它的图象平行于直线y=-x?(4)当k 为何值时,y 随x 增大而减小?16、(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 与△DEF 关于点O 成中心对称,△ABC 与△DEF 的顶点均在格点上.(1)在图中直接画出O 点的位置;(2)若以O 点为平面直角坐标系的原点,线段AD 所在的直线为y 轴,过点O 垂直AD 的直线为x 轴,此时点B 的坐标为(﹣2,2),请你在图上建立平面直角坐标系,并回答下面的问题:将△ABC 先向右平移4个单位长度,再向下平移2个单位长度,得到△A 1B 1C 1,请画出△A 1B 1C 1,并直接写出点B 1的坐标.17、(10分)如图,在四边形ABCD 中,//, 2,90AD BC BC AD BAC ︒=∠=,点E 为BC 的中点.(1)求证:四边形AECD 是菱形;(2)联结BD ,如果BD 平分,2ABC AD ∠=,求BD 的长.18、(10分)解方程组B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,点A 是反比例函数ky x =图象上的一点,过点A 作AB ⊥x 轴于点B .点C 为y 轴上的一点,连接AC ,BC .若△ABC 的面积为3,则反比例函数的解析式是______.20、(4分)已知反比例函数3y x =的图像过点()211,A m y +、()222,B m y +,则1y __________2y .21、(4分)如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点处,当△为直角三角形时,BE 的长为.22、(4分)请观察一列分式:﹣235x x y y ,,﹣3479x x y y ,,…则第11个分式为_____.23、(4分)直线y=x+1与y=-x+7分别与x 轴交于A、B 两点,两直线相交于点C,则△ABC 的面积为___.二、解答题(本大题共3个小题,共30分)24、(8分)嘉嘉将长为20cm ,宽为10cm 的长方形白纸,按图所示方法粘合起来,粘合部分(图上阴影部分)的宽为3cm .(1)求5张白纸粘合后的长度;(2)设x 张白纸粘合后总长为ycm .写出y 与x 之间的函数关系式;(3)求当x=20时的y 值,并说明它在题目中的实际意义.25、(10分)如图所示,在平行四边形ABCD 中,BF AD ⊥于F ,BE CD ⊥于E ,若60A ∠=︒,3AF cm =,2CE cm =,求平行四边形ABCD 的周长.26、(12分)请用无刻度尺的直尺分别按下列要求作图(保留作图痕迹).(1)图1中,点F G 、是ABC ∆的所在边上的中点,作出ABC ∆的AB 边上中线.(2)如图,ABCD 中,//AB CD ,且2AB CD =,BD 是它的对角线,在图2中找出AB 的中点E ;(3)图3是在图2的基础上已找出AB 的中点E ,请作出ABD ∆的AD 边上的中线.一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】利用矩形的判定定理:①有三个角是直角的四边形是矩形可对C作出判断;根据一组对边平行且相等的四边形是平行四边形及有一个角是直角的平行四边形是矩形,可对A作出判断;利用对角线互相平分的四边形是平行四边形,及对角线相等的平行四边形是矩形,可对B作出判断;即可得出答案.【详解】解:A.∵一组对边平行且相等的四边形是平行四边形,且此四边形有一个角是直角,∴此四边形是矩形,故A不符合题意;B、∵对角线互相平分的四边形是平行四边形,∵此四边形的对角线相等,∴此四边形是矩形,故B不符合题意;C、有三个角是直角的四边形是矩形,故C不符合题意;D、一组对边平行,另一组对边相等,且对角线相等的四边形可能是等腰梯形,故D符合题意;故答案为:D此题考查了矩形的判定,矩形的判定方法有:有一个角是直角的平行四边形是矩形;三个角都是直角的四边形是矩形;对角线相等的平行四边形是矩形,熟练掌握矩形的判定方法是解本题的关键.2、D【解析】由条件可判断出直线所经过的象限,再进行判断即可.【详解】解:∵在y=kx+2(k<0)中,令x=0可得y=2,∴一次函数图象一定经过第一、二象限,∵k<0,∴一次函数不经过第三象限,∴其图象不可能经过Q点,故选:D.本题主要考查一次函数的图象,利用k、b的正负判断一次函数的图象位置是解题的关键,即在y=kx+b中,①k>0,b>0,直线经过第一、二、三象限,②k>0,b<0,直线经过第一、三、四象限,③k<0,b>0,直线经过第一、二、四象限,④k<0,b<0,直线经过第二、三、四象限.3、A【解析】根据众数和中位数的定义求解.【详解】解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是1,所以中位数是1.故选A.本题考查众数的定义:一组数据中出现次数最多的数据叫做众数.也考查了条形统计图和中位数.4、A【解析】根据不等式的性质逐项分析即可.【详解】不等式的两边同时除以一个正数,不等号的方向不变,故A正确.不等式的两边同时加上或减去一个数,不等号的方向不变,故B、D错误;不等式的两边同时乘以一个负数,不等号的方向改变,故C错误.故选A.本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.5、C【解析】如图,根据等边三角形三线合一的性质可以求得高线AD 的长度,根据BC 和AD 即可求得三角形的面积.【详解】解:如图,∵△ABC 是等边三角形,AD ⊥BC ,∴BD=DC=2,在Rt △ABD 中,AB=4,BD=2,∴AD==,∴S △ABC =12BC·AD=142⨯⨯,故选C .本题考查了等边三角形的性质、勾股定理有应用、三角形的面积等,熟练掌握相关性质以及定理是解题的关键.6、D 【解析】过另一个顶点C 作垂线CD 如图,可得直角三角形,根据直角三角形中30°角所对的边等于斜边的一半,可求出有45°角的三角板的直角边,再由等腰直角三角形求出最大边.【详解】过点C 作CD ⊥AD ,∴CD=3,在直角三角形ADC 中,∵∠CAD=30°,∴AC=2CD=2×2=4,又∵三角板是有45°角的三角板,∴AB=AC=4,∴BC 2=AB 2+AC 2=42+42=32,∴BC=,故选D.本题考查等腰直角三角形和含30度角的直角三角形,解题的关键是掌握等腰直角三角形和含30度角的直角三角形.7、B 【解析】根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量,即可得出答案.【详解】解:售价应定为:6871083 6.88103⨯+⨯+⨯≈++(元);故选:B 本题考查的是加权平均数的求法,本题易出现的错误是对加权平均数的理解不正确,而求6,7,8这三个数的平均数.8、D 【解析】根据三角形中位线定理分别求出DE 、EF 、DF ,计算即可.【详解】∵点D ,E 分别AB 、BC 的中点,∴DE=12AC=3.5,同理,DF=12BC=3,EF=12AB=2.5,∴△DEF 的周长=DE+EF+DF=9,故选D .本题考查的是三角形中位线定理,熟练掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、(1,3)。
2023-2024学年度第一学期第一次教学质量检测九年级数学试卷一.选择题(共8小题)1.下列方程中,是一元二次方程的是( )A.2x2=5x﹣1B.x+=2C.(x﹣3)(x+1)=x2﹣5D.3x﹣y=52.已知⊙O的半径为5cm,当线段OA=5cm时,则点A在( )A.⊙O内B.⊙O上C.⊙O外D.无法确定3.方程x(x﹣1)=0的根是( )A.x=0B.x=1C.x1=0,x2=1D.x1=1,x2=﹣1 4.若关于x的一元二次方程kx2﹣6x+9=0有实数根,则k的取值范围是( )A.k<1B.k≤1C.k<1且k≠0D.k≤1且k≠0 5.如图,AB是圆O的直径,BC、CD、DA是圆O的弦,且BC=CD=DA,则∠BCD等于( )A.100°B.110°C.120°D.135°6.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为( )A.10×6﹣4×6x=32B.10×6﹣4x2=32C.(10﹣x)(6﹣x)=32D.(10﹣2x)(6﹣2x)=327.如图,AB是⊙O的直径,AB=8,△BCD内接于⊙O,若∠BCD=60°,则圆心O到弦BD的距离是( )A.5B.3C.2 D.18.如图,B为线段AC的中点,过C点的直线l与线段AC成60°的角,在直线l上取一点P,使得∠APB=30°,则满足条件的点P的个数是( )A.1个B.2个C.3个D.4个二.填空题(共8小题)9.若a是方程x2﹣2x﹣5=0的一个根,则2a2﹣4a= .10.如图,在平面直角坐标系xOy中,点A,B,C的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为 .11.用配方法解一元二次方程x2﹣6x+5=0,将它化成(x+p)2=q的形式,则p+q的平方根为 .12.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA.若∠AOC=120°,则∠D的度数是 .13.某商场今年1月盈利3000万,3月盈利3630万,若从1月到3月,每月盈利的平均增长率都相同,则这个平均增长率是 .14.如图,在⊙O中,弦AB=4,点C在AB上移动,连接OC,过点C作CD⊥OC,交⊙O 于点D,则CD长的最大值为 .15.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠A=55°,∠F=30°,则∠E= °.16.如图,已知⊙O的半径为5,P是直径AB的延长线上一点,BP=1,CD是⊙O的一条弦,CD=6,以PC,PD为相邻两边作平行四边形PCED,当C,D点在圆周上运动时,线段PE长的最小值是 .三.解答题(共10小题)17.解方程(1)x2+4x=0 (2)x2+6x=518.4x(2x﹣1)2=36.解:(2x﹣1)2=9;2x﹣1=3……第一步;2x=4……第二步;x=2……第三步;(1)以上解方程的过程中从第 步开始出现错误,错误的原因是 .(2)请写出正确的解方程过程.19.已知k为实数,关于x的方程为x2﹣2(k+1)x+k2=0.(1)若方程有两个不相等的实数根,请求出k的范围;(2)请判断x=﹣1是否可为此方程的根,说明理由.20.如图,已知AB是⊙O的直径,M,N分别是AO,BO的中点,CM⊥AB,DN⊥AB.求证:.21.如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.22.如图,一段圆弧与长度为1的正方形网格的交点是A、B、C.(1)请完成以下操作:①以点O为原点,垂直和水平方向为轴,网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD;(2)请在(1)的基础上,完成下列填空:⊙D的半径为 ;点(6,﹣2)在⊙D ;(填“上”、“内”、“外”)∠ADC的度数为 .23.如图所示的工件槽的两个底角均为90°.尺寸如图(单位:cm),将形状规则的铁球放入槽内,若同时具有A,B,E三个接触点,请你根据图中的数据求出该球的半径.24.某商场以每件30元的价格购进一种商品,规定这种商品每件售价不低于进价,又不高于55元,经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间符合一次函数y=﹣2x+140的关系.(1)当每件售价35元时,每天的利润是多少元?(2)该商场销售这种商品要想每天获得600元的利润,每件商品的售价应定为多少元?(3)该商场销售这种商品每天是否能获得900元的利润?请说明理由.25.如图,AB为⊙O的直径,点C,D为直径AB同侧圆上的点,且点D为的中点,过点D作DE⊥AB于点E,延长DE,交⊙O于点F,AC与DF交于点G.(Ⅰ)如图①,若点C为的中点,求∠AGF的度数;(Ⅱ)如图②,若AC=12,AE=3,求⊙O的半径.26.代数推理:例题:求x2+8x+21的最小值解:x2+8x+21=x2+2x⋅4+42﹣42+21=(x+4)2+5无论x取何值,(x+4)2总是非负数,即(x+4)2≥0所以(x+4)2+5≥5所以:当x=﹣4时,x2+8x+21有最小值,最小值为5阅读材料:利用完全平方式,将多项式x2+bx+c变形为(x+m)2+n的形式,然后由(x+m)2≥0就可以求出多项式x2+bx+c的最小值.根据上述材料,解答下列问题:(1)填空:x2﹣12x+ =(x﹣ )2;(2)将多项式x2+16x﹣1变形为(x+m)2+n的形式,并求出x2+16x﹣1的最小值;(3)若一个长方形的长和宽分别为(2a+3)和(3a+5),面积记为S1,另一个长方形的长和宽分别为5a和(a+3),面积记为S2,试比较S1和S2的大小,并说明理由.。
学校________________班级____________姓名____________考场____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………北京市各区2024年数学九年级第一学期开学学业质量监测试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列运算中正确的是()A .27·3767=B .()24423233333===C .3313939===D .155315151÷⨯=÷=2、(4分)分别顺次连接①平行四边形②矩形③菱形④对角线相等的四边形,各边中点所构成的四边形中,为菱形的是()A .②④B .①②③C .②D .①④3、(4分)如图,正方形ABCD 中,点E 、F 分别在CD 、BC 边上,△AEF 是等边三角形,则∠AED =()A .60°B .65°C .70°D .75°4、(4分)关于x 的不等式21x a -- 的解集如图所示,则a 的取值是()A .0B .3-C .2-D .1-5、(4分)据测试:拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小康同学洗手后,没有把水龙头拧紧,水龙头以测试的速度滴水,当小康离开x 分钟后,水龙头滴出y 毫升的水,请写出y 与x 之间的函数关系式是()A .y=0.05x B .y=5x C .y=100x D .y=0.05x+1006、(4分)已知P 1(1,y 1),P 2(2,y 2)是正比例函数y =-2x 图象上的两个点,则y 1、y 2的大小关系是()A .y 1<y 2B .y 1>y 2C .y 1=y 2D .y 1≥y 27、(4分)菱形ABCD 对角线交于O 点,E ,F 分别是AD 、CD 的中点,连结EF ,若EF=3,OB=4,则菱形面积()A .24B .20C .12D .68、(4分)代数式x 取值范围是()A .1x 2>B .1x 2≥C .1x 2<D .1x 2≠二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)分解因式:4-m 2=_____.10、(4分)已知菱形两条对角线的长分别为4和6,则菱形的边长为______.11、(4分)在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是.12、(4分)已知一个函数的图象与反比例函数2y x =的图象关于y 轴对称,则这个函数的表达式是__________.13、(4分)学校开展的“争做最美中学生”的一次演讲比赛中,编号分别为1,2,3,4,5的五位同学最后成绩如下表所示:那么这五位同学演讲成绩的众数是_____,中位数是_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在平面直角坐标系xOy 中,点A 的坐标为(-2,0),等边三角形AOC经过平移或轴对称或旋转对称都可以得到△OBD .(1)△AOC 沿x 轴向右平移得到△OBD ,则平移的距离是个单位长度;△AOC 与△OBD 关于直线对称,则对称轴是;△AOC 绕原点O 顺时针旋转得到△OBD ,则旋转角可以是度;(2)连接AD ,交OC 于点E ,求∠AEO 的度数.15、(8分)在小正方形组成的15×15的网格中,四边形ABCD 和四边形A′B′C′D′的位置如图所示.(1)现把四边形ABCD 绕D 点按顺时针方向旋转90°,画出相应的图形A 1B 1C 1D 1,(1)若四边形ABCD 平移后,与四边形A′B′C′D′成轴对称,写出满足要求的一种平移方法,并画出平移后的图形A 1B 1C 1D 1.16、(8分)如图,已知E ,F 分别是▱ABCD 的边BC 、AD 上的点,且BE=DF求证:四边形AECF 是平行四边形.17、(10分)某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆车上至少要有1名教师.现有甲乙两种大客车,它们的载客量和租金如下表所示.甲种客车乙种客车载客量/(人/量)4530租金/(元/辆)400280(1)填空:要保证师生都有车坐,汽车总数不能小于______;若要每辆车上至少有1名教师,汽车总数不能大于______.综合起来可知汽车总数为_________.(2)请给出最节省费用的租车方案.18、(10分)如图,在△ABC 中,∠CAB 的平分线AD 与BC 垂直平分线DE 交于点D ,DM ⊥AB 于点M ,DN ⊥AC ,交AC 的延长线于点N ,求证:BM=CN .B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图所示,小明从坡角为30°的斜坡的山底(A )到山顶(B )共走了100米,则山坡的高度BC 为_____米.20、(4分)铁路部门规定旅客免费携行李箱的长宽高之和不超过160cm ,某厂家生产符合该规定的行李箱,已知行李箱的高为20cm ,长与宽之比为3:2,则该行李箱宽度的最大值是_______.21、(4分)=____.22、(4分)“两直线平行,内错角相等”的逆命题是__________.23、(4分)正比例函数y =mx 经过点P (m ,9),y 随x 的增大而减小,则m =__.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在平面直角坐示系xOy 中,直线7y kx =+与直线2y x =-交于点A(3,m).(1)求k ,m 的値;(2)己知点P(n ,n),过点P 作垂直于y 轴的直线与直线2y x =-交于点M ,过点P 作垂直于x 轴的直线与直线7y kx =+交于点N(P 与N 不重合).若PN≤2PM ,结合图象,求n 的取值范围.25、(10分)作平行四边形ABCD 的高CE ,B 是AE 的中点,如图.(1)小琴说:如果连接DB ,则DB ⊥AE ,对吗?说明理由.(2)如果BE :CE =1:,BC =3cm ,求AB .26、(12分)如图,已知一次函数y 1=ax+b 的图象与x 轴、y 轴分别交于点D 、C ,与反比例函数y 2=x k 的图象交于A 、B 两点,且点A 的坐标是(1,3)、点B 的坐标是(3,m ).(1)求一次函数与反比例函数的解析式;(2)求C 、D 两点的坐标,并求△AOB 的面积;(3)根据图象直接写出:当x 在什么取值范围时,y 1>y 2?参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B 【解析】根据二次根式的乘除法则求出每个式子的值,再判断即可.【详解】解:A.67=⨯==42,故本选项不符合题意;B.()23===,故本选项,符合题意;C.===3,故本选项不符合题意;D.÷==3,故本选项不符合题意;故选:B .本题考查二次根式的性质和二次根式的乘除法则,能灵活运用二次根式的乘除法则进行计算是解题关键.2、A 【解析】根据菱形的判定,有一组邻边相等的平行四边形是菱形,只要保证四边形的对角线相等即可.【详解】∵连接任意四边形的四边中点都是平行四边形,∴对角线相等的四边形有:②④,故选:A .本题主要利用菱形的四条边都相等及连接任意四边形的四边中点都是平行四边形来解决.3、D【解析】由题意可证△ABF ≌△ADE ,可得∠BAF=∠DAE=15°,可求∠AED=75°.【详解】∵四边形ABCD 是正方形,∴AB=AD ,∠B=∠C=∠D=∠DAB=90°,∵△AEF 是等边三角形,∴AE=AF ,∠EAF=60°,∵AD=AB ,AF=AE ,∴△ABF ≌△ADE (HL ),∴∠BAF=∠DAE==15°,∴∠AED=75°,故选D .本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,熟练运用这些性质和判定解决问题是本题的关键.4、D 【解析】首先根据不等式的性质,解出x ≤12a -,由数轴可知,x≤-1,所以12a -=-1,解出即可;【详解】解:不等式21x a -≤-,解得x<12a -,由数轴可知1x <-,所以112a -=-,解得1a =-;故选:D .本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5、B【解析】试题分析:每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100×0.05毫升,则x 分钟可滴100×0.05x 毫升,据此即可求解.因此,y=100×0.05x ,即y=5x.故选B.考点:函数关系式.6、B【解析】由y=-1x中k=-1<0,可知y随x的增大而减小,再结合1<1即可得出y1、y1的大小关系.【详解】解:∵正比例函数y=-1x中,k=-1<0,∴y随x增大而减小,∵1<1,∴y1>y1.故选:B.本题考查了正比例函数的图象与性质,注意:y=kx(k≠0)中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.7、A【解析】根据菱形的对角线互相垂直且平分,所以可得菱形的面积等于12倍的对角线的乘积.【详解】解:根据E,F分别是AD、CD的中点,EF=3可得AC=6,OB=4可得BD=8所以菱形ABCD的面积为:16824 2⨯⨯=故选A.本题主要考查菱形对角线的性质,关键在于菱形的对角线平分且垂直.8、A【解析】解:根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使在实数范围内有意义,必须121012 210122xxxx x⎧≥⎪-≥⎧⎪⇒⇒>⎨⎨-≠⎩⎪≠⎪⎩.故选A.二、填空题(本大题共5个小题,每小题4分,共20分)9、(2+m)(2−m)【解析】原式利用平方差公式分解即可.【详解】解:原式=(2+m)(2−m),故答案为:(2+m)(2−m).此题考查了因式分解−运用公式法,熟练掌握平方差公式是解本题的关键.【解析】根据菱形的性质及勾股定理即可求得菱形的边长.【详解】解:因为菱形的对角线互相垂直平分,所以对角线的一半为2和3,=.此题主要考查菱形的基本性质:菱形的对角线互相垂直平分,综合利用了勾股定理的内容.11、24【解析】∵小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,∴口袋中白色球的个数很可能是(1-15%-45%)×60=24个.12、2yx-=【解析】直接根据平面直角坐标系中,关于y轴对称的特点得出答案.【详解】解:∵反比例函数2yx=的图象关于y轴对称的函数x互为相反数,y不变,∴22 yx x ==--,故答案为:2 yx =-.本题考查反比例函数与几何变换,掌握关于y轴对称时,y不变,x互为相反数是解题关键.13、86,1【解析】根据众数和中位数的定义求解可得.【详解】由表可知,这6为同学的成绩分别为:86、86、1、93、96,则众数为86,中位数为1,故答案为:86,1.此题主要考查了众数、中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.三、解答题(本大题共5个小题,共48分)14、(1)2;y轴;120(2)90°【解析】(1)由点A的坐标为(-2,0),根据平移的性质得到△AOC沿x轴向右平移2个单位得到△OBD,则△AOC与△BOD关于y轴对称;根据等边三角形的性质得∠AOC=∠BOD=60°,则∠AOD=120°,根据旋转的定义得△AOC绕原点O顺时针旋转120°得到△DOB;(2)根据旋转的性质得到OA=OD,而∠AOC=∠BOD=60°,得到∠DOC=60°,所以OE为等腰△AOD的顶角的平分线,根据等腰三角形的性质得到OE垂直平分AD,则∠AEO=90°.【详解】(1)∵点A的坐标为(-2,0),∴△AOC沿x轴向右平移2个单位得到△OBD;∴△AOC与△BOD关于y轴对称;∵△AOC为等边三角形,∴∠AOC=∠BOD=60°,∴∠AOD=120°,∴△AOC 绕原点O 顺时针旋转120°得到△DOB .(2)如图,∵等边△AOC 绕原点O 顺时针旋转120°得到△DOB ,∴OA=OD ,∵∠AOC=∠BOD=60°,∴∠DOC=60°,即OE 为等腰△AOD 的顶角的平分线,∴OE 垂直平分AD ,∴∠AEO=90°.15、(1)图略(1)向右平移10个单位,再向下平移一个单位.(答案不唯一)【解析】(1)D 不变,以D 为旋转中心,顺时针旋转90°得到关键点A ,C ,B 的对应点即可;(1)最简单的是以C′D′的为对称轴得到的图形,应看先向右平移几个单位,向下平移几个单位.16、证明见解析.【解析】首先由已知证明AF ∥EC ,BE=DF ,推出四边形AECF 是平行四边形.【详解】解:∵□ABCD ,∴AD=BC ,AD ∥BC ,又∵BE=DF ,∴AF=CE ,∴四边形AECF 为平行四边形.此题考查的知识点是平行四边形的判定和性质,解题的关键是运用平行四边形的性质推出结论.17、(1)6,6,6;(2)租乙种客车2辆,甲种客车4辆.【解析】(1)根据师生总人数240人,以及所需租车数=人数÷载客量算出载客量最大的车所需辆数即可得租车总数最小值,再结合每辆车至少有一名老师即可租车数量最大值;(2)设租乙种客车x 辆,根据师生总数240人以及总费用2300元即可列出关于x 的不等式组,从而得出x 范围,之后进一步求出租车方案即可.【详解】(1)∵()2346455+÷=(辆)……15(人),∴为保证师生都有车坐,汽车总数不能小于6辆;又∵每辆车上至少有1名教师,共有6名教师,∴租车总数不可大于6,故答案为:6,6,6;(2)设租乙种客车x 辆,则:()30456240x x +-≥,且()28040062300x x +-≤,∴526x ≤≤,∵x 是整数,∴1x =,或2x =,设租车费用为y 元,则()2804006202400y x x =+-=-+,∴当2x =时,y 最小,且2160y =,故租乙种客车2辆,甲种客车4辆时,所需费用最低.本题主要考查了一元一次不等式组在方案问题中的实际运用,熟练掌握相关概念是解题关键.18、见解析【解析】根据角平分线的性质和线段垂直平分线的性质可得到DM=DN ,DB=DC ,根据HL 证明△DMB ≌△DNC ,即可得出BM=CN .【详解】证明:连接BD ,∵AD 是∠CAB 的平分线,DM ⊥AB ,DN ⊥AC ,∴DM=DN ,∵DE 垂直平分线BC ,∴DB=DC ,在Rt △DMB 和Rt △DNC 中,DB DC DM DN =⎧⎨=⎩∴Rt △DMB ≌Rt △DNC (HL ),∴BM=CN .本题主要考查了角平分线的性质和线段垂直平分线的性质以及全等三角形的判定与性质,熟悉角平分线的性质和线段垂直平分线的性质是解决问题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】直接利用坡角的定义以及结合直角三角中30°所对的边与斜边的关系得出答案.【详解】由题意可得:AB =100m ,∠A =30°,则BC =12AB =1(m ).故答案为:1.此题主要考查了解直角三角形的应用,正确得出BC 与AB 的数量关系是解题关键.20、56cm【解析】设长为3x ,宽为2x ,再由行李箱的长、宽、高之和不超过160cm ,可得出不等式,解出即可.【详解】解:设长为3x ,宽为2x ,由题意,得:5x+20≤160,解得:x ≤28,故行李箱宽度的最大值是28×2=56cm .故答案为:56cm .本题考查了一元一次不等式的应用,解答本题的关键是仔细审题,找到不等关系,建立不等式.21、4【解析】根据二次根式的性质化简即可.【详解】原式.故答案为:4.(0)(0)a a a a a ≥⎧==⎨-<⎩是解答本题的关键.22、内错角相等,两直线平行【解析】解:“两直线平行,内错角相等”的条件是:两条平行线被第三条值线索截,结论是:内错角相等.将条件和结论互换得逆命题为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,可简说成“内错角相等,两直线平行”.23、-1【解析】直接根据正比例函数的性质和待定系数法求解即可.【详解】解:把x=m ,y=9代入y=mx 中,可得:m=±1,因为y 的值随x 值的增大而减小,所以m=-1,故答案为-1.本题考查了正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0时,图象经过第一、三象限,y值随x的增大而增大;当k<0时,图象经过第二、四象限,y值随x 的增大而减小.二、解答题(本大题共3个小题,共30分)24、(1)k=-2;(2)n的取值范围为:713n≤<或71133n≤<【解析】(1)把A点坐标代入y=x-2中,求得m的值,再把求得的A点坐标代入y=kx+7中,求得k的值;(2)根据题意,用n的代数式表示出M、N点的坐标,再求得PM、PN的值,根据PN≤2PM,列出n的不等式,再求得结果.【详解】(1)∵直线y=kx+7与直线y=x-2交于点A(3,m),∴m=3k+3,m=1.∴k=-2.(2)∵点P(n,n),过点P作垂宜于y轴的直线与直线y=x-2交于点M,∴M(n+2,n).∴PM=2.∴PN≤2PM,∴PN≤4.∵过点P作垂直于x轴的直线与直线y=kx+7交于点N,k=-2,∴N(n,-2n+7).∴PN=|3n-7|.当PN=4时,如图,即|3n-7|=4,∴n=l 或n=113∵P 与N 不重合,∴|3n-7|≠0.∴73n ≠当PN≤4(即PN≤2PM)吋,n 的取值范围为:713n ≤<或71133n ≤<本题是一次函数图象的相交与平行的问题,主要考查了待定系数法求一次函数的解析式,第(2)小题关键是用n 的代数式表示PM 与PN 的长度.25、(1)BD ⊥AE ,理由见解析;(2cm ).【解析】(1)直接利用平行四边形的性质得出BD ∥CE ,进而得出答案;(2)直接利用勾股定理得出BE 的长,进而得出答案.【详解】解:(1)对,理由:∵ABCD 是平行四边形,∴CD ∥AB 且CD =AB .又B 是AE 的中点,∴CD ∥BE 且CD =BE .∴BD ∥CE ,∵CE ⊥AE ,∴BD ⊥AE ;(2)设BE =x ,则CE x ,在Rt △BEC 中:x 2+x )2=9,解得:x 故AB =BE cm ).此题主要考查了平行四边形的性质以及勾股定理,正确应用平行四边形的性质是解题关键.26、(1)y 1=3x ,y 1=﹣x +4;(1)4;(3)当x 满足1<x <3、x <2时,则y 1>y 1.【解析】(1)把点A (1,3)代入y 1=x k ,求出k ,得到反比例函数的解析式;再把B (3,m )代入反比例函数的解析式,求出m ,得到点B 的坐标,把A 、B 两点的坐标代入y 1=ax+b ,利用待定系数法求出一次函数的解析式;(1)把x=2代入一次函数解析式,求出y 1=4,得到C 点的坐标,把y 1=2代入一次函数解析式,求出x=4,得到D 点坐标,再根据S △AOB =S △AOD -S △BOD ,列式计算即可;(3)找出一次函数落在反比例函数图象上方的部分对应的自变量的取值即可.【详解】解:(1)把点A (1,3)代入y 1=x k ,则3=1k ,即k =3,故反比例函数的解析式为:y1=3 x.把点B的坐标是(3,m)代入y1=3x,得:m=33=1,∴点B的坐标是(3,1).把A(1,3),B(3,1)代入y1=ax+b,得a b331a b+=⎧⎨+=⎩,解得a14b=-⎧⎨=⎩,故一次函数的解析式为:y1=﹣x+4;(1)令x=2,则y1=4;令y1=2,则x=4,∴C(2,4),D(4,2),∴S△AOB=S△AOD﹣S△BOD=12×4×3﹣12×4×1=4;(3)由图像可知x<2、1<x<3时,一次函数落在反比例函数图象上方,故满足y1>y1条件的自变量的取值范围:1<x<3、x<2.本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,函数图象上点的坐标特征,三角形的面积,难度适中.利用了数形结合思想.。
九 年 级 开 学 初 质 量 检 测
数 学
(检测时间:120分钟 总分:150分)
一、选择题(本题共10小题,每小题4分,共40分)
1.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( ) A . B . C . D . 2.如图,数轴上所表示关于x 的不等式组的解集是( )
A .x ≥2
B .x >2
C .x >﹣1
D .﹣1<x ≤2
3.下列因式分解正确的是( )
A .2x 2﹣2=2(x +1)(x ﹣1)
B .x 2+2x ﹣1=(x ﹣1)2
C .x 2+1=(x +1)2
D .x 2﹣x +2=x (x ﹣1)+2
4.如果关于x 的不等式(a +1) x >a +1的解集为x <1,则a 的取值范围是
A .a <0 B. a <-1 C. a >1 D. a >-1 5.如果分式有意义,那么x 的取值范围是( )
A .x ≠0
B .x ≤﹣3
C .x ≥﹣3
D .x ≠﹣3 6.如图,△ABC 中,AD=BD ,AE=EC ,BC=6,则DE=( )
A .4
B .3
C .2
D .5
7.如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定四边形ABCD 为平行四边形的是( )
A .A
B ∥CD ,AD ∥B
C B .OA=OC ,OB=OD
C .AD=BC ,AB ∥CD
D .AB=CD ,AD=BC
8.将分式中的a , b 都扩大出口2倍,则这个分式的值()
A.扩大2倍B.缩小2倍C.扩大4倍D.不变
9.解关于x的方程+1=(其中m为常数)产生增根,则常数m的值等于()A.﹣2 B.2 C.1 D.﹣1
10.直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k2x<k1x+b的解集为()
A.x<﹣1 B.x>﹣1 C.x>2 D.x<2
二、填空题(本题共6小题,每小题4分,共24分)
11.因式分解:x2 + 6x=.
12.不等式9﹣3x>0的非负整数解的和是.
13.如果一个多边形的每一个内角都是108°,那么这个多边形的边数是.
14.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是.
(第14题)(第15题)(第16题)15.如图,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,则PD的长为.
16.平行四边形ABCD的周长为36,对角线AC、BD相交于O,点E是CD的中点,BD=12,
则△DOE的周长为.
三、解答下列各题(本题满分86分)
17.(18分)(1)因式分解:2a 3﹣8a 2+8a
(2)解不等式组:
并将解集在数轴上表示出来.
(3)解分式方程:4161222-=-+-x x x
18.(8分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点A 、B 、
C 在小正方形的顶点上,将△ABC 向下平移4个单位、再向右平移3个单位得到△A 1B 1C 1,然后将△A 1B 1C 1绕点A 1顺时针旋转90°得到△A 1B 2C 2.
(1)在网格中画出△A 1B 1C 1和△A 1B 2C 2;
(2)计算线段AC 从开始变换到A 1 C 1的过程中扫过区域的面积
19.(8分)先化简,后求值:
,其中x 用你喜欢的值
20.(8分)如图,DE⊥AB于E,DF⊥AC于F,BD=CD,BE=CF
(1)求证:DE=DF;(3分)
(2)求证:AD是∠EAC的平分线;(2分)
(3)直接写出AB+AC与AE 之间的关系。
(3分)
21.(8分)若关于x的方程+=2的解为正数,求m的取值范围.
22.(12分)如图,在平行四边形ABCD中,F是AD的中点,延长BC到E,使2CE=BC,连接DE,CF.
(1)求证:四边形CEDF是平行四边形;(4分)
(2)若AB=4,AD=6,∠B=60°
①求平行四边形ABCD的面积(4分)
②求DE的长。
(4分)
23.(12分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
24.(12分)已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;
(2)请判断图1中四边形BCEF的形状,并说明理由;
(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.。