第三次周考成绩合成
- 格式:xls
- 大小:2.80 MB
- 文档页数:4
江西省高二(下)第三次周考数学试卷(理科)一、选择题1. 已知函数f(x)=x+cos x,则f′(π6)=()A.1 2B.32C.1−√32D.√322. y′=1x2,则y可以是下列各式中的()A.1 xB.−x+1xC.−2x−3D.−12x33. 曲线y=10+2ln x在点(1, 10)处的切线方程是()A.12x−y−2=0B.2x−y+8=0C.2x+y−12=0D.x−2y+19=04. 下列推理:①由A,B为两个不同的定点,动点P满足|PA|−|PB|=2a<|AB|,得点P的轨迹为双曲线;②由a1=1,a n=3n−1,求出S1,S2,S3猜想出数列{a n}的前n项和S n的表达式;③由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1的面积S=abπ;④科学家利用鱼的沉浮原理制造潜艇.其中是归纳推理的命题个数为()A.0B.1C.2D.35. 函数f(x)=e x sin x的图象在点(3, f(3))处的切线的倾斜角为()A.π2B.0C.钝角D.锐角6. 已知函数f(x)=x3+ax2−2ax+3a2,且f(x)图象在点(1, f(1))处的切线在y轴上的截距小于0,则a的取值范围是( )A.(−1, 1)B.(23,1) C.(−23,1) D.(−1,23)7. 已知数列:11,21,12,31,22,13,41,32,23,14,…,依它的前10项的规律,这个数列的第2010项a2010满足()A.0<a2010<110B.110≤a2010<1 C.1≤a2010≤10 D.a2010>108. 等比数列{a n}中,a1=2,a8=4,函数f(x)=x(x−a1)(x−a2)…(x−a8),则f′(0)=()A.26B.29C.212D.2159. 已知偶函数f(x)在R上可导,且f′(1)=−2,f(x+2)=f(x−2),则曲线y=f(x)在x=−5处的切线的斜率为()A.2B.−2C.1D.−110. 以下是面点师一个工作环节的数学模型:如图,在数轴上截取与闭区间[0, 1]对应的线段,对折后(坐标1所对应的点与原点重合)再均匀的拉成一个单位长度的线段,这一过程称为一次操作(例如在第一次操作完成后,原来的坐标14,34变成12,原来的坐标12变成1,等等).则区间[0, 1]上(除两个端点外)的点,在第二次操作完成后,恰好被拉到与1重合的点所对应的坐标是14,34,那么在第n次操作完成后(n≥1),恰好被拉到与1重合的点对应的坐标是()A.k2n(k为[1, 2n]中所有奇数)B.2k+12n(k∈N∗,且k≤n)C.k2n−1(k为[1, 2n−1]中所有奇数)D.2k−12n(k∈N∗,且k≤n)二、填空题已知f(x)=x2+2xf′(1),则f(x)在x=−12的切线方程为________.已知函数f(x)的图象在点M(1, f(1))处的切线方程是2x−3y+1=0,则f(1)+ f′(1)=________.若曲线f(x)=12sin x−√32cos x的切线的倾斜角为α,则α的取值范围是________.已知函数f(x)=12x−14sin x−√34cos x的图象在点A(x0, y0)处的切线斜率为1,则tan x0=________.已知二次函数f(x)=ax2+bx+c的导数f′(x),f′(0)>0,且f(x)的值域为[0, +∞),则f(1)f′(0)的最小值为________.三、解答题(1)求下列函数的导数①y=x(x2+1x +1x3);②y=(√x+1)(√x1);(2)已知函数f(x)=3x+2cos x+sin x,且a=f′(π2),f′(x)是f(x)的导函数,求过曲线y=x3上一点P(a, b)的切线方程.已知曲线C:y=f(x)=x3−3px2(p∈R).(1)当p=13时,求曲线C的斜率为1的切线方程;(2)设斜率为m的两条直线与曲线C相切于A,B两点,求证:AB中点M在曲线C上;(3)在(2)的条件下,又已知直线AB的方程为:y=−x−1,求p,m的值.参考答案与试题解析江西省高二(下)第三次周考数学试卷(理科)一、选择题1.【答案】A【考点】导数的运算【解析】求出函数的导数,直接代入即可进行求值.【解答】解:∵f(x)=x+cos x,∴f′(x)=1−sin x,即f′(π6)=1−sinπ6=1−12=12,故选:A.2.【答案】B【考点】导数的运算【解析】根据导数的基本公式计算即可.【解答】解:∵(1x )′=−1x2,(−x+1x)′=(−1−1x)′=1x2,(−2x−3)′=6x−4,(−12x3)′=32x4,只有B正确,故选:B3.【答案】B【考点】利用导数研究曲线上某点切线方程【解析】求出曲线的导函数,把x=1代入即可得到切线的斜率,然后根据(1, 10)和斜率写出切线的方程即可.【解答】解:由函数y=10+2ln x知y′=2×1x =2x,把x=1代入y′得到切线的斜率k=2,则切线方程为:y−10=2(x−1),即2x−y+8=0.故选B.4.【答案】B【考点】归纳推理【解析】根据归纳推理的定义,对各个选项进行判断.【解答】解:①由A,B为两个不同的定点,动点P满足|PA|−|PB|=2a<|AB|,得点P的轨迹为双曲线,是一般到特殊的推理,是演绎推理;②由a1=1,a n=3n−1,求出S1,S2,S3猜想出数列{a n}的前n项和S n的表达式,是特殊到一般的推理,是归纳推理;③由圆x2+y2=r2的面积πr2,猜想出椭圆x2a2+y2b2=1的面积S=abπ,是特殊到特殊的推理,是类比推理;④科学家利用鱼的沉浮原理制造潜艇,是特殊到特殊的推理,是类比推理;故归纳推理只有1个,故选:B5.【答案】C【考点】利用导数研究曲线上某点切线方程【解析】由求导公式和法则求出导数,把x=3代入再求出切线的斜率,再由两角和的正弦公式化简,判断出斜率的符号,即得答案.【解答】解:由题意得,f′(x)=e x sin x+e x cos x=e x(sin x+cos x),∴在点(3, f(3))处的切线的斜率是k=e3(sin3+cos3),∵sin3+cos3=√2sin(3+π4)<0,∴k=e3(sin3+cos3)<0,则对应切线的倾斜角是钝角,故选C.6.【答案】C【考点】利用导数研究曲线上某点切线方程【解析】先求函数的导函数f′(x),再求所求切线的斜率即f′(1),由于切点为(1, f(1)),故由点斜式即可得所求切线的方程,最后利用切线在y轴上的截距小于0建立不等关系求解即可.【解答】解:由题意f′(x)=3x2+2ax−2a,∴f′(1)=3,f(1)=3a2−a+1,即函数f(x)图象在点(1, f(1))处的切线斜率为3,∴图象在点(1, f(1))处的切线方程为y−(3a2−a+1)=3(x−1),令x=0得y=3a2−a−2,由题意得3a2−a−2<0,解得:a∈(−23,1),故选C.7.【答案】B【考点】数列递推式【解析】把数列看成11,2 1,12,3 1,22,13,以此类推,第N大项为N 1,N−12,N−23…由此能够找到这个数列的第2010项a2010满足的条件.【解答】解:数列可看成11,2 1,12,3 1,22,13,以此类推,第N大项为N 1,N−12,N−23等此时有1+2+3+4+...+N=N(N+1)2,当N=62时,共有1953项当N=63时,共有2016项故a2010=757,故选B.8.【答案】C【考点】导数的运算等比数列的性质【解析】对函数进行求导发现f′(0)在含有x项均取0,再利用等比数列的性质求解即可.【解答】解:考虑到求导中f′(0),含有x 项均取0, 得:f′(0)=a 1a 2a 3...a 8=(a 1a 8)4=212. 故选C . 9. 【答案】 A【考点】利用导数研究曲线上某点切线方程 【解析】由f(x)可导,对f(x +2)=f(x −2)两边求导,结合f(x)为偶函数,得到一个式子,对此式两边求导,从而可得f′(x +4)=f′(x),由此可求即f′(−5)的值即为所求切线的斜率. 【解答】解:由f(x)在R 上可导,对f(x +2)=f(x −2)两边求导得:f′(x +2)(x +2)′=f′(x −2)(x −2)′,即f′(x +2)=f′(x −2)①, 由f(x)为偶函数,得到f(−x)=f(x),故f′(−x)(−x)′=f′(x),即f′(−x)=−f′(x)②,则f′(x +2+2)=f′(x +2−2),即f′(x +4)=f′(x),所以f′(−5)=f′(−1)=−f′(1)=2,即所求切线的斜率为2. 故选A 10. 【答案】 A【考点】进行简单的合情推理 数列的应用【解析】根据题意,可知下一次的操作把上一次的对应点正好扩大了2倍.因为第一次操作后,原线段AB 上的14,34均变成12,则第二次操作后,恰好被拉到与1重合的点所对应的数是14和34,则它们的和可求.根据题意,将恰好被拉到与1重合的点所对应的坐标列出数据,找出规律,列出通式即可. 【解答】解:∵ 第一次操作后,原线段AB 上的14,34,均变成12, ∴ 对应点扩大了2倍,则第二次操作后,恰好被拉到与1重合的点所对应的数是14和34, 根据题意,得由上图表格,可以推出第n 次操作后,恰好被拉到与1重合的点所对应的数的通式为为12n,2n−12n.所以恰好被拉到与1重合的点所对应的坐标为12,122,322, (1)2n ,2n−12n.故选A . 二、填空题【答案】20x +4y +1=0 【考点】利用导数研究曲线上某点切线方程 导数的运算【解析】求导函数,求出f′(1)的值,可得函数的解析式,从而可得切线的斜率与切点的坐标,即可求出切线方程 【解答】解:∵ f(x)=x 2+2xf′(1), ∴ f′(x)=2x +2f′(1), ∴ f′(1)=2+2f′(1), 解得f′(1)=−2,∴ f(x)=x 2−4x ,f′(x)=2x −4, ∴ f(−12)=94,f′(−12)=−5,∴ 函数在x =−12的切线方程为y −94=−5(x +12),即20x +4y +1=0,故答案为:20x +4y +1=0. 【答案】53【考点】 导数的运算利用导数研究曲线上某点切线方程【解析】由切线的方程找出切线的斜率,根据导函数在x =1的值等于斜率,得到x =1时,f′(1)的值,又切点在切线方程上,所以把x =1代入切线方程,求出的y 的值即为f(1),把求出的f(1)和f′(1)相加即可得到所求式子的值. 【解答】由切线方程2x −3y +1=0,得到斜率k =23,即f′(1)=23,又切点在切线方程上,所以把x =1代入切线方程得:2−3y +1=0,解得y =1即f(1)=1,则f(1)+f′(1)=23+1=53.故答案为:53【答案】[0,π4]∪[3π4,π)【考点】导数的几何意义【解析】先求出导数f′(x),根据导数的几何意义即可得到tanα的取值范围,再利用正切函数的单调性及倾斜角的取值范围即可解出α的取值范围.【解答】解:∵f(x)=12sin x−√32cos x,∴f′(x)=12cos x+√32sin x=sin(x+π6)∈[−1, 1],∴−1≤tanα≤1,又α∈[0, π),解得α∈[0,π4]∪[3π4,π).故α的取值范围是α∈[0,π4]∪[3π4,π).【答案】−√3【考点】利用导数研究曲线上某点切线方程【解析】求导函数,确定切线的斜率,利用切线斜率为1,即可求得tan x0的值.【解答】解:求导函数,可得f′(x)=12−14cos x+√34sin x∵函数f(x)=12x−14sin x−√34cos x的图象在点A(x0, y0)处的切线斜率为1∴12−14cos x0+√34sin x0=1∴sin(x0−π6)=1∴x0−π6=2kπ+π2(k∈Z)∴x0=2kπ+2π3(k∈Z)∴tan x0=−√3故答案为:−√3【答案】2【考点】导数的运算二次函数的性质【解析】由f(x)的值域为[0, +∞),可得对于任意实数x,f(x)≥0成立求出a的范围及a,bc的关系,求出f(1)及f′(0),作比后放缩去掉c,通分后利用基本不等式求最值.【解答】解:∵f′(x)=2ax+b,f′(0)>0,且f(x)的值域为[0, +∞),∴a>0,且4ac−b24a=0,即4ac=b2,∴c>0,∴f(1)=a+b+c,∴f(1)f′(0)=a+b+cb=1+a+cb≥1+2√acb=1+√4acb=1+1=2,∴最小值为2.故答案为:2三、解答题【答案】解:(1)①y=x(x2+1x +1x3)=x3+1+1x2,∴y′=3x2−2x3;②y=(√x+1)(√x 1)√x√x−√x√x1=−x12+x12,∴y′=−12x−12−12x−32=2√x+1x);(2)由f(x)=3x+2cos x+sin x,得f′(x)=3−2sin x+cos x,则a=f′(π2)=1,∴P(1, 1),设切点Q(x0, y0),又y′=3x2,∴得切线斜率k=3x02,∴曲线在点Q处的切线方程为:y−x03=3x02(x−x0),又切线过点P(1, 1),∴有1−x03=3x02(1−x0),整理得:(x0−1)(2x02−1)=0,解得:x0=1或x0=√22或x0=−√22,∴切线方程为:y=3x−2或y=32x±√22.【考点】利用导数研究曲线上某点切线方程导数的运算【解析】(1)①利用单项式乘多项式化简,然后利用基本初等函数的导数公式化简; ②利用多项式乘多项式化简,然后利用基本初等函数的导数公式化简;(2)求出函数f(x)的导函数,结合a =f′(π2)求得a 的值,把点P(a, b)代入y =x 3求b 的值,然后设出切点Q 的坐标,求出切线方程,结合P 的坐标求出切点坐标,则切线方程可求.【解答】解:(1)①y =x(x 2+1x +1x 3)=x 3+1+1x 2,∴ y ′=3x 2−2x 3;②y =(√x +1)(√x 1)√x √x −√x √x 1=−x 12+x 12, ∴ y ′=−12x −12−12x −32=2√x +1x );(2)由f(x)=3x +2cos x +sin x ,得f′(x)=3−2sin x +cos x ,则a =f ′(π2)=1, ∴ P(1, 1),设切点Q(x 0, y 0),又y′=3x 2,∴ 得切线斜率k =3x 02,∴ 曲线在点Q 处的切线方程为:y −x 03=3x 02(x −x 0),又切线过点P(1, 1),∴ 有1−x 03=3x 02(1−x 0),整理得:(x 0−1)(2x 02−1)=0,解得:x 0=1或x 0=√22或x 0=−√22, ∴ 切线方程为:y =3x −2或y =32x ±√22. 【答案】解:(1)当p =13时,y =f(x)=x 3−x 2,函数的导数为f′(x)=3x 2−2x ,由f′(x)=3x 2−2x =1,解得x =1或x =−13,即切点坐标为(1, 0)或(−13, −427), 对应的切线方程为y =x =−1,或y =x +527.(2)f′(x)=3x 2−6px ,设A(x 1, x 13−3px 12),B(x 2, x 23−3px 22),(x 1≠x 2),由导数的几何意义得{m =3x 12−6px 1m =3x 22−6px 2,即3(x 1+x 2)(x 1−x 2)−6p(x 1−x 2)=0, 解得x 1+x 2=2p ,∵x 13−3px 12+x 23−3px 222=(x 1+x 2)(x 12−x 1x 2+x 22)−3p[(x 1+x 2)2−2x 1x 2]2 =2p[(2p)2−3x 1x 2]−3p[(2p)2−2x 1x 2]2=−2p 3,∴ AB 的中点M(x 1+x 22, x 13−3px 12+x 23−3px 222),即M(p, −2p 3)又AB 的中点M 在曲线C 上,等价为,−2p 3=p 3−3p ⋅p 2,显然成立.(3)知,AB 中点M 的横坐标为p ,且M 在AB 上,则M(p, −p −1),又M 在曲线C 上,∴ −p −1=p 3−3p ⋅p 2,即2p 2−p −1=0,则(p −1)(2p 2+2p +1)=0,所以p =1.由{y =x 3−3x 2y =−x −1,即x 3−3x 2+x +1=0, 则(x 3−x 2)−(2x 2−2x)−x +1=0,即(x −1)(x 2−2x −1)=0,由于x 1+x 2=2.x 1=1+√2,x 2=1−√2,故m =3x 12−6x 1=3(1+√2)2−6(1+√2)=3.综上,p =1,m =3为所求.【考点】利用导数研究曲线上某点切线方程【解析】(1)当p =13时,先求导,通过斜率为1得到切点.然后利用点斜式得到所求切线方程; (2)先将A ,B 两点的坐标设出,其中纵坐标用相应点的横坐标表示.再由导数的几何意义,得到A ,B 两点横坐标满足x 1+x 2=2p .从而得到AB 中点M ,即可得到结论.(3)由AB 中点在直线y =−x −1,又在曲线C ,从而得p =1,再反代如直线与曲线联立得方程,得到A .B 两点的坐标,代入导函数中得到斜率,从而得到m =3.【解答】解:(1)当p =13时,y =f(x)=x 3−x 2,函数的导数为f′(x)=3x 2−2x ,由f′(x)=3x 2−2x =1,解得x =1或x =−13,即切点坐标为(1, 0)或(−13, −427), 对应的切线方程为y =x =−1,或y =x +527.(2)f′(x)=3x 2−6px ,设A(x 1, x 13−3px 12),B(x 2, x 23−3px 22),(x 1≠x 2),由导数的几何意义得{m =3x 12−6px 1m =3x 22−6px 2,即3(x 1+x 2)(x 1−x 2)−6p(x 1−x 2)=0, 解得x 1+x 2=2p , ∵x 13−3px 12+x 23−3px 222=(x 1+x 2)(x 12−x 1x 2+x 22)−3p[(x 1+x 2)2−2x 1x 2]2 =2p[(2p)2−3x 1x 2]−3p[(2p)2−2x 1x 2]2=−2p 3, ∴ AB 的中点M(x 1+x 22, x 13−3px 12+x 23−3px 222),即M(p, −2p 3) 又AB 的中点M 在曲线C 上,等价为,−2p 3=p 3−3p ⋅p 2,显然成立.(3)知,AB 中点M 的横坐标为p ,且M 在AB 上,则M(p, −p −1),又M 在曲线C 上,∴ −p −1=p 3−3p ⋅p 2,即2p 2−p −1=0,则(p −1)(2p 2+2p +1)=0,所以p =1.由{y =x 3−3x 2y =−x −1,即x 3−3x 2+x +1=0, 则(x 3−x 2)−(2x 2−2x)−x +1=0,即(x −1)(x 2−2x −1)=0, 由于x 1+x 2=2.x 1=1+√2,x 2=1−√2,故m =3x 12−6x 1=3(1+√2)2−6(1+√2)=3. 综上,p =1,m =3为所求.。
初中二年级数据的分析数据分析是一种重要的数学工具,它可以帮助我们理解和解释各种数据。
在这篇文章中,我们将对初中二年级的数据进行分析,以便更好地了解学生的学习情况和成绩表现。
1. 学生人数统计初中二年级的学生人数为500人,其中男生250人,女生250人。
每个班级大约有50名学生,共有10个班级。
2. 学科成绩分布对于不同学科的成绩分布,我们采用百分比来表示。
数学成绩分布:- 优秀(90分以上):30%- 良好(80-89分):40%- 中等(70-79分):20%- 及格(60-69分):8%- 不及格(60分以下):2%语文成绩分布:- 优秀(90分以上):25%- 良好(80-89分):35%- 中等(70-79分):25%- 及格(60-69分):10%- 不及格(60分以下):5%英语成绩分布:- 优秀(90分以上):35%- 良好(80-89分):30%- 中等(70-79分):25%- 及格(60-69分):8%- 不及格(60分以下):2%3. 学生学科偏好通过问卷调查了解学生对不同学科的偏好程度。
根据问卷结果,约60%的学生对数学感兴趣,30%的学生对语文感兴趣,10%的学生对英语感兴趣。
4. 周考成绩的统计每周学校进行一次周考,我们对五次周考成绩进行统计分析。
以下是周考成绩的平均分和标准差:数学周考成绩:- 平均分:78分- 标准差:6分语文周考成绩:- 平均分:85分- 标准差:4分英语周考成绩:- 平均分:82分- 标准差:5分通过周考成绩的统计,我们可以看出数学科目的成绩较为稳定,语文科目的成绩相对较高,而英语的成绩波动较大。
5. 学生缺勤情况分析我们对学生的缺勤情况进行了统计,发现初中二年级的学生平均每个月有2次缺勤记录。
其中,男生和女生的缺勤次数相近。
6. 课外活动参与情况通过调查了解学生课外活动的参与情况。
根据调查结果,约50%的学生参加了文学社团,30%的学生参加了体育俱乐部,20%的学生参加了艺术团队。
江西省高二(下)第三次周考数学试卷(文科)一、选择题(5'×10=50')1. 下列表述正确的是()①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③B.②③④C.②④⑤D.①③⑤2. 由直线与圆相切时,圆心到切点连线与直线垂直,想到平面与球相切时,球心与切点连线与平面垂直,用的是()A.归纳推理B.演绎推理C.类比推理D.其它推理3. 用演绎法证明函数y=x3是增函数时的大前提是( )A.增函数的定义B.函数y=x3满足增函数的定义C.若x1<x2,则f(x1)<f(x2)D.若x1>x2,则f(x1)>f(x2)4. 已知数列:1,a+a2,a2+a3+a4,a3+a4+a5+a6,…,则数列的第k项为()A.a k+a k+1+...+a2kB.a k−1+a k+...+a2k−1C.a k−1+a k+...+a2kD.a k−1+a k+...+a2k−25. 类比“等差数列的定义”给出一个新数列“等和数列的定义”是()A.连续两项的和相等的数列叫等和数列B.从第二项起,以后每一项与前一项的差都不相等的数列叫等和数列C.从第二项起,以后每一项与前一项的和都相等的数列叫等和数列D.从第一项起,以后每一项与前一项的和都相等的数列叫等和数列6. 如果:在10进制中2004=4×100+0×101+0×102+2×103,那么类比:在5进制中数码2004折合成十进制为()A.29B.254C.602D.20047. 由①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形,根据“三段论”推理出一个结论,则这个结论是()A.正方形的对角线相等B.矩形的对角线相等C.正方形是矩形D.其它8. 下列推理正确的是( ) A.把a(b +c)与log a (x +y)类比,则有:log a (x +y)=log a x +log a yB.把a(b +c)与sin (x +y)类比,则有:sin (x +y)=sin x +sin yC.把(ab)n 与(x +y)n 类比,则有:(x +y)n =x n +y nD.把(a +b)+c 与(xy)z 类比,则有:(xy)z =x(yz)9. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊄平面α,直线a ⊂平面α,直线b // 平面α,则直线b // 直线a ”的结论显然是错误的,是因为( )A.大前提错误B.小前提错误C.推理形式错误D.非以上错误10. 观察数列1,12,21,13,22,31,14,23,32,41,…,则数26将出现在此数列( )A.第21项B.第22项C.第23项D.第24项 二、填空题(5'×5=25')一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●…若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是________.半径为r 的圆的面积S(r)=πr 2,周长C(r)=2πr ,若将r 看作(0, +∞)上的变量,则(πr 2)′=2πr ①.①式可以用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R 的球,若将R 看作(0, +∞)上的变量,请你写出类似于①的式子②:________(43πR 3)=4πR 2 ,②式可以用语言叙述为:________.设f 0(x)=sin x ,f 1(x)=f 0′(x),f 2(x)=f 1′(x),…,f n+1(x)=f n ′(x),n ∈N ,则f 2005(x)=________.若数列{a n }的通项公式a n =1(n+1)2(n ∈N +),记f(n)=(1−a 1)(1−a 2)…(1−a n ),试通过计算f(1),f(2),f(3)的值,推测出f(n)=________.如图,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为√5−12,此类椭圆被称为“黄金椭圆”.类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于________.三、解答题用三段论证明:通项为a n=pn+q(p,q为常数)的数列{a n}是等差数列.设{a n}是集合{2t+2s|0≤s<t, 且s, t∈z}中所有的数从小到大排列成的数列,即a1=3,a2=5,a3=6,a4=9,a5=10,a6=12,…将数列{a n}各项按照上小下大,左小右大的原则写成如图的三角形数表:(1)写出这个三角形数表的第四行、第五行;(2)求a100.参考答案与试题解析江西省高二(下)第三次周考数学试卷(文科)一、选择题(5'×10=50')1.【答案】D【考点】归纳推理演绎推理的应用【解析】本题考查的知识点是归纳推理、类比推理和演绎推理的定义,根据定义对5个命题逐一判断即可得到答案.【解答】解:归纳推理是由部分到整体的推理,演绎推理是由一般到特殊的推理,类比推理是由特殊到特殊的推理.故①③⑤是正确的故选D2.【答案】C【考点】类比推理【解析】从直线想到平面,从圆想到球,即从平面类比到空间.【解答】解:从直线类比到平面,从圆类比到球,即从平面类比到空间.用的是类比推理.故选C3.【答案】A【考点】演绎推理的基本方法【解析】大前提提供了一个一般性的原理,小前提提出了一个特殊对象,两者联系,得出结论.用演绎法证明y=x3是增函数时的依据的原理是增函数的定义,小前提是一个特殊对象即函数f(x)=x3满足增函数的定义.【解答】解:用演绎法证明y=x3是增函数时的大前提是:增函数的定义.故选A.4.【答案】D【考点】【解析】根据已知中数列的前4项,分析数列的项数及起始项的变化规律,进而可得答案.【解答】解:由已知数列的前4项:1,a+a2,a2+a3+a4,a3+a4+a5+a6,…,归纳可得:该数列的第k项是一个:以1为首项,以a为公比的等比数列第k项(a k−1)开始的连续k项和,数列的第k项为:a k−1+a k+...+a2k−2故选:D.5.【答案】C【考点】类比推理【解析】是一个类比推理的问题,在类比推理中,等差数列到等和数列的类比推理方法一般为:减法运算类比推理为加法运算,由:“如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列”类比推理得:“从第二项起,以后每一项与前一项的和都相等的数列叫等和数列”【解答】解:由等差数列的性质类比推理等和数列的性质时,类比推理方法一般为:减法运算类比推理为加法运算,由:“如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.”类比推理得:“从第二项起,以后每一项与前一项的和都相等的数列叫等和数列.”故选C.6.【答案】B【考点】类比推理【解析】本题考查的知识点是类比推理,由10进制的转换方法类比推理出5进制的转换方法,5进制与十进制数之间的转换,只要我们根据10进制转换方法逐位进行转换,即可得到答案.【解答】解:(2004)5=2×53+4=254.故选B.7.A【考点】演绎推理的基本方法【解析】三段论是由两个含有一个共同项的性质判断作前提得出一个新的性质判断为结论的演绎推理.在三段论中,含有大项的前提叫大前提,如本例中的“平行四边形的对角线相等”;含有小项的前提叫小前提,如本例中的“正方形是矩形”叫不前提.另外一个是结论.【解答】解:由演绎推理三段论可得“三段论”推理出一个结论,则这个结论是:“正方形的对角线相等”,故选A.8.【答案】D【考点】类比推理【解析】分别利用运算的法则:A利用对数的运算性质;B利用两角和差的正弦公式;C利用二项式定理;D利用乘法结合律,逐个进行验证,判断每个小题的正误.【解答】解:根据对数的运算性质可得loga (x+y)=logax+logay不正确,即A不正确.由两角和差的正弦公式可得sin(x+y)=sin x cos y+cos x sin y,故B不正确.由二项式定理可得(x+y)n=x n+y n不正确,即C不正确.根据乘法结合律可得(xy)z=x(yz),故D正确,故选D.9.【答案】A【考点】演绎推理的基本方法【解析】本题考查的知识点是演绎推理的基本方法及空间中线面关系,在使用三段论推理证明中,如果命题是错误的,则可能是“大前提”错误,也可能是“小前提”错误,也可能是逻辑错误,我们分析:“直线平行于平面,则平行于平面内所有直线;已知直线b⊄平面α,直线a⊂平面α,直线b // 平面α,则直线b // 直线a”的推理过程,不难得到结论.【解答】解:直线平行于平面,则直线可与平面内的直线平行、异面、异面垂直.故大前提错误.故答案为:A10.【答案】C【考点】数列的概念及简单表示法根据数列的特征,得出数列的项数特点,数列的各项排列特征,从而得出结论.【解答】解:观察数列的特征,项数为1+2+3+...+n=n(n+1)2,当n=6时,6×72=21;又数26是n=7时的第2个项,∴数26将出现在此数列中第21+2=23项.故选:C.二、填空题(5'×5=25')【答案】14【考点】进行简单的合情推理等差数列的前n项和【解析】把每个实心圆和它前面的连续的空心圆看成一组,那么每组圆的总个数就等于2,3,4,…所以这就是一个等差数列.根据等差数列的求和公式可以算出第120个圆在第15组,且第120个圆不是实心圆,所以前120个圆中有14个实心圆.【解答】解:将圆分组:第一组:○●,有2个圆;第二组:○○●,有3个圆;第三组:○○○●,有4个圆;…每组圆的总个数构成了一个等差数列,前n组圆的总个数为S n=2+3+4+...+(n+1)=2+n+12⋅n,令S n=120,解得n≈14.1,即包含了14整组,即有14个黑圆.故答案为:14.【答案】,球的体积函数的导数等于球的表面积函数【考点】归纳推理【解析】圆的面积函数的导数等于圆的周长函数,类比得到球的体积函数的导数等于球的表面积函数,有二维空间推广到三维空间.【解答】V 球=43πR3,又(43πR3)=4πR2故①式可填(43πR3)=4πR2,用语言叙述为“球的体积函数的导数等于球的表面积函数.”【答案】cos x【考点】导数的运算【解析】通过计算前几项,进行归纳分析,当计算到f4(x)时发现f4(x)=f0(x),所以可看成以4为一个循环周期,那么f2005(x)=f1(x)=cos x【解答】解:∵f0(x)=sin x,∴f1(x)=f0′(x)=cos x,∴f2(x)=f1′(x)=−sin x,∴f3(x)=f2′(x)=−cos x,∴f4(x)=f3′(x)=sin x,…由引可以得出呈周期为4的规律重复出现,∵2005=4×501+1则f2005(x)=f1(x)=cos x,故答案为:cos x【答案】n+22n+2【考点】数列递推式归纳推理【解析】本题考查的主要知识点是:归纳推理与类比推理,根据题目中已知的数列{a n}的通项公式a n=1(n+1)2(n∈N+),及f(n)=(1−a1)(1−a2)…(1−a n),我们易得f(1),f(2),f(3)的值,观察f(1),f(2),f(3)的值的变化规律,不难得到f(n)的表达式.【解答】解:∵a n=1(n+1)2(n∈N+),∴a1=1(1+1)2=122,a2=1(2+1)2=132,a3=1(3+1)2=142.又∵f(n)=(1−a1)(1−a2)…(1−a n),∴f(1)=1−a1=1−122=(1−12)(1+12)=12×32,f(2)=(1−a1)(1−a2)=(1−122)(1−132)=12×32×23×43,f(3)=(1−a1)(1−a2)(1−a3)=(1−122)(1−132)(1−142)=12×32×23×43×34×54,…由此归纳推理:∴ f(n)=(1−122)(1−132)…[1−1(n+1)2]=(1−12)(1+12)(1−13)(1+13)…(1−1n +1)(1+1n +1) =12×32×23×43×…×n n +1×n +2n +1=n+22n+2.故答案为:n+22n+2. 【答案】√5+12【考点】双曲线的特性【解析】在黄金双曲线中,|BF|2+|AB|2=|AF|2,由此可知b 2+c 2+c 2=a 2+c 2+2ac ,∵ b 2=c 2−a 2,整理得c 2=a 2+ac ,即e 2−e −1=0,解这个方程就能求出黄金双曲线的离心率e .【解答】解:在黄金双曲线中,|OA|=a ,|OB|=b ,|OF|=c ,由题意可知,|BF|2+|AB|2=|AF|2,∴ b 2+c 2+c 2=a 2+c 2+2ac ,∵ b 2=c 2−a 2,整理得c 2=a 2+ac ,∴ e 2−e −1=0,解得e =√5+12,或e =−√5+12(舍去). 故黄金双曲线的离心率e 得e =√5+12. 三、解答题【答案】解:根据等差数列的定义:满足a n+1−a n =d (d 为常数)是等差数列.(大前提), 若a n =pn +q ,则a n+1−a n =p(n +1)+q −(pn +q)=p ,(p 为常数)(小前提), 故通项为a n =pn +q (p ,q 为常数)的数列{a n }是等差数列,(结论)【考点】演绎推理的基本方法【解析】根据等差数列的定义和演绎推理的基本方法,找出大前提,并判断小前提是否满足大前提,进而可得答案.【解答】解:根据等差数列的定义:满足a n+1−a n =d (d 为常数)是等差数列.(大前提), 若a n =pn +q ,则a n+1−a n =p(n +1)+q −(pn +q)=p ,(p 为常数)(小前提), 故通项为a n =pn +q (p ,q 为常数)的数列{a n }是等差数列,(结论)【答案】解:(1)用记号(s, t)表示s ,t 的取值,那么数列{a n }中的项对应的(s, t)也构成一个三角表:(0, 1)(0, 2)(1, 2)(0, 3)(1, 3)(2, 3)…第一行右边的数是“1”;第二行右边的数是“2”;第三行右边的数是“3”;于是第四行右边的数便是“4”,第五行右行的数自然就是“5”了.而左边的那个数总是从“0”开始逐个递增.因此,第四行的数是:20+24=17;21+24=18;22+24=;23+24=24;第五行的数是:20+25=33;21+25=34;22+25=36;23+25=40;24+25=48.=91,知a100在第十四行中的第9个数,于是a100=(2)由1+2+...+13=13(13+1)228+214=16640.【考点】数列的应用【解析】(1)用记号(s, t)表示s,t的取值,那么数列{a n}中的项对应的(s, t)也构成一个三角表,确定其规律,即可写出这个三角形数表的第四行、第五行;(2)确定a100在第十四行中的第9个数,即可求a100.【解答】解:(1)用记号(s, t)表示s,t的取值,那么数列{a n}中的项对应的(s, t)也构成一个三角表:(0, 1)(0, 2)(1, 2)(0, 3)(1, 3)(2, 3)…第一行右边的数是“1”;第二行右边的数是“2”;第三行右边的数是“3”;于是第四行右边的数便是“4”,第五行右行的数自然就是“5”了.而左边的那个数总是从“0”开始逐个递增.因此,第四行的数是:20+24=17;21+24=18;22+24=;23+24=24;第五行的数是:20+25=33;21+25=34;22+25=36;23+25=40;24+25=48.=91,知a100在第十四行中的第9个数,于是a100=(2)由1+2+...+13=13(13+1)228+214=16640.。
高三周考考实施方案一、背景介绍高三是学生们备战高考的关键阶段,周考作为学生学习成绩的一次检测,对于学校和学生来说都具有重要意义。
因此,制定一套科学合理的高三周考考实施方案对于学校教学工作和学生学习成绩的提高至关重要。
二、考试内容安排1. 考试科目安排:周考科目应涵盖学生所学课程的各个方面,包括语文、数学、英语、物理、化学、生物等主要科目,并且要根据学科特点和学生学习情况进行合理安排。
2. 考试时间安排:周考考试时间一般安排在周五下午,这样可以保证学生在一周的学习之后进行知识的巩固和检测,同时也不会影响到正常的课程安排。
3. 考试形式安排:周考可以采取闭卷考试形式,以检测学生对于所学知识的掌握程度为主,也可以适当安排开卷考试,注重学生对于知识的运用和分析能力的考察。
三、考试安排1. 考试场地安排:学校应该提前确定好考试场地,保证考试环境的安静和整洁,为学生提供一个良好的考试环境。
2. 考试监考安排:学校应该安排专门的老师进行考试监考,严格遵守考试纪律,保证考试的公平公正。
3. 考试安全保障:学校应该加强对考试卷的保密工作,防止考试泄题和作弊现象的发生。
四、考试后的处理1. 成绩统计和分析:学校应该及时对考试成绩进行统计和分析,找出学生的薄弱环节,为后续的教学工作提供参考。
2. 成绩通报和反馈:学校应该及时将考试成绩通报给学生和家长,同时对学生的成绩进行详细分析和评价,给予学生及时的学习反馈。
3. 学生奖惩措施:学校应该对考试成绩优秀的学生给予适当的奖励,激励学生努力学习,对于成绩较差的学生要及时进行帮助和引导,找出问题所在,帮助学生改进学习方法。
五、总结高三周考考实施方案的制定和执行,对于学校和学生都具有重要意义。
通过科学合理的考试内容安排、考试安排和考试后的处理,可以有效提高学生的学习积极性和学习成绩,为学生顺利完成高中学业,顺利参加高考打下坚实的基础。
希望学校能够认真制定和执行高三周考考实施方案,为学生的学习提供更好的保障。
2022-2023 学年第二学期初三级第三次模似质量监测数学科试卷(满分 120 分,考试时间为 90 分钟)一、单选题(本大题共 10 小题,每小题 3 分,共 30 分) .1. 2023 我们来了,则()20231−的结果是( ) A. 1B. 1−C. 2023−D. 2022【答案】B【解析】【分析】根据乘方的意义即可求解. 详解】解:()202311−=−.故选:B 【点睛】本题考查了乘方的运算法则,解题的关键在于熟练掌握乘方的运算法则.正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数,0的任何正整数次幂都等于0.2. 下列说法正确的是( )A. 4的平方根是2B. 8−没有立方根C. 8的立方根是2±D. 4的算术平方根是2 【答案】D【解析】【分析】根据平方根,立方根和算术平方根的定义即可求出答案.【详解】解:A 、根据平方根的定义可知4的平方根是2±,该选项不符合题意;B 、根据立方根的定义可知8−的立方根是2−,该选项不符合题意;C 、根据立方根的定义可知8的立方根是2,该选项不符合题意;D 、根据算术平方根的定义可知4的算术平方根是2,该选项符合题意;故选:D .【点睛】本题考查平方根,立方根和算术平方根,解题的关键是熟练运用其定义,本题属于基础题型. 3. 下列计算正确的是( )A. 2−=B. 3÷C. 23·()a a a −=D. 235() a a =【答案】C【解析】【分析】根据二次根式的减法、除法,幂的乘方与积的乘方运算,逐项分析判断即可求解.【.【详解】解:A. −,故该选项不正确,不符合题意;B. 3÷,故该选项不正确,不符合题意;C. 23·()a a a −=,故该选项正确,符合题意;D. 236()a a =,故该选项不正确,不符合题意.故选:C .【点睛】本题考查了二次根式的减法、除法,幂的乘方与积的乘法运算,熟练掌握二次根式的减法、除法,幂的乘方与积的乘方的运算法则是解题的关键.4. 如图,由七个相同的小正方体拼成立体图形,若从标有①②③④的四个小正方体中取走1个或2个后,余下的几何体与原几何体的左视图相同,则取走的正方体不可能是( )A. ④B. ③C. ②D. ①【答案】A【解析】 即可.【详解】取走①,②,③中的一个的左视图如下:取走④的左视图如下:原几何体的左视图如下:所以,如果取走④号正方体,则左视图与原几何体的左视图不相同.故选A .【点睛】本题主要考查了几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.5. 把一把直尺与一块三角板如图放置,若155∠=°,则2∠的度数为( )A. 115°B. 120°C. 145°D. 135°【答案】C【解析】 【分析】根据三角形的外角的性质得出3∠,根据平行线的性质即可求解.【详解】解:如图所示,∵在Rt ABC △中,90,155C ∠=°∠=°, ∴31145C ∠∠∠=+=°,∵直尺两边平行,∴32∠∠=,∴2145∠=°.故选:C .【点睛】本题考查了三角形外角的性质,平行线的性质,熟练掌握平行线的性质是解题的关键. 6. 为了了解我校八年级1500名学生的跳绳成绩,体育老师从中抽查150名学生的跳绳成绩进行统计分析,下列说法正确的是( )A. 每名学生是个体B. 被抽取的150名学生是样本C. 150是样本容量D. 1500名学生是总体【答案】C【解析】【分析】根据总体、个体、样本、样本容量定义即可完成解答.【详解】解:A. 每名学生的跳绳成绩是个体;的B. 被抽取的150名学生的跳绳成绩是样本;C.样本容量是150;D. 1500名学生的跳绳成绩是总体.故选C .【点睛】本题主要考查了总体、个体、样本、样本容量的定义,总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目. 7. 如图,在OAB 绕点O 逆时针旋转80°得到OCD ,若100,50A D ∠=°∠=°,则AOD ∠的度数是( )A. 30°B. 40°C. 50°D. 60°【答案】C【解析】 【分析】利用旋转性质,求出对应角度数,根据三角形内角和定理求出BOA ∠,再结合旋转角求得AOD BOD BOA ∠=∠−∠.【详解】∵OAB 绕点O 逆时针旋转80°得到OCD ,8050BOD B D ∴∠=°∠=∠=°,,1801801005030BOA A B ∴∠=°−∠−∠=°−°−°=°,803050AOD BOD BOA ∴∠=∠−∠=°−°=°.故选:C .【点睛】本题考查旋转的性质,解题的关键是正确理解旋转的性质,本题属于基础题型.8. 从长度为 1 、3 、5 、7 的四条线段中,任意取出三条线段,能围成三角形的是( )A. 1 ,3 ,5B. 1 ,3 ,7C. 1 ,5 ,7D. 3 ,5 ,7【答案】D【解析】【分析】根据构成三角形的条件逐一判断即可.【详解】解:A 、∵135+<,∴不能构成三角形,不符合题意;B 、∵137+<,∴不能构成三角形,不符合题意;C 、∵157+<,∴不能构成三角形,不符合题意;D 、∵357+>,∴能构成三角形,符合题意;故选D .【点睛】本题主要考查了构成三角形的条件,熟知三角形中任意两边之差小于第三边,任意两边之和大于第三边是解题的关键.9. 已知 a 、b 两数在数轴上对应的点如图所示,下列结论正确的共有( )① 0a b<,②0ab >,③0a b −<,④a b −<−.A. 1 个B. 2 个C. 3 个D. 4 个【答案】B【解析】 【分析】根据数轴上点的位置,利用有理数的乘除,减法法则判断即可得到结果.【详解】解:由数轴上点的位置得:0b a <<,且a b <, ∴0a b<,0ab <,0a b −>,a b −<−, 则结论正确的共有2个.故选:B .【点睛】此题考查了有理数的乘除法,数轴,以及有理数的减法,熟练掌握运算法则是解本题的关键. 10. 如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE =13AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF =2BE ;②PF =2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确的是( )A. ①②B. ②③C. ①③D. ①④ 【答案】D【解析】【详解】解:∵AE =13AB , ∴BE =2AE ,由翻折的性质得,PE =BE ,∴∠APE =30°,∴∠AEP =90°﹣30°=60°,∴∠BEF =12(180°﹣∠AEP )=12(180°﹣60°)=60°,∴∠EFB =90°﹣60°=30°,∴EF =2BE ,故①正确;∵B E=PE ,∴EF =2PE ,∵EF >PF ,∴PF <2PE ,故②错误;由翻折可知EF ⊥PB ,∴∠EBQ =∠EFB =30°,∴BE =2EQ ,EF =2BE ,∴FQ =3EQ ,故③错误;由翻折的性质,∠EFB =∠EFP =30°,∴∠BFP =30°+30°=60°,∵∠PBF =90°﹣∠EBQ =90°﹣30°=60°,∴∠PBF =∠PFB =60°,∴△PBF综上所述,结论正确的是①④.故选:D .二、填空题(本大题共 5 小题,每小题 3 分,共 15 分) .11 因式分解:2218x −=______.【答案】2(x +3)(x ﹣3)【解析】【分析】先提公因式2后,再利用平方差公式分解即可.【详解】2218x −=2(x 2-9)=2(x +3)(x -3). 故答案为:2(x +3)(x ﹣3)【点睛】考点:因式分解.12. 如图,人民币旧版壹角硬币内部的正九边形每个内角度数是___________..【答案】140°##140度【解析】【分析】先求出正九边形的内角和,再根据正九边形的每个内角相等即可求出答案 【详解】解:由题意得,人民币旧版壹角硬币内部的正九边形每个内角度数是()180971409°×−=°, 故答案为:140°.【点睛】本题主要考查了正多边形内角和问题,熟知多边形内角和计算公式是解题的关键. 13. 化简21211x x x x++−−的结果为___________. 【答案】1x −##1x −+【解析】 【分析】根据分式的加法法则即可得.【详解】解:原式21211x x x x +=−−− 2121x x x +−=− ()211x x −=−1x =−.故答案为:1x −.【点睛】本题考查了分式的加法,熟练掌握分式的加法法则是解题关键.14. 如图,ABC 的顶点都是边长为 1 的小正方形组成的网格的格点,则BAC ∠的正切值为___________.【答案】12##0.5【解析】【分析】过点B 作BD AC ⊥,再利用锐角三角函数的定义求解,即可得到答案.【详解】解:过点B 作BD AC ⊥,则ABD △是直角三角形,由图形可知,2BD =,4=AD ,21tan 42BD BAC AD ∴∠===, 故答案为:12.【点睛】本题考查了锐角三角函数,掌握锐角三角函数的定义是解题关键.15. 如图,圆桌周围有 20 个箱子,按顺时针方向编号 1~20,小明先在 1 号箱子中丢入一颗红球,然后沿着圆桌按顺时针方向行走,每经过一个箱子丢一颗球,规则如下:①若前一个箱子丢红球,则下一个箱子就丢绿球.②若前一个箱子丢绿球,则下一个箱子就丢白球.③若前一个箱子丢白球,则下一个箱子就丢红球.按以上的放法,则 10 号箱放了___________球.【答案】红【解析】【分析】根据图形的变化规律得每隔3个箱子放的球的颜色相同,那么第31n +个箱子放红球,即可求出结果.【详解】解:由题意得,每隔3个箱子就放的球的颜色相同,,∴第31n +个箱子放红球,∵10331=×+,∴10 号箱放了红球故选:D .【点睛】本题主要考查了数字类的规律探索,解题的关键是能够找出题目的中的规律.三、解答题(一)(本大题共 3 小题,每小题 8 分,共 24 分).16. 解不等式()232 4x x −>−, 并把它的解集在数轴上表示出来.【答案】2x <;数轴表示见解析【解析】【分析】按照去括号,移项,合并同类项,系数化为1的步骤解不等式,然后在数轴上表示出不等式的解集即可.【详解】解:()232 4x x −>−去括号得:2328x x −>−,移项得:3282x x −−>−−,合并同类项得:510x −>−,系数化为1得:2x <,数轴表示如下:【点睛】本题主要考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的步骤是解题的关键.17. 已知2310x x +−=,求代数式()()()2321213x x x x −−+−−的值.【答案】7【解析】【分析】将原式去括号、合并同类项进行化简,再把已知等式整体代入计算即可求得结果.【详解】解:原式()2269413x x x x −+−−− 2269413x x x x =−+−+−23910x x =−−+()2=3310x x −++∵2310x x +−=,231x x ∴+=, 把231x x +=代入得:()23310=3110=7x x −++−×+,【点睛】本题考查了整式的混合运算−化简求值,熟练掌握整式的乘法法则、平方差公式、去括号法则及合并同类项法则是解题的关键.18. 如图,AC 与BD 交于点O ,OA OD =,ABO DCO ∠=∠,E 为BC 延长线上一点,过点E 作EF CD ∥,交BD 的延长线于点F .(1)求证:AOB DOC △△≌;(2)若4AB =,6BC =,2CE =,求EF 的长.【答案】(1)见解析 (2)163【解析】【分析】(1)利用AAS 证明即可;(2)由EF CD ∥得BCD BEF ∽ ,利用(1)的结论和相似三角形的性质解答即可.【小问1详解】证明:在AOB 和DOC △中, ABO DCO AOB DOC OA OD ∠=∠ ∠=∠ =, ()AAS AOB DOC ∴≌ ;【小问2详解】解:由(1)得:AOB DOC △△≌,4AB DC ∴==,6BC = ,2CE =,8BE BC CE ∴=+=,EF CD ∥ ,BCD BEF ∴∽ ,DC BC EF BE ∴=, 即468EF =, 解得:163EF =. 【点睛】本题考查了全等三角形的判定及性质,相似三角形的判定及性质,熟练掌握各判定定理并熟练应用是解题的关键.四、解答题(二)(本大题共 3 小题,每小题 9 分,共 27 分) .19. 某校为了了解七年级800名学生跳绳情况,从七年级学生中随机抽取部分学生进行1分钟跳绳测试,并对测试成绩进行统计分析,得到如下所示的频数分布表:跳绳个数()n0100n <≤ 100120n <≤ 120140n <≤ 140160n <≤ 160200n <≤ 频数16 30 50 a 24 所占百分比 8% 15% 25% 40% b请根据尚未完成的表格,解答下列问题:(1)本次随机抽取了________名学生进行1分钟跳绳测试,表中=a ________,b =________; (2)补全频数直方图;(3)若绘制“七年级学生1分钟跳绳测试成绩扇形统计图”,则测试成绩在120140n <≤个所对应扇形的圆心角的度数是________;(4)若跳绳个数超过140个为优秀,则该校七年级学生1分钟跳绳成绩优秀的约有多少人?【答案】(1)200;80;12%(2)见解析 (3)90°(4)416人【解析】【分析】(1)根据第一组的频数是16,百分比是8%,即可求得总数,再根据总数×所占百分比=频数,分别求出a b 、的值即可;(2)根据(1)的计算结果补全频数分布直方图即可;(3)利用圆周角360°乘以测试成绩120140n <≤所占百分比25%即可求得所对应扇形的圆心角的度数;(4)利用总数800乘以优秀的所占的百分比即可.【小问1详解】解:168%200÷=,20040%80a =×=,24200100%=12%b =÷×,故答案为:200;80;12%;【小问2详解】解:补全频数直方图如下:【小问3详解】解:36025%90°×=°,故答案为:90°;【小问4详解】解:()80040%12%416×+=(人), 所以该校七年级学生1分钟跳绳成绩优秀的约有416人.【点睛】本题考查了读频数分布直方图的能力和利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20. 某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:销售时段 销售数量销售收入A 种型号B 种型号 销售收入第一周3台 5台 1800元 第二周 4台 10台3100元 (进价、售价均保持不变,利润=销售收入-进货成本)(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?【答案】(1)A 、B 两种型号电风扇的销售单价分别为250元、210元(2)超市最多采购A 种型号电风扇10台时,采购金额不多于5400元【解析】【分析】()1设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,根据3台A 型号5台B 型号的电扇收入1800元,4台A 型号10台B 型号的电扇收入3100元,列方程组求解;()2设采购A 种型号电风扇a 台,则采购B 种型号电风扇()30a −台,根据金额不多余5400元,列不等式求解.【小问1详解】解:设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:3518004103100x y x y += +=, 解得:250210x y = = , 答:A 、B 两种型号电风扇的销售单价分别为250元、210元;【小问2详解】解:设采购A 种型号电风扇a 台,则采购B 种型号电风扇()30a −台.依题意得:()200170305400a a +−≤,解得:10a ≤.答:超市最多采购A 种型号电风扇10台时,采购金额不多于5400元.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.五、解答题(三)(本大题共 2 小题,每小题 12 分,共 24 分) .21. 如图,已知,()0,4A ,()3,0B −,()2,0C ,过A 作y 轴的垂线交反比例函数k y x=的图象于点D ,连接CD ,AB CD ∥.(1)证明:四边形ABCD 为菱形;(2)求此反比例函数的解析式;(3)求sin DAC ∠的值.【答案】(1)证明见解析;(2)20y x =;(3. 【解析】【分析】(1)利用对边分别平行得到四边形ABCD 为平行四边形,再根据平行四边形ABCD 邻边相等即可证明结论;(2)利用菱形的性质,得到D 点坐标为()5,4,将其代入反比例函数解析式,得到20k =,即可求出此反比例函数的解析式;(3)根据平行线的性质,得到DAC ACO ∠=∠,利用勾股定理得到AC ==,求出sin OA ACO AC ∠=sin DAC ∠的值. 【小问1详解】解:AD y ⊥ 轴,BC 在 x 轴上,AD BC ∴∥,AB CD ∥ ,∴四边形ABCD 为平行四边形,()0,4A ,()3,0B −,()2,0C ,4∴=OA ,3OB =,2OC =,5AB ∴==,325BC OB OC =+=+=,AB BC ∴=,∴平行四边形ABCD 为菱形;【小问2详解】解: 四边形ABCD 为菱形,5AD BC ∴==,AD BC ∥,D ∴点的坐标为()5,4,反比例函数ky x =的图象经过D 点,45k∴=,20k ∴=,∴反比例函数的解析式为:20y x =;【小问3详解】解:AD BC ∥DAC ACO ∴∠=∠,在Rt AOC 中,4OA =,2OC =,AC ∴sin sin OA DAC ACO AC ∴∠=∠===. 【点睛】本题考查了平行判定和性质,菱形的判定和性质,求反比例函数解析式,勾股定理,三角函数,熟练掌握坐标与图形的关系是解题关键.22. 如图, 已知ABC 的三个顶点的坐标分别为()()()236010A B C −−−,、,、,.(1)将ABC 向上平移5格,画出平移后的图形;(2)将ABC 绕坐标原点O 逆时针旋转90°,画出旋转后的图形;求旋转过程中动点B 所经过的路径长;(3)请直接写出:以 A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.【答案】(1)见解析 (2)见解析;3π(3)()5,3−−或()7,3−或()3,3.【解析】【分析】(1)先根据点的坐标平移的规律找到A 、B 、C 对应点D 、E 、F 的位置, 然后顺次连接D 、E 、F 即可;(2)根据网格结构找出点A 、B 、C 绕坐标原点O 逆时针旋转90°对应点A ′、B ′、C ′的位置,然后顺次连接即可,然后根据弧长公式求出点B 所经过的路径长即可;(3)根据平行四边形的对边平行且相等,分AB BC AC 、、是对角线三种情况分别写出即可.【小问1详解】解:如图所示,DEF 即为所求;【小问2详解】解:解:ABC 旋转后的A B C ′′′ 如图所示,点B 的对应点的坐标为()06−,, ∴动点B 所经过的路径长9063180ππ××==; 【小问3详解】解:分别以AB 、BC 、AC 为对角线,画出平行四边形,如图,结合图形可知:第四个顶点D 的坐标为:()5,3−−或()7,3−或()3,3.【点睛】本题考查了根据旋转变换作图,平移变换作图,及平行四边形的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.23. 如图,以()30E ,为圆心,5为半径的E 与x 轴交于A 、B 两点,与y 轴交于C 点,抛物线2(0)y ax bx c a ++≠经过A 、B 、C 三点,顶点为F .(1)求A 、B 、C 三点的坐标;(2)求抛物线的解析式及顶点F 的坐标 ;(3)已知P 是抛物线上位于第四象限的点,且满足ABP ABC S S ∆∆= , 连接PF ,判断直线PF 与E 的位置关系并说明理由.【答案】(1)(),(),)20(8004A C B −−,,, (2)213442y x x =−−,顶点253,4F −(3)相切,理由见解析【解析】【分析】(1)由题意可直接得到点A 、B 的坐标,连接CE ,在Rt OCE 中,利用勾股定理求出OC 的长,则得到点C 的坐标;(2)已知点A 、B 、C 的坐标,利用交点式与待定系数法求出抛物线的解析式,由解析式得到顶点F 的坐标;(3)ABC 中,底边AB 上的高4OC =,若ABP ABC S S ∆∆=,则()6,4P −,连接PE PF ,,过点P 作PG ⊥对称轴EF 于点G ,可求得PE ,因此点P 在E 上;再利用勾股定理求出PF 的长度,则利用勾股定理的逆定理可判定EFP △为直角三角形,90EPF ∠=°,所以直线PF 与E 相切.【小问1详解】解:∵以()30E ,为圆心,5为半径的E 与x 轴交于A 、B 两点, ∴(),()2080A B −,,, 连接CE ,在Rt OCE 中,523OE AE OA =−=−= ,5CE =,由勾股定理得 4OC ===,∴()0,4C −;【小问2详解】∵点(),()2080A B −,,在抛物线上, ∴设抛物线的解析式为()()28y a x x =+−,∵点()0,4C −在抛物线上,∴()()428a x x −=+− ,解得14a = , ∴抛物线的解析式为:()()1y x 2x 84=+− ,即 213442y x x =−−, ∵ ()()()21122458344y x x x =+−−=− ∴253,4F−;【小问3详解】直线PF 与E 相切,理由如下:∵ABC 中,底边AB 上的高4OC =,∴P 是抛物线上位于第四象限点,且满足ABP ABC S S ∆∆=,则()6,4P −,如图,连接PE PF ,,过点P 作PG ⊥对称轴EF 于点G ,则34PG EG ==,, 在Rt PEG △中,由勾股定理得:5PE ,∴点P 在E 上,由(2)知,253,4F −, ∴254EF =, ∴94FG EF EG ==−, 在Rt PGF △中,由勾股定理得:154PF =, 在EFP △中,∵2222221525544EP FP EF +=+== , ∴EFP △为直角三角形,90EPF ∠=° ,∵点P 在E 上,且90EPF ∠=°,∴直线PF 与E 相切.【点睛】此题考查了圆与二次函数的综合,待定系数法求函数的解析式,勾股定理,切线的判定,综合掌握圆的知识与二次函数的知识,正确作辅助线解决问题是解题的关键.的。
小组加减分细则一、加分细则1、数、英周考班级前10名:1-3名加3分,4-6名加2分,7-10名加1分;2、质检测满分:加2分;3、月考成绩:(1)年级前3名加6分,前10名加4分,前100名加2分;(2)以年级名次为依据,班级中进步之星(5人)加3分;(3)年级单科状元加5分,班级单科状元加3分,此两项不累加;4、在月考、平时作业书写、班级公共事务中被老师认可、表扬加5分;5、班会期间有好的文章、实例、学习感想方法交流分享者加2分;6、好人好事赢得学校表扬者加2分;7、学校举行运动会等活动,积极参加者加1分,赢得名次者加2分;8、宿舍内务整理整齐、洁净,起到模范带头作用的每次加2分(班内评选);9、维护班级荣誉,自觉维持教室内、卫生区、走廊卫生,受到同学好评,每次加2分;10、每次周考中进步最多的、平均成绩最高的小组每次加2分.二、扣分细则1、数、英周考班级退步后10名,每人次扣3分;2、过关质量检测低于18分,扣3分;3、月考成绩以年级名次为依据的班级退步之星(5人),扣5分;4、周末作业质量最差(3人)扣3分;5、自习期间大声喧哗扰乱他人学习者扣2分,上课扰乱老师上课者扣5分;6、早自习无故迟到者、上课预备铃响完后还未进教室、或在教室大声喧哗者扣2分;7、睡觉者、自习和上课期间无故外出者、看网络小说、言情小说等相关书籍者传纸条等所有与学习无关的行为者扣2分;8、寝室违纪者每人扣1分,宿舍长扣2分;9、周一点评被通报等违纪,扣3分;10、带手机入校、私自外出、考试作弊、打架等严重违纪,扣20分.三、说明1、分数记录者:姜佳琦,每周日晚自习第一节上课铃响后,由王恕鑫公布结果及加减分缘由。
2、周末作业最差者由各科课代表在各自检查后统计结果中选出。
3、扣分第9和10项除扣分外,会有家长到校、停课、停宿、停上晚自习、综合测评最低等措施。
6、每次月考后公布月度统计结果,评选出最优秀小组2个,最差小组1个。
中学周考实施方案一、背景。
中学周考是学校教育教学工作的一项重要内容,是学生学习的一次检测和总结。
周考旨在促进学生的学习积极性,提高学习效率,促进学生全面发展。
因此,制定科学合理的中学周考实施方案对于学校教育教学工作具有重要意义。
二、实施目的。
1. 促进学生学习兴趣,通过周考,激发学生学习兴趣,增强学习动力,使学生主动参与学习,提高学习效果。
2. 检测学生学习情况,周考是对学生学习情况的一次检测,能够及时了解学生的学习情况,为教师调整教学内容和方法提供依据。
3. 培养学生学习习惯,通过周考,培养学生的学习习惯和自律意识,提高学生的学习自觉性和自主性。
三、实施步骤。
1. 周考科目确定,根据学校课程设置和教学计划,确定每周的周考科目,科目内容要与学生所学知识点对应,具有一定的难度和挑战性。
2. 周考时间安排,每周确定周考时间和地点,确保学生有充足的时间进行复习和准备,同时要合理安排周考时间,避免与其他重要活动冲突。
3. 周考内容确定,周考内容应包括课堂教学的重点、难点和考点,具有一定的代表性和权威性,能够全面检测学生的学习情况。
4. 周考方式确定,周考可以采用笔试、口试、实验等方式进行,根据不同科目和教学内容的特点选择合适的考试方式。
5. 周考成绩统计,对学生的周考成绩进行统计和分析,及时反馈给学生和家长,同时对成绩进行分类管理,为学生提供个性化的学习指导。
四、实施要求。
1. 周考内容要求,周考内容要与教学大纲和教学计划相一致,具有一定的难度和挑战性,能够全面检测学生的学习情况。
2. 周考安排要求,周考时间和地点要合理安排,确保学生有充足的复习和准备时间,避免与其他重要活动冲突。
3. 周考监督要求,周考过程中要有专人进行监督,确保考试的公平公正,杜绝作弊和舞弊行为。
4. 周考成绩处理要求,对周考成绩要及时进行统计和分析,提供个性化的学习指导,及时反馈给学生和家长。
五、总结。
中学周考实施方案的制定和实施,对于促进学生学习兴趣,检测学生学习情况,培养学生学习习惯具有重要意义。