2018-2019学年七年级数学上册 第1章 有理数 1.2 数轴作业设计 (新版)浙教版
- 格式:doc
- 大小:875.50 KB
- 文档页数:4
人教版七年级数学上册1.2.2数轴同步练习题1.下列关于数轴的说法正确的是( )A .数轴是一条规定了原点、正方向和单位长度的直线B .数轴的正方向一定向右C .数轴上的点只能表示整数D .数轴上的原点表示有理数的起点 2.下列数轴的画法中,正确的是( )3.(1)将有理数-2,1,0,-212,314在数轴上表示出来;(2)写出数轴上点A ,B ,C 表示的数.4.如图所示,数轴上四点M ,N ,P ,Q 中,表示负整数的点是( ) A .点M B .点N C .点P D .点Q5.有下列一组数:1,4,0,-12,-3,这些数在数轴上对应的点中,不在原点右边的点有( )A .2个B .3个C .4个D .5个6.点A 是数轴上表示-2的点,当点A 沿数轴移动4个单位长度到点B 时,点B 表示的有理数是( ) A .-4 B .-6 C .2或-4 D .2或-67.有理数a ,b ,c 在数轴上的位置如图所示,则下列说法正确的是( )A .a ,b ,c 都为正数B .b ,c 为正数,a 为负数C .a ,b ,c 都为负数D .b ,c 为负数,a 为正数 8.如图,点A 表示的数是________.9.如图,小明在写作业时不慎将墨水滴在数轴上,墨迹遮住部分的整数共有________个.10.点A ,B ,C ,D 分别表示-3,-112,0,4.请解答下列问题:(1)在数轴上描出A ,B ,C ,D 四个点;(2)现在把数轴的原点取在点B 处,其余均不变,那么点A ,B ,C ,D 分别表示什么数?11.如图12,上七年级的小贝在一张纸上画了一条数轴,妹妹不知道它有什么用处,就在上面画了一只小猫和一只小狗,于是数轴上标的数字有的看不到了,请根据数轴回答下列问题:(1)被小猫遮住的是正数还是负数?(2)被小狗遮住的整数有几个?(3)此时小猫和小狗之间(即点A,B之间)的整数有几个?图1212.某公交路线经过一条东西向的大街,从西往东设置有公园、书店、学校、小区四个站点,相邻两个站点之间的距离依次为3 km,2 km,1.5 km.如果以学校为原点,向东为正方向,以图上1 cm长为单位长度表示实际距离1 km,请画出数轴,并将四个站点在数轴上表示出来.13.育才路上依次有八中、新华中学和九中三所中学,八中在新华中学东900米处,新华中学在九中东800米处,现小明从新华中学出发沿着公路向西走了300米后,接着又向东走了500米,这时小明在八中的什么方向上?距八中有多远?试用画数轴的方法解决此题.14.在正方形的四个顶点处逆时针依次标上“合”“格”“优”“秀”四个字,将正方形放置在数轴上,其中“优”“秀”对应的数分别为-2和-1,现将正方形绕着顶点按顺时针方向在数轴上向右无滑动地翻滚,例如第一次翻滚后“全”所对应的数为0,则连续翻滚后与数轴上数2018重合的字是( )A.合 B.格 C.优 D.秀15.如图所示,数轴被折成90°,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数2018将与圆周上的数字________重合.16.如图,将一刻度尺贴放在数轴上(数轴的单位长度是1 cm),刻度尺上“0 cm”和“8 cm”分别对应数轴上的-3和x ,那么x 的值为( )A .8B .7C .6D .517.如图,把一根木棒放在数轴上,数轴的1个单位长度为1 cm ,木棒的左端点与数轴上的点A 重合,右端点与点B 重合.(1)若将木棒沿数轴水平向右移动,则当它的左端点移动到点B 处时,它的右端点在数轴上所对应的数为20;若将木棒沿数轴水平向左移动,则当它的右端点移动到点A 处时,它的左端点在数轴上所对应的数为5,由此可得到木棒的长为________cm.(2)图中点A 表示的数是________,点B 表示的数是________.(3)根据(1)(2),请你借助“数轴”这个工具帮助小红解决下列问题: 一天,小红问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在多少岁了.1.A 2.D3.解:(1)如图所示.(2)点A 表示-3,点B 表示-1,点C 表示4. 4.A 5.B . 6.D 7.D 8.-2 9.710.解:(1)如图所示:(2)点A 表示-112,点B 表示0,点C 表示112,点D 表示512.11.解:(1)被小猫遮住的是负数.(2)被小狗遮住的整数有12,13,14,15,16,17,18,共7个.(3)小猫和小狗之间的整数有-16,-15,-14,…,-1,0,1,2,…,10,11,共28个. 12.解:如图所示:13.解:数轴画法不唯一,示例如下:由题意得三所中学在数轴上的位置如图所示:通过数轴,能看出小明从新华中学出发沿着公路向西走了300米后,接着又向东走了500米,这时小明在新华中学的东边,且距离新华中学200米处,即小明在八中的西边,距离八中有700米.14.C .15.3 .16.D17.解:(1)由数轴观察知三根木棒的长是20-5=15(cm),则此木棒的长为15÷3=5(cm).故答案为5.(2)10 15(3)借助数轴,B表示爷爷的年龄,A表示小红的年龄,把小红与爷爷的年龄差看作木棒AB.当爷爷的年龄是小红现在的年龄时,即将B向左移与A重合,此时小红的年龄是-40岁;当小红的年龄是爷爷现在的年龄时,即将A向右移与B重合,此时爷爷的年龄为125岁,所以可知爷爷比小红大(125+40)÷3=55(岁),所以爷爷现在的年龄为125-55=70(岁).。
1.2.3相反数[学习目标]识记相反数的定义,理解相反数在数轴上的特征。
运用相反数的特征求一个数a 的相反数。
[学习重点与难点] 重、难点: 理解相反数的意义 [学案设计] (一)、忆一忆数轴的三要素是什么?在下面画出一条数轴:2、在上面的数轴上描出表示5、—2、—5、+2 这四个数的点。
3、观察上图并填空: 数轴上与原点的距离是2的点有 个,这些点表示的数是 ;与原点的距离是5的点有 个,这些点表示的数是 。
(二)、学一学1、自学课本第10、11的内容并填空: 相反数的概念:只有( )不同的两个数,我们称它们互为相反数,零的相反数是( )。
概念的理解:互为相反数的两个数分别在原点的( ),且到原点的( )相等。
一般地,数a 的相反数是a -,a -不一定是负数。
在一个数的前面添上“—”号,就表示这个数的相反数,如:-3是3的相反数,-a 是a 的相反数,因此,当a 是负数时,-a 是一个( )数 ( 填正或负 )-(-3)是(-3)的相反数,所以-(-3)=3,相反数是指两个数之间的特殊的关系。
如:“-3是一个相反数”这句话是不对的。
2、例1 : 求下列各数的相反数: (1)-5 (2)21 (3)0 (4)3a(5)-2b (6) a-b (7) a+2 3、例2 判断:(1)-2是相反数 ( ) (2)-3和+3都是相反数 ( ) (3)-3是3的相反数 ( ) (4)-3与+3互为相反数 ( )(5)+3是-3的相反数 ( ) (6)一个数的相反数不可能是它本身 ( ) 4、 问题:-(+5)和-(-5)分别表示什么意思?你能化简它们吗? 5、例3 化简下列各数中的符号:(1))312(-- (2)-(+5) (3)[])7(--- (4)[]{})3(+-+-(三)、练一练1.只有__________的两个数,叫做互为相反数.0的相反数是_______. 2.+5的相反数是______;______的相反数是-2.3;531-与______互为相反数. 3.若x 的相反数是-3,则______=x ;若x -的相反数是-5.7,则______=x . 4.化简下列各数的符号:()____6=+-,()____3.1=--,()[]____3=-+-. 5.下列说法中正确的是………………………………………………………………〖 〗 A .-1是相反数B .313-与+3互为相反数C .25-与52-互为相反数D .41-的相反数为41(四)、自主检测1.若3.2+=a ,则_________=-a ;若31-=a ,则_________=-a ;若1=-a ,则_____=a ;若2-=-a ,则_____=a ;如果a a =-,那么_____=a . 2.数轴上离开原点4.5个单位长度的点所表示的数是______,它们是互为______. 3.下列说法正确的是…………………………………………………………………〖 〗 A .-5是相反数B .32-与23互为相反数C .-4是4的相反数D .21-是2的相反数4.下列说法中错误的是………………………………………………………………〖 〗 A .在一个数前面添加一个“-”号,就变成原数的相反数B .511-与2.2互为相反数 C .31的相反数是-0.3 D .如果两个数互为相反数,则它们的相反数也互为相反数6.下列说法中正确的是………………………………………………………………〖 〗 A .符号相反的两个数是相反数B .任何一个负数都小于它的相反数C .任何一个负数都大于它的相反数D .0没有相反数7.下列各对数中,互为相反数的有…………………………………………………〖 〗(-1)与+(-1),+(+1)与-1,-(-2)与+(-2), +[-(+1)]与-[+(-1)],-(+2)与-(-2),⎪⎭⎫ ⎝⎛--31与⎪⎭⎫⎝⎛++31.A .6对B .5对C .4对D .3对8. 数轴上与原点的距离是6的点有___________个,这些点表示的数是___________;与原点的距离是9的点有___________个,这些点表示的数是___________。
1.2 数轴学校:___________姓名:___________班级:___________一.选择题(共12小题)1.在数轴上与表示数4的点距离5个单位长度的点表示的数是()A.5 B.﹣1 C.9 D.﹣1或92.在数轴上距﹣2有3个单位长度的点所表示的数是()A.1 B.﹣1 C.﹣5 或1 D.﹣53.有理数a、b在数轴上的位置如图,则下列结论正确的是()A.﹣a<﹣b<a<b B.a<﹣b<b<﹣a C.﹣b<a<﹣a<b D.a<b<﹣b<﹣a 4.数轴上表示数12和表示数﹣4的两点之间的距离是()A.8 B.﹣8 C.16 D.﹣165.如图所示,圆的周长为4个单位长度.在圆的4等分点处标上0,1,2,3,先让圆周上的0对应的数与数轴的数﹣1所对应的点重合,再让数轴按逆时针方向绕在该圆上.那么数轴上的﹣2007将与圆周上的数字()重合.A.0 B.1 C.2 D.36.在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1 B.3 C.±2 D.1或﹣37.小明同学将2B铅笔笔尖从原点O开始沿数轴进行连续滑动,先将笔尖沿正方向滑动1个单位长度完成第一次操作;再沿负半轴滑动2个单位长度完成第二次操作;又沿正方向滑动3个单位长度完成第三次操作,再沿负方向滑4个单位长度完成第四次操作,…,以此规律继续操作,经过第50次操作后笔尖停留在点P处,则点P对应的数是()A.0 B.﹣10 C.﹣25 D.508.已知如图:数轴上A,B,C,D四点对应的有理数分别是整数a,b,c,d,且有c﹣2a=7,则原点应是()A.A点B.B点C.C点D.D点9.如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数﹣1的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示数﹣2009的点与圆周上表示数字()的点重合.A.0 B.1 C.2 D.310.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是()A.0 B.2 C.l D.﹣111.数轴上表示整数的点成为整点,某数轴的单位长度为1cm,若在这个数轴上随意画出一条长2017cm的线段AB,则线段AB盖住的整点有()A.2016个B.2017个C.2016个或2017个D.2017个或2018个12.一个小虫在数轴上先向右爬3个单位,再向左爬7个单位,正好停在0的位置,则小虫的起始位置所表示的数是()A.0 B.2 C.4 D.﹣4二.填空题(共8小题)13.如图,某点从数轴上的A点出发,第1次向右移动1个单位长度至B点,第2次从B 点向左移动2个单位长度至C点,第3次从C点向右移动3个单位长度至D点,第4次从D 点向左移动4个单位长度至E点,…,依此类推,经过次移动后该点到原点的距离为2018个单位长度.14.如图,A点的初始位置位于数轴上表示1的点,现对A点做如下移动:第1次向左移动3个单位长度至B点,第2次从B点向右移动6个单位长度至C点,第3次从C点向左移动9个单位长度至D点,第4次从D点向右移动12个单位长度至E点,…,依此类推.这样第次移动到的点到原点的距离为2018.15.如图,在数轴上,点A,B分别在原点O的两侧,且到原点的距离都为2个单位长度,若点A以每秒3个单位长度,点B以每秒1个单位长度的速度均向右运动,当点A与点B 重合时,它们所对应的数为.16.在数轴上,点A表示的数是﹣5,点C表示的数是4,若AB=2BC,则点B在数轴上表示的数是.17.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴的数字1所对应的点重合,若将圆沿着数轴向左滚动.那么数轴上的﹣2009所对应的点将与圆周上字母所对应的点重合.18.若点A、点B在数轴上,点A对应的数为2,点B与点A相距5个单位长度,则点B所表示的数是19.若点A在数轴上对应的数为2,点B在点A左边,且点B与点A相距7个单位长度,则点B所表示的数是.20.在数轴上的点A表示的数为2.5,则与A点相距3个单位长度的点表示的数是.三.解答题(共3小题)21.如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.22.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东记为正,向西记为负,当天的航行路程记录如下(单位:千米):14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(1)请你帮忙确定B地相对于A地的位置;(2)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?23.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O 为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD 以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即PA+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.参考答案与试题解析一.选择题(共12小题)1.【解答】解:当点在表示4的点的左边时,此时数为:4+(﹣5)=﹣1,当点在表示4的点的右边时,此时数为:4+(+5)=9,故选:D.2.【解答】解:依题意得:|﹣2﹣x|=3,即﹣2﹣x=3或﹣2﹣x=﹣3,解得:x=﹣5或x=1.故选:C.3.【解答】解:观察数轴,可知:a<0,b>0,|a|>|b|,∴a<﹣b<b<﹣a.故选:B.4.【解答】解:根据题意得:|12﹣(﹣4)|=16.故选:C.5.【解答】解:∵﹣1﹣(﹣2007)=2006,2006÷4=501…2,∴数轴上表示数﹣2007的点与圆周上表示2的数字重合.故选:C.6.【解答】解:在数轴上,与表示数﹣1的点的距离是2的点表示的数有两个:﹣1﹣2=﹣3;﹣1+2=1.故选:D.7.【解答】解:由题意得,1﹣2+3﹣4+5﹣6+…49﹣50=25×(﹣1)=﹣25,故选:C.8.【解答】解:∵c﹣2a=7,∴从图中可看出,c﹣a=4,∴c﹣2a=c﹣a﹣a=4﹣a=7,∴a=﹣3,∴b=0,即B是原点.故选:B.9.【解答】解:∵﹣1﹣(﹣2009)=2008,2008÷4=502,∴数轴上表示数﹣2009的点与圆周上起点处表示的数字重合,即与0重合.故选:A.10.【解答】解:根据题意得:﹣2+7﹣4=1,则此时这个点表示的数是1,故选:C.11.【解答】解:依题意得:①当线段AB起点在整点时覆盖2017+1=2018个数;②当线段AB起点不在整点,即在两个整点之间时覆盖2017个数.故选:D.12.【解答】解:如图所示:,从0的位置向右爬7个单位,再向左爬3个单位可得小虫的起始位置所表示的数是4,故选:C.二.填空题(共8小题)13.【解答】解:由图可得:第1次点A向右移动1个单位长度至点B,则B表示的数为0+1=1;第2次从点B向左移动2个单位长度至点C,则C表示的数为1﹣2=﹣1;第3次从点C向右移动3个单位长度至点D,则D表示的数为﹣1+3=2;第4次从点D向左移动4个单位长度至点E,则点E表示的数为2﹣4=﹣2;第5次从点E向右移动5个单位长度至点F,则F表示的数为﹣2+5=3;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:(n+1),当移动次数为偶数时,点在数轴上所表示的数满足:﹣n,当移动次数为奇数时,若(n+1)=2018,则n=4035,当移动次数为偶数时,若﹣n=﹣2018,则n=4036.故答案为:4035或4036.14.【解答】解:第1次点A向左移动3个单位长度至点B,则B表示的数,1﹣3=﹣2;第2次从点B向右移动6个单位长度至点C,则C表示的数为﹣2+6=4;第3次从点C向左移动9个单位长度至点D,则D表示的数为4﹣9=﹣5;第4次从点D向右移动12个单位长度至点E,则点E表示的数为﹣5+12=7;第5次从点E向左移动15个单位长度至点F,则F表示的数为7﹣15=﹣8;…;由以上数据可知,当移动次数为奇数时,点在数轴上所表示的数满足:﹣(3n+1),当移动次数为偶数时,点在数轴上所表示的数满足:3n﹣2,当移动次数为奇数时,﹣(3n+1)=﹣2018,n=1345,当移动次数为偶数时,3n﹣2=2018,n=(不合题意).故答案为:1345.15.【解答】解:设点A、点B的运动时间为t,根据题意知﹣2+3t=2+t,解得:t=2,∴当点A与点B重合时,它们所对应的数为﹣2+3t=﹣2+6=4,故答案为:4.16.【解答】解:∵点A表示的数是﹣5,点C表示的数是4,∴AC=4﹣(﹣5)=9;又∵AB=2BC,∴①点B在C的右边,其坐标应为4+9=13;②B在C的左边,其坐标应为4﹣9×=4﹣3=1.故点B在数轴上表示的数是1或13.故答案为:1或13.17.【解答】解:1﹣(﹣2009)=2010,2010÷4=502(周)余2,再向左滚动2个单位长度应该与字母C所对应的点重合.18.【解答】解:由题意可得,当点B在点A的左侧时,点B表示的数是:2﹣5=﹣3,当点B在点A的右侧时,点B表示的数是:2+5=7,故答案为:﹣3或7.19.【解答】解:∵2﹣7=﹣5,∴点B所表示的数是﹣5.故答案为:﹣5.20.【解答】解:∵在数轴上的点A表示的数为2.5,∴与A点相距3个单位长度的点表示的数是:2.5﹣3=﹣0.5或2.5+3=5.5.故答案为:﹣0.5或5.5.三.解答题(共3小题)21.【解答】解:(1)﹣2+4=2.故点B所对应的数;(2)(﹣2+6)÷2=2(秒),4+(2+2)×2=12(个单位长度).故A,B两点间距离是12个单位长度.(3)运动后的B点在A点右边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12﹣4,解得x=4;运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12+4,解得x=8.故经过4秒或8秒长时间A,B两点相距4个单位长度.22.【解答】解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20,答:B地在A地的东边20千米;(2)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12|+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升),答:冲锋舟当天救灾过程中至少还需补充9升油.23.【解答】解:(1)∵|a+8|与(b﹣16)2互为相反数,∴|a+8|+(b﹣16)2=0,∴a+8=0,b﹣16=0,解得a=﹣8,b=16.∴此时刻快车头A与慢车头C之间相距16﹣(﹣8)=24单位长度;(2)(24﹣8)÷(6+2)=16÷8=2(秒).或(24+8)÷(6+2)=4(秒)答:再行驶2秒或4秒两列火车行驶到车头AC相距8个单位长度;(3)∵PA+PB=AB=2,当P在CD之间时,PC+PD是定值4,t=4÷(6+2)=4÷8=0.5(秒),此时PA+PC+PB+PD=(PA+PB)+(PC+PD)=2+4=6(单位长度).故这个时间是0.5秒,定值是6单位长度.推荐精选K12资料推荐精选K12资料。
【知识与技能】1.掌握数轴三要素,能正确画出数轴.2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.【过程与方法】1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.2.结合本节内容,对学生渗透数形结合的重要思想方法.【情感态度】使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.【教学重点】数轴的概念与应用.【教学难点】从直观认识到理性认识,从而建立数轴概念.一、情境导入,初步认识问题在一条东西向的马路上,有一个汽车站牌,汽车站牌东3m和西7.5m处分别有一棵柳树和一棵杨树,汽车站牌西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(学生画图)师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用负数和正数来表示,即用一直线上的点把正数、负数、0都表示出来.也就是本节内容——数轴.【教学说明】(1)引导学生学会画数轴.第一步:画直线定原点;第二步:规定从原点向右的方向为正(左边为负方向);第三步:选择适当的长度为单位长度(据情况而定);第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处,并让学生对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴:规定了原点、正方向和单位长度的直线叫数轴.做一做学生自己练习画出数轴.二、思考探究,获取新知思考1你能利用你自己画的数轴上的点来表示数1,-0.5,-2,-7/2,0吗?思考2若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距了多少个单位长度?小结:整数在数轴上都能找到点吗?分数呢?教师总结.试一试教材第9页练习.三、典例精析,掌握新知例1下列所画数轴对不对?如果不对,指出错在哪里.【答案】①错,没有原点②错,没有正方向③正确④错,没有单位长度⑤错,单位长度不统一⑥正确⑦错,正方向标错例2用你画的数轴上的点表示4,1.5,-3,-7/3,0.【答案】图中A点表示4,B点表示1.5,C点表示-3,D点表示-73,E点表示0.【教学说明】教师应向学生强调,所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.数与数轴上的点结合,这是一种数形结合的重要数学思想.例3(1)与原点的距离为2.5个单位的点有个,它们分别表示有理数和 .(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7个单位到达终点,那么终点表示的数是 .【答案】(1)两2.5-2.5(2)+3【教学说明】这类题的解答可借助数轴上点的移动来找到结果.例4在数轴上表示-212和213,并根据数轴指出所有大于-212而小于213的整数.【答案】-2,-1,0,1【教学说明】教师要向学生评讲并指出本题反映了数形结合的思想方法.例5数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点个数是()A.1998或1999B.1999或2000C.2000或2001D.2001或2002【分析】分两种情况分析:(1)当线段AB的起点是整点时,终点也落在整点上,那就盖住2001个整点;(2)当线段AB的起点不是整点时,终点也不落在整点上,那么线段AB盖住了2000个整点,所以选C.【教学说明】本题解答时要特别注意对题意的理解,不能忽略了分类讨论.四、运用新知,深化理解1.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是()A.7B.-3C.7或-3D.不能确定2.数轴上表示5和-5的点离开原点的距离是,但它们分别 .3. 是最小的正整数,是最小的非负数,是最大的非正数.个,它们分别是和 .5.在数轴上,离原点距离等于3的数是 .6.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.7.一条直线的流水线上,依次有5个卡通人,它们站立的位置在数轴上依次用点M1、M2、M3、M4、M5表示,如图:(1)点M4和M2所表示的有理数是什么?(2)点M3和M5两点间的距离为多少?(3)怎样将点M3移动,使它先达到M2,再达到M5,请用文字说明;(4)若原点是一休息游乐所,那5个卡通人到休息游乐所的总路程为多少?【教学说明】本栏目1~6题较为简单,可让学生独立完成,教师再让学生回答,第7题较为新颖,教师可适当引导后仍由学生自主完成.【答案】1.C2.5在原点的两边3.1 0 04.2 3.5 -3.55.3或-36.2 -4或2 47.(1)M4表示2,M2表示-3;(2)相距7个单位长度;(3)先向左移动1个单位长度,再向右移动8个单位长度;(4)17个单位长度.五、师生互动,课堂小结数轴是非常重要的工具,它使数和直线上的点建立了对应关系.它揭示了数和形的内在联系,为今后进一步研究问题提供了新方法和新思想.应让学生掌握数轴的三要素,正确画出数轴.提醒学生,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.1.布置作业::从教材习题1.2中选取.2.完成练习册中本课时的练习.数轴是数形结合的基本知识,是学生难以理解的难点,教学过程应从贴近学生的实际出发,学生才易于接受和体验,让学生通过观察、思考和动手操作、经历数轴的形成过程,加深对数轴概念的理解,同时可培养抽象概括能力.教学过程可突出“情境——抽象——概括”的主线,体现从特殊到一般研究问题的方法,注意从学生已有经验出发,发挥学生主体作用,会达到事半功倍的效果.相交线基础闯关全练拓展训练1.下列选项中,∠1与∠2互为邻补角的是()2.下列图形中,∠1和∠2互为对顶角的是()3.如图,当光线从空气射入水中时,光线的传播方向发生了改变,这就是折射现象.∠1的对顶角是()A.∠A OBB.∠BOCC.∠AOCD.都不是4.如图,已知点O在直线AE上,O B平分∠A OC,O D平分∠C O E,求∠B O D的度数.5.如图,直线AB与直线CD相交于点O,∠B OC比∠A OC的2倍大30°.求∠B O D的度数.6.如图所示,直线AB,CD交于点O,∠DOE=∠B O D,O F平分∠A O E,∠AOC=30°,试求∠E O F的度数.能力提升全练拓展训练1.如图,点O是直线AB上的任意一点,OC,OD,O E是三条射线,若∠A OD=∠CO E=90°,则下列说法:①与∠AOC互为邻补角的角只有一个;②与∠AOC互为补角的角只有一个;③与∠AOC互为邻补角的角有两个;④与∠AOC互为补角的角有两个.其中正确的是()A.②③B.②④C.③④D.①④2.如图,已知直线AB、CD、EF相交于点O.(1)∠A OD的对顶角是;∠E O C的对顶角是;(2)∠A OC的邻补角是;∠E OB的邻补角是.3.如图,OC平分∠A OB,反向延长OC至D,反向延长OA至E,∠3=25°,求∠B O E的度数.4.如图,AB、CD、EF相交于点O,如果∠A OC=65°,∠DOF=50°.(1)求∠B OE的度数;(2)通过计算∠A OF的度数,你能发现射线OA有什么特殊性?5.如图,直线AB交CD于点O,由点O引射线OG、OE、OF,使OC平分∠E OG,∠AOG=∠FOE,若∠BOD=56°,求∠FO C.三年模拟全练拓展训练1.(2019浙江杭州二中期末,3,★☆☆)下列工具中,有对顶角的是()2.(2018浙江杭州学军中学期中,3,★☆☆)如图所示,∠1的邻补角是()A.∠BOCB.∠BOE 和∠AOFC.∠AOFD.∠BOE 和∠AOC3.(2017 湖南邵阳期末 ,11,★☆☆) 如图 , 直线 AB,CD 相交于O,OE 平分∠AOC,∠E OA∶∠AO D=1∶4,则∠E OC等于()A.30°B.36°C.45°D.72°4.(2017河北廊坊十二中月考,12,★☆☆)如图,剪刀在使用的过程中,随着两个把手之间的夹角(∠DOC)逐渐变大,剪刀刀刃之间的夹角(∠AOB)也相应,理由是.5.(2019河北石家庄二中期中,17,★★☆)如图,直线AB、CD相交于点O,OE把∠B O D分成两部分.(1)∠A OD的对顶角为,∠A OE的邻补角为;(2)若∠BO E=28°,且∠A O C∶∠D O E=5∶3,求∠C OE的度数.五年中考全练拓展训练1.(2018广西贺州中考,5,★☆☆)如图,下列各组角中,互为对顶角的是()A.∠1和∠2B.∠1和∠3C.∠2和∠4D.∠2和∠52.(2015广西柳州中考,4,★☆☆)如图,图中∠α的度数等于()A.135°B.125°C.115°D.105°3.(2015 吉林中考,10,★☆☆)如图所示的是对顶角量角器,用它测量角的原理是.4.(2018河南中考改编,12,★☆☆)如图,直线AB,CD相交于点O,∠E OB=90°,∠EO D=50°, 则∠B O C的度数为.核心素养全练拓展训练1.古城黄冈旅游资源十分丰富,“桃林春色,柏子秋荫”便是其八景之一.为了实地测量“柏子塔”外墙底部的底角(∠ABC)的大小,张扬同学设计了两种测量方案:方案1:作AB的延长线,量出∠C B D的度数,便知∠A B C的度数;方案2:作AB的延长线,C B的延长线,量出∠D B E的度数,便知∠A BC的度数.同学们,你能解释他这样做的道理吗?2.已知∠A OB与∠BOC互补,且两个角有公共顶点和一条公共边,∠A O B=3∠BO C,求这两个角的平分线夹角的度数.基础闯关全练拓展训练1.答案D A、B中的∠1与∠2都没有公共顶点,所以不互为邻补角;C中∠1与∠2虽然有一条公共边,但它们的另一边不互为反向延长线,因此它们也不互为邻补角;只有D中的∠1 与∠2符合邻补角的定义,故选D.2.答案D互为对顶角的两个角有公共顶点,且一个角的两边分别是另一个角两边的反向延长线.满足条件的只有D.3.答案A 根据对顶角的定义判断,∠1的对顶角为∠AOB,故选A.4.解析由∠A OC与∠C OE互为邻补角可知,∠A OC+∠COE=180°.因为OB平分∠AOC,O D平分∠C OE,∠B O D=∠COB+∠C O D,所以∠BO D=12(∠AOC+∠C OE)=12×180°=90°.5.解析设∠A O C=x°,则∠BOC=2x°+30°.依题意得x+2x+30=180,解得x=50.所以∠BOD=∠A O C=50°.6.解析因为直线AB,CD 交于点O,所以∠B O D与∠A OC互为对顶角,所以∠B O D=∠AO C=30°. 因为∠B O D=∠DOE,所以∠B O E=∠BOD+∠D O E=2∠BO D=60°,所以∠AOE=180°-∠BOE=180°-60°=120°.因为OF平分∠AOE,所以∠E O F=12∠AOE=60°.能力提升全练拓展训练1.答案D邻补角既包含数量关系,又包含位置关系,而补角仅包含数量关系.2.答案(1)∠BOC;∠DOF(2)∠A O D和∠BO C;∠E O A和∠BOF解析根据对顶角和邻补角的定义解答.3.解析由对顶角相等,得∠2=∠3=25°. 因为OC平分∠A OB,所以∠AOB=2∠2=50°.又因为∠B OE 与∠A OB互为邻补角,所以∠BOE=180°-∠AOB=180°-50°=130°.4.解析(1)因为∠A OC=65°,所以∠B OD=∠AO C=65°. 又因为∠B O E+∠BOD+∠D O F=180°,所以∠BOE=180°-65°-50°=65°.(2)因为∠A OF=∠BO E=65°,且∠A OC=65°,所以∠AOF=∠A O C,所以射线OA是∠C OF的平分线.5.解析因为OC平分∠E O G,所以∠E O C=∠GOC.因为∠FOE=∠A O G,所以∠F OE+∠E OC=∠AO G+∠G OC,即∠FOC=∠A O C.又因为AB、CD相交于点O,所以∠A O C与∠B O D是对顶角,由对顶角相等,可得∠AOC=∠B O D,所以∠FOC=∠B O D.因为∠BOD=56°,所以∠F O C=56°.三年模拟全练拓展训练1.答案B根据对顶角的定义可知,有对顶角的是B.故选B.2.答案B∠1 是直线AB、EF相交于点O形成的角,所以它的邻补角与直线CD无关,可知∠1的邻补角是∠B OE和∠AOF.故选B.3.答案A设∠EO A=x,∵OE平分∠AO C,∴∠EO C=x,∵∠E O A∶∠AO D=1∶4,∴∠AOD=4x,∵∠C O A+∠AOD=180°,∴x+x+4x=180°, 解得x=30°.故∠E O C的度数是30°.4.答案变大;对顶角相等解析∵对顶角相等,∴对顶角中两个角的大小变化一致,又∵∠D O C与∠AOB是对顶角,∴ 随着两个把手之间的夹角(∠DOC)逐渐变大,剪刀刀刃之间的夹角(∠A OB)也相应变大.5.解析(1)∠B OC;∠BO E.(2)∵∠AO C=∠B OD,∴∠B O D∶∠D OE=5∶3,设∠B O D=5x,则∠DO E=3x, 则∠B O E=∠BOD-∠D O E=5x-3x=2x,∵∠B O E=28°,∴2x=28°,∴x=14°,∴∠D O E=3x=3×14°=42°,∵∠D OE+∠COE=180°,∴∠C O E=180°-∠D O E=180°-42°=138°.五年中考全练拓展训练1.答案A互为对顶角的是∠1和∠2.故选A.2.答案A题图中∠α与45°角是邻补角,根据邻补角互补,得出∠α的度数为180°-45°=135°.3.答案对顶角相等4.答案140°解析∵∠EOB=90°,∠E O D=50°,∴∠D O B=90°-50°=40°,∴∠C O B=180°-∠D O B=180°-40°=140°.核心素养全练拓展训练1.解析显然,直接测量底角的度数是比较困难的,张扬同学运用转化的思想方法,利用邻补角、对顶角的性质进行迁移.方案1利用了邻补角的性质,因为∠C B D+∠ABC=180°,即∠A BC=180°-∠C BD,所以,只要量出∠C B D 的度数,便可求出∠ABC 的度数;方案2利用了对顶角的性质,因为∠D B E=∠A BC ,所以,只要量出∠DBE 的度数,便可以知道 ∠ABC 的度数.2.解析 分两种情况:若∠A OB 和∠B O C 互为邻补角,则其情形如图所示:射线O D,OE 分别平分∠A OB 和∠BOC,由一对邻补角的平分线互相垂直可知∠D OE=90°.若∠A OB 和∠B O C 只是互为补角但不是邻补角,则其情形如图所示:射线O D,OE 分别是∠AOB 和∠B O C 的平分线, 可设∠BOC=x°,则∠AOB=3x°,可得x+3x=180, 解得x=45.则∠AOB=135°.则∠D O E=1∠AOB -1∠B O C=1×135°-1×45°=45°. 2 2 2 2综上可知,所求夹角的度数为90°或45°.《相交线》说课稿今天,我说课的课题是:人教版七年级数学下册第五章第一节《相交线》。
绝对值(30分钟50分)一、选择题(每小题4分,共12分)1.(2014·黄冈模拟)下面各对数中互为相反数的是( )A.2与-|-2|B.-2与-|2|C.|-2|与|2|D.2与-(-2)【解析】选A.因为-|-2|=-2,且2与-2互为相反数,所以A中2与-|-2|互为相反数.【知识归纳】化简题中的括号与绝对值化简或计算时,要按运算顺序进行,如果既有“括号”,又有“绝对值符号”,要注意运算顺序.(1)如果绝对值号里有括号,应该先化简括号,再求绝对值.(2)如果括号里有绝对值号,可以先求绝对值,再化简括号,也可以先化简括号,再求绝对值.2.下列说法中正确的是( )A.-|a|一定是负数B.若|a|=|b|,则a=bC.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数是负数【解析】选D.当a=0时,-|a|=0,故A错误;若|a|=|b|,则a=b或a=-b,故B,C错误.3.(2013·菏泽中考)如图,数轴上的A,B,C三点所表示的数分别为a,b,c,其中AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在( )A.点A的左边B.点A与点B之间C.点B与点C之间D.点C的右边【解析】选C.因为|a|>|c|>|b|,所以点A到原点的距离最大,点C到原点的距离其次,点B到原点的距离最小,又因为AB=BC,所以原点O的位置在点B与点C之间,且靠近点B的地方.【一题多解】排除法选C.若原点在A点左侧,则|c|>|b|>|a|,因此排除选项A;若原点在点A与点B之间,则|c|最大,因此排除选项B;若原点在点B与点C之间,则|a|最大,此时,若原点靠近点B,则|c|>|b|;若原点在点C的右边,则|a|>|b|>|c|,因此排除选项D.二、填空题(每小题4分,共12分)4.(2013·南充中考)-3.5的绝对值是.【解析】根据绝对值的意义,负数的绝对值是它的相反数,所以-3.5的绝对值是3.5.答案:3.55.(2014·黄冈中学质检)若|a|=|-3|,则a= .【解析】因为|a|=|-3|=3,所以a=3或-3.答案:3或-3【互动探究】若把|a|变为|-a|,则a= .【解析】因为|-a|=3,所以-a=±3,所以a=±3.答案:±36.当a为时,式子8-|2a-6|有最大值,最大值是.【解析】因为|2a-6|≥0,所以当|2a-6|=0,即2a-6=0,a=3时,8-|2a-6|有最大值,最大值是8.答案:3 8【知识归纳】绝对值的两个应用(1)若|a|+|b|=0,则a=b=0.(2)m-|a|有最大值m,m+|a|有最小值m.三、解答题(共26分)7.(8分)(2014·任县三中质检)计算:(1)|-5|+|-2|.(2)÷.(3)×|-24|.(4).【解题指南】先利用绝对值的意义去掉绝对值符号,再按四则运算进行计算.【解析】(1)|-5|+|-2|=5+2=7.(2)÷=÷=×=.(3)×|-24|=×24=4+54+32=90.(4)===.8.(8分)有一只小昆虫在数轴上爬行,它从原点开始爬,“+”表示此昆虫由原点向右,“-”表示此昆虫由原点向左,总共爬行了10次,其数据统计如下(单位:cm):+3,-2,-3,+1,+2,-2,-1,+1,-3,+2.如果此昆虫每分钟爬行4cm,则此昆虫爬行过程中,它用了多少分钟?【解析】由题意知,这只昆虫所爬的路程为:|+3|+|-2|+|-3|+|+1|+|+2|+|-2|+|-1|+|+1|+|-3|+|+2|=20(cm),所以它所用的时间为:20÷4=5(min).【培优训练】9.(10分)北京航天研究院所属工厂,制造“嫦娥三号”上的一种螺母,要求螺母内径可以有±0.02mm的误差,抽查5个螺母,超过规定内径的毫米数记做正数,没有超过规定内径的毫米数记做负数,检查结果如下:+0.010,-0.018,+0.006,-0.002,+0.015.(1)指出哪些产品是合乎要求的?(即在误差范围内的)(2)指出合乎要求的产品中哪个质量好一些,哪个质量稍差一些?【解析】(1)因为|+0.010|=0.010<0.02,|-0.018|=0.018<0.02,|+0.006|=0.006<0.02,|-0.002|=0.002<0.02,|+0.015|=0.015<0.02,所以所抽查的产品都合乎要求.(2)绝对值越接近0质量越好,|-0.002|=0.002最接近0,所以质量好一些;|-0.018|=0.018最大,所以质量稍差一些.【变式训练】某工厂为组装学校的新桌椅,生产了一批配套的螺母.产品质量要求是:螺母的内径可以有0.20mm的误差.抽查7只螺母,超过规定内径的毫米数记做正数,不足规定的记做负数,检测结果如表:(单位:mm)(1)其中第几号螺母不合格?(2)第几号螺母的尺寸最标准?(3)误差最大的螺母与6号螺母相差多少mm?【解析】(1)2,3 (2)5(3)误差最大的螺母是2号,故|+0.30|+|-0.01|=0.31(mm),即误差最大的螺母与6号螺母相差0.31mm.文末学习倡导书:学习不是三天打鱼,两天晒网。
学习资料专题1.2.2数轴学校:___________姓名:___________班级:___________一.选择题(共16小题)1.如图所示,数轴上A、B、C三点表示的数分别为a、b、c,下列说法正确的是()A.a>0 B.b>c C.b>a D.a>c2.如图,a、b两个数在数轴上的位置如图所示,则下列各式正确的是()A.a+b<0 B.ab<0 C.b﹣a<0 D.3.若数轴上表示﹣2和3的两点分别是点A和B,则点A和点B之间的距离是()A.﹣5 B.﹣1 C.1 D.54.数轴上A,B两点所表示的数分别是3,﹣2,则表示AB之间距离的算式是()A.3﹣(﹣2)B.3+(﹣2)C.﹣2﹣3 D.﹣2﹣(﹣3)5.已知有理数a、b、c在数轴上对应的点如图所示,则下列结论正确的是()A.c+b>a+b B.cb<ab C.﹣c+a>﹣b+a D.ac>ab6.如图,在数轴上点M表示的数可能是()A.1.5 B.﹣1.5 C.﹣2.4 D.2.47.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是()A.0 B.2 C.l D.﹣1 8.数轴上的点A到原点的距离是4,则点A表示的数为()A.4 B.﹣4 C.4或﹣4 D.2或﹣29.在数轴上与数﹣2所对应的点相距4个单位长度的点表示的数是()A.2 B.4 C.﹣6 D.﹣6或210.有理数a,b在数轴上的位置如图所示,则下列结论正确的是()A.a﹣b>0 B.a+b>0 C.ab>0 D.>011.如图,在数轴上有六个点,且AB=BC=CD=DE=EF,则这条数轴的原点在()A.在点A,B之间B.在点B,C之间C.在点C,D之间D.在点D,E之间12.有理数a,b在数轴的位置如图,则下面关系中正确的个数为()①a﹣b>0 ②ab<0③>④a2>b2.A.1 B.2 C.3 D.413.有理数a,b在数轴上的位置如图,则下列各式的符号为正的是()A.a+b B.a﹣b C.ab D.﹣a414.有理数a,b在数轴上的位置如图所示,则下列各式成立的是()A.b﹣a>0 B.﹣b>0 C.a>﹣b D.﹣ab<015.下列数轴画正确的是()A.B.C. D.16.把数轴上表示数2的点向右移动3个单位长度后,表示的数为()A.1 B.﹣1 C.5 D.﹣5二.填空题(共10小题)17.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为.18.数轴上的两个数﹣3与a,并且a>﹣3,它们之间的距离可以表示为.19.如图所示,把半径为2个长度单位的圆形纸片放在数轴上,圆形纸片上的A点对应原点,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是.20.如图所示,直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,则A 点表示的数是.21.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“1cm”和“9cm”分别对应数轴上的﹣3和x,那么x的值为.22.在数轴上,表示﹣3的点A与表示﹣8的点B相距个单位长度.23.已知,线段AB在数轴上且它的长度为5,点A在数轴上对应的数为﹣2,则点B在数轴上对应的数为.24.在数轴上与表示数﹣1的点的距离为3个单位长度的点所表示的数是.25.小红在写作业时,不慎将一滴墨水滴在数轴上,根据图中的数据,请确定墨迹遮盖住的整数共有个.26.如图,数轴上相邻刻度之间的距离是,若BC=,A点在数轴上对应的数值是﹣,则B 点在数轴上对应的数值是.三.解答题(共3小题)27.已知小华家、小夏家、小红家及学校在同一条大路旁,一天,他们放学后从学校出发,先向南行1000m到达小华家A处,继续向北行3000m到达小红B家处,然后向南行6000m到小夏家C 处.(1)以学校以原点,以向南方向为正方向,用1个单位长度表示1000m,请你在数轴上表示出小华家、小夏家、小红家的位置;(2)小红家在学校什么位置?离学校有多远?28.解决问题:一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?(4)货车每千米耗油0.2升,这次共耗油多少升?29.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A: B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合.参考答案与试题解析一.选择题(共16小题)1.解:由数轴上A,B,C对应的位置可得:a<0,故选项A错误;b<c,故选项B错误;b>a,故选项C正确;a<c,故选项D错误;故选:C.2.解:∵a在原点的左侧,b再原点的右侧,∴a<0,b>0,∴ab<0,∴B正确;∵a到原点的距离小于b到原点的距离,∴|a|<|b|,∴a+b>0,b﹣a>0,∴A、C错误;∵a、b异号,∴<0,∴D错误.故选:B.3.解:因为3﹣(﹣2)=5故选:D.4.解:∵数轴上A、B两点所表示的数分别是3、﹣2,∴A、B之间距离为3﹣(﹣2).故选:A.5.解:由数轴上各点的位置判断:c<b<0<a,|b|<|a|<|c|,A.c+b<0,a+b>0,所以c+b<a+b,故该选项错误;B.c,b同号,所以cb>0,同理,ab<0,所以cb<ab,故该选项错误;C.﹣c>0,﹣b>0,a>0,因为|c|>|b|,所以﹣c>﹣b,不等式两边同时加a,不等号方向不变,故该选项正确;D.c<b,所以不等式两边同时乘以正数a,不等号的方向不变,故该选项错误;故选:C.6.解;点M表示的数大于﹣3且小于﹣2,A、1.5>﹣2,故A错误;B、﹣1.5>﹣2,故B错误;C、﹣3<﹣2.4<﹣2,故C正确;D、2.4>﹣2,故D错误.故选:C.7.解:根据题意得:﹣2+7﹣4=1,则此时这个点表示的数是1,故选:C.8.解:在数轴上,4和﹣4到原点的距离为4.∴点A所表示的数是4和﹣4.故选:C.9.解:分为两种情况:①当点在表示﹣2的点的左边时,数为﹣2﹣4=﹣6;②当点在表示﹣2的点的右边时,数为﹣2+4=2;故选:D.10.解:如图所示:﹣1<a<0,1<b<2,则a﹣b<0,故选项A错误,a+b>0,故选项B正确;ab<0,故选项C错误;<0,故选项D错误;故选:B.11.解:∵|11﹣(﹣5)|=16,AB=BC=CD=DE=EF,∴AB=BC=CD=DE=EF==3.2,∴这条数轴的原点在B与C之间.故选:B.12.解:由图可知:b<0<a,|b|>|a|,∴a﹣b>0,ab<0,>,∵|b|>|a|,∴a2<b2,所以只有①、②、③成立.故选:C.13.解:由图可知,a>0,b<0,且|a|<|b|,A、a+b<0,故本选项错误;B、a﹣b>0,故本选项正确;C、ab<0,故本选项错误;D、﹣a4<0,故本选项错误.故选:B.14.解:A、由大数减小数得正,得b﹣a>0,故A正确;B、b>0,﹣b<0,故B错误;C、由|b|<|a|,得a<﹣b,故C错误;D、由ab异号得,ab<0,﹣ab>0,故D错误;故选:A.15.解:A没有单位长度,故A错误;B、没有正方向,故B错误;C、原点、单位长度、正方向都符合条件,故C正确;D、原点左边的单位表示错误,应是从左到右由小到大的顺序,故D错误;故选:C.16.解:把数轴上表示数2的点向右移动3个单位长度后,即2+3=5,表示的数为5,故选:C.二.填空题(共10小题)17.解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.18.解:∵数轴上的两个数﹣3与a,且a>﹣3,∴两数之间的距离为|a﹣(﹣3)|=|a+3|=a+3.故答案为:a+3.19.解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为﹣4π,故答案为﹣4π,20.解:由题意可得:圆的周长为π,∵直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,∴A点表示的数是:1﹣π.故答案为:1﹣π.21.解:x的值为9﹣4=5.故答案为:5.22.解:∵﹣3﹣(﹣8)=﹣3+8=5,∴在数轴上,表示﹣3的点A与表示﹣8的点B相距5个单位长度,故答案为:5.23.解:由线段AB在数轴上且它的长度为5,点A在数轴上对应的数为﹣2,得﹣2+5=3,或﹣2﹣5=﹣2+(﹣5)=﹣7.故答案为:3或﹣7.24.解:因为点与﹣1的距离为3,所以这两个点对应的数分别是﹣1﹣3和﹣1+3,即为﹣4或2.故答案为﹣4或2.25.解:∵﹣和2之间的整数有3个:﹣1、0、1,∴墨迹遮盖住的整数共有3个.故答案为:3.26.解:﹣﹣+×5=﹣+1=,∵BC=,∴点B表示的有理数是0或.故答案为:0或.三.解答题(共3小题)27.解:(1)因为学校是原点,向南方向为正方向,用1个单位长度表示1000m.从学校出发南行1000m到达小华家,所以点A在1处,从A向北行3000m到达小红家,所以点B在﹣2处,从B向南行6000m到小夏家,所以点C在4处.(2)点B是﹣2,所以小红家在学校的北面,距离学校2000m.28.解:(1)如图所示:(2)根据数轴可知:小明家距小彬家是7.5个单位长度,因而是7.5千米;(3)路程是2×10=20千米,(4)耗油量是:20×0.2=4升.答:小明家距小彬家7.5千米,这趟路货车共耗油4升.29.解:(1)由数轴上AB两点的位置可知,A点表示1,B点表示﹣2.5.故答案为:1,﹣2.5;(2)∵A点表示1,∴与点A的距离为4的点表示的数是5或﹣3.故答案为:5或﹣3;(3)∵A点与﹣3表示的点重合,∴其中点==﹣1,∵点B表示﹣2.5,∴与B点重合的数=﹣2+2.5=0.5.故答案为:0.5.。
数轴1.掌握数轴概念,理解数轴上的点和有理数的对应关系; 2.会正确地画出数轴,利用数轴上的点表示有理数; 3.领会数形结合的重要思想方法.重点:数轴的概念与用数轴上的点表示有理数;难点:会在数轴上表示有理数,能根据数轴上的点写出有理数.一、温故知新1.观察下面的温度计,读出温度.分别是__5__℃;__-10__℃;__0__℃.2.在一条东西向的马路上,有一个汽车站牌,汽车站牌东3 m 和7.5 m 处分别有一棵柳树和一棵杨树,汽车站牌西3 m 和4.8 m 处分别有一棵槐树和一根电线杆,试画图表示这一情境?__________________________________ 东 汽车站请同学们分小组讨论,交流合作,动手操作. 二、自主学习1.由上面的两个问题,你受到了什么启发?能用直线上的点来表示有理数吗? 可以用直线上的点表示有理数.2.自己动手操作,看看可以表示有理数的直线必须满足什么条件? 三、引导归纳(1)画数轴需要三个条件,即原点、正方向和单位长度; (2)数轴.1.请画一条数轴.__________________________________2.利用上面的数轴表示下列有理数:1.5,-2,2,-2.5,29,⎪⎪⎪⎪⎪⎪15,0.3.写出数轴上的点A ,B ,C ,D ,E 所表示的数.小组讨论交流.1.观察上面数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现? 负数都在原点左边,正数都在原点右边.2.每个数到原点的距离是多少?由此你又有什么发现? 数轴上的点到原点的距离都是非负数. 3.进一步引导学生完成P9归纳.1.画数轴需要的三个条件是什么?2.一般地,设a 是一个正数,则数轴上表示数a 的点在原点的__右__边,与原点的距离是__a __个单位长度;表示数-a 的点在原点的__左__边,与原点的距离是__a __个单位长度.3.数轴的出现将图形(直线上的点)和数紧密联系起来,使很多数学问题都可以借助图直观地表示,是“数形结合”的重要工具.1.在数轴上,表示数-3,2.6,-35,0,413,-223,-1的点中,在原点左边的点有__4__个.2.在数轴上点A 表示-4,如果把原点O 向正方向移动1个单位,那么在新数轴上点A 表示的数是( A )A .-5B .-4C .-3D .-23.你觉得数轴上的点表示的数的大小与点的位置有什么关系?原点的右边离原点越远的点表示的数越大;原点的左边离原点越远的点表示的数越小.相交线在实际中的应用相交线在实际中的应用也相当的广泛,学好了相交线,就可以解释许多我们日常生活中的现象.下面,我们就来用相交线来解释一下下面的几个问题:例1 日常生活中,你可曾遇到过这样一个事实:如图1,握紧剪子的把手,就能剪开物体,你能说出其中的道理吗?解析:手时,随着两个把手之间的角的大小在改变,剪刀刃之间的角的大小也在相应地改变.事实上,如果把剪子的构造看作两条相交的直线,这就关系到两条相交直线所成的角的问题.例2 如图所示,为了将水引入村庄A 并使修渠费用最节省,水泵站应建在河岸a 的何处?AaB Aa解析:在河岸直线a 外,而从直线外一点与直线上所有的点的连线中,垂线段最短.所以过A 作垂线段,沿垂线段修水渠,费用最省.解:过A 作AB ⊥a 交a 于点B ,B 为垂足.则水泵建在河岸直线a 上的B 处,费用最节省. 例3 一辆汽车在直线形的公路上由A 向B 行驶,M 、N 分别是位于公路AB 两侧的学校,如图所示.(1)汽车在公路上行驶时,会对两个学校的教学都造成一定的影响,当汽车行驶到何处是,分别对两个学校的影响最大?并在图上标出来.(2)当汽车从A 向B 行驶时,在哪一段路上对两个学校的影响越来越大?又哪一段上对M 学校的影响逐渐减小,而对N 学校的影响逐渐增大?图2图1M BA解析:车离学校的距离越近,噪音对学校的影响就越大,离学校的距离越远,则噪音对学校的影响就越小.解:(1)如图,作MC ⊥AB 于点C ,ND ⊥AB 于点D ,根据垂线段最短,所以汽车在点C 处对M 学校的影响最大,在点D 处对N 学校的影响最大.(2)汽车由A 和点C 行驶时,对两个学校的影响逐渐增大;汽车由点D 向B 行驶时,对两个学校的影响逐渐减小;汽车由点C 向点D 行驶时,对M 学校的影响逐渐减小,而对N 学校的影响逐渐增大.例4 如图所示,是一座建筑纪念塔的底座示意图,小明想测量这座塔在地面上形成的∠ABC 的度数,但一时想不到办法,请你帮助小明设计出两种方案来测量.CBA解析:在实际生活、生产当中,为测量一些实际建筑物两墙所成的角,而本题建筑物不能进入其内,但可利用邻补角和对顶角的知识,来完成任务.解:方案一:作AB 的延长线BD ,可测得∠CBD 的度数,再由∠ABC 与∠CBD 互补,即可求得∠ABC 的度数;方案二:分别作AB 的延长线BD 和CB 和延长线BE ,则可测得∠EBD 的度数,由∠ABC 与∠EBD 互为对顶角,对顶角相等,即可求得∠ABC 的度数.DCBAEDC BA专题02 立体图形的展开与折叠【专题说明】一个立体图形的表面展开图的形状由展开的方式决定,不同的展开方式得到的表面展开图是不一样的,但无论怎样展开,表面展开图都应体现出原立体图形面的个数与形状.一、正方体的展开图1.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是( )(第1题)A.白B.红C.黄D.黑【答案】C2.把如图所示的图形折成一个正方体的盒子,折好后与“中”相对的字是( )(第2题)A.祝B.你C.顺D.利【答案】C二、长方体的展开图3.小明用若干个正方形和长方形准备拼成一个长方体的展开图,拼完后(如图),小明看来看去觉得所拼图形似乎存在问题.(1)请你帮小明分析一下拼图是否存在问题,若有多余图形,请将多余部分涂黑;若图形不全,则直接在原图中补全;(2)若图中的正方形边长为5 cm,每个长方形的长为8 cm,请计算修正后折成的长方体的表面积.(第3题)解:(1)多一个正方形,如图所示:(第3题)(2)表面积为52×2+8×5×4=50+160=210(cm2).三、其他立体图形的展开图4.如图是一些几何体的表面展开图,请写出这些几何体的名称.(第4题)解:①三棱锥;②四棱锥;③五棱锥;④三棱柱;⑤圆柱;⑥圆锥.四、立体图形展开图的相关计算问题5.如图是一个正方体的表面展开图,还原成正方体后,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注式子的值相等,则x=________.(第5题)【答案】1 点拨:由题意可知x=3x-2,解得x=1.6.如图形状的铁皮能围成一个长方体铁箱吗?如果能,它的体积有多大?(第6题)解:能围成,它的体积为70×65×40=182 000(cm3).。
一、新课导入1.课题导入:观察下面的温度计,读出温度,分别是5℃、-10℃、0℃,如果我们把温度计形象地看作一条直线,这条直线上有我们学过的有理数,那么像这样特征的直线,我们可以把它叫做什么呢?板书课题——数轴.2.三维目标:(1)知识与技能①掌握数轴三要素,能正确画出数轴.②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.(2)过程与方法①使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方法.(3)情感态度使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.3.学习重、难点:重点:会正确画出数轴, 并会用数轴上的点表示有理数, 反过来, 看数轴上的点说出点表示的数.难点:用数轴上的点表示有理数.二、分层学习1.自学指导:(1)自学内容:教材第7页到第8页第4行的内容.(2)自学时间:5分钟.(3)自学要求:认真阅读课本,体会课本提出的问题有哪些基本要求.(4)自学参考提纲:请同学们结合教材上的问题分组讨论,思考以下问题:①课本怎样形象直观地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?用数轴表示.②教材是怎样用数表示直线(图1.2-1)上的点的?规定一个单位长度,然后用对应长度的线段表示.③直线(图1.2-2)有何特点?-3表示的实际意义是什么?特点:有基准点、方向、长度.-3表示的实际意义是汽车站牌西3 m处.2.自学:同学们可结合自学指导进行自学和交流探讨.3.助学:(1)师助生:①明了学情:深入学生当中,了解学生对自学参考提纲问题的理解、认识和思考过程及结论.②差异指导:对在自学中对数轴的要素不清的学生进行引导,像基准点O,“东”与“西”,“左”与“右”等表示方向的字词及距离又如何确定等.(2)生助生:学生交流解决自学中的疑难问题.4.强化:(1)举例说明生活中类似的事例;画图表示物体的相对位置.(2)用有基准点、方向、长度的直线表示相对位置关系.1.自学指导:(1)自学内容:教材第8页“思考”到第9页“练习”前的内容.(2)自学时间:5分钟.(3)自学方法:认真阅读课文,并动手画一画,并检查画出的数轴是否具备数轴的三要素.(4)自学参考提纲:①画数轴需要的三个条件是什么?原点,方向,单位长度.②请每位同学画一条数轴,与其他同学交流,看是否符合要求.③0是正数和负数的分界点;数0表示的是数轴的“基准点”.④观察数轴,哪些数在原点的左边,哪些数在原点的右边,由此你有什么发现?负数在原点左边,正数在原点右边.⑤完成归纳中的填空.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:深入学生中,看学生画图,听学生的讨论交流,反馈信息,了解探讨结果.②差异指导:指导学生按画图要求对照检查.(2)生助生:学生互相解决疑难问题.4.强化:(1)画数轴需要的三个条件,即数轴的三要素.(2)练习:①写出数轴上点A,B,C,D,E所表示的数:解:A:0 B:-2 C:1 D:2.5 E:-3②在数轴上表示下列有理数:1.5,-2,2,-2.5,92,-34,0.③数轴上,如果表示数a的点在原点的左边,那么a是一个负数;如果表示数b的点在原点的右边,那么b是一个正数.三、评价1.学生的自我评价(围绕三维目标):交流各自的收获和存在的不足.2.教师对学生的评价:(1)表现性评价:点评学生的动手情况和交流探讨中取得的成绩和问题.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):数轴是数形结合的基本知识,是学生难以理解的难点,教学过程应从贴近实际出发,学生才易于接受和体验,让学生通过观察、思考和动手操作,经历数轴的形成过程,加深对数轴概念的理解,同时可培养抽象概括能力.教学过程可突出“情境——抽象——概括”的主线,体现从特殊到一般的研究问题的方法,注意从学生已有经验出发,发挥学生主体作用,会达到事半功倍的效果.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)一、基础巩固(70分)1.(10分)规定了原点,方向和单位长度的直线叫数轴.2.(10分)a、b两数在数轴上的位置如图,则a是正数,b是负数.3.(10分)在数轴上点A表示的数是-3,与点A相距两个单位的点表示的数是-1或-5.4.(10分)在数轴上,点A、B分别表示-5和2,则线段AB的长度是7.5.(10分)从数轴上表示-1的点出发,向左移动两个单位长度到点B,则点B表示的数是-3,再向右移动两个单位长度到达点C,则点C表示的数是-1.6.(10分)下列数轴的画法正确的是(C)A B C D7.(10分)画出数轴并表示出下列有理数:-5,+3,-3.5,0,23,-32,0.75.解:二、综合应用(20分)8.(10分)在数轴上P点表示2,现在将P点向右移动两个单位长度后再向左移动5个单位长度,这时P点表示的数是-1.9.(10分)在数轴上表示出下列各点:A.-12B.23C.-114D.0解:如图三、拓展延伸(10分)10.(10分)如下图所示,数轴被墨水污染了,则被污染的整数共有(D)个.A.2016B.2015C.4031D.4030有理数的乘法法则1.-2的3倍是( )A .-6B .1C .6D .-52.下列计算正确的是( )A .(-8)×(+6)=48B .(-3)×5=15C .(-8)×12=-4D .4×⎝ ⎛⎭⎪⎫-14=13.一个有理数与其相反数的积( )A .符号必定为正B .符号必定为负C .一定不大于零D .一定不小于零4.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为______元.5.计算:(1)(+4)×(-5);(2)(-0.125)×(-8);(3)⎝ ⎛⎭⎪⎫-213×⎝ ⎛⎭⎪⎫-37;(4)0×(-13.52);(5)(-3.25)×⎝ ⎛⎭⎪⎫+213;(6)(-1)×a;(7)14×⎝ ⎛⎭⎪⎫-89;(8)⎝ ⎛⎭⎪⎫-56×⎝ ⎛⎭⎪⎫-310;(9)-2415×25;(10)(-0.3)×⎝ ⎛⎭⎪⎫-137.6.[2017秋·德惠市校级月考]在计算⎝ ⎛⎭⎪⎫-912×⎝ ⎛⎭⎪⎫-823时,小明是这样做的:⎝ ⎛⎭⎪⎫-912×⎝ ⎛⎭⎪⎫-823=912×823 第一步=3×8 第二步=24他的计算对吗?如果不对,是从哪一步开始出错的?把它改正过来.7.[2017·北京]实数d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a >-4B .bd >0C .||a >||bD .b +c >08.若A.b 满足a +b>0,ab<0,则下列式子正确的是( )A .|a|>|b|B .当a>0,b<0时,|a|>|b|C .当a<0,b>0时,|a|>|b|D .|a|<|b|9.已知|a|=5,|b|=3,且ab <0,求a -b 的值.10.现定义两种运算“★”“*”如下:对于任意两个有理数A.b ,a ★b =a +b ,a*b =a·b,求式子(-4)*(6★8)的值.1. A2. C3. C4. 965.解:(1)(+4)×(-5)=-4×5=-20;(2)(-0.125)×(-8)=0.125×8=1;(3)⎝ ⎛⎭⎪⎫-213×⎝ ⎛⎭⎪⎫-37=73×37=1; (4)0×(-13.52)=0;(5)(-3.25)×⎝ ⎛⎭⎪⎫+213=-134×213=-12; (6)(-1)×a=-a ;(7)14×⎝ ⎛⎭⎪⎫-89=-⎝ ⎛⎭⎪⎫14×89=-29; (8)⎝ ⎛⎭⎪⎫-56×⎝ ⎛⎭⎪⎫-310=56×310=14; (9)-2415×25=-3415×25=-1703; (10)(-0.3)×⎝ ⎛⎭⎪⎫-137=310×107=37. 6. 解:不正确,从第二步出现错误.原式=912×823=⎝ ⎛⎭⎪⎫9+12×823=9×263+12×263=78+413=8213.7. C【解析】 a 在-4的左侧,所以a <-4,由图可知,b <0,d >0,所以bd <0,由图可知,表示a 的点离原点最远,所以||a >||b ,由图可知,表示b 的点离原点更远,所以b+c <0.9.解:因为|a|=5,|b|=3,所以a=±5,b=±3;因为ab<0,所以a,b异号,所以当a=5,b=-3时,a-b=5-(-3)=8;当a=-5,b=3时,a-b=-5-3=-8.故a-b的值为8或-8.10.解: (-4)*(6★8)=(-4)*(6+8)=(-4)*14=(-4)×14=-56.相反数(30分钟50分)一、选择题(每小题4分,共12分)1.(2013·义乌中考)在2,-2,8,6这四个数中,互为相反数的是( )A.-2与2B.2与8C.-2与6D.6与8【解析】选A.选项B,D中的两数都是正数,选项C中两数虽然符号不同,但其他部分也不同.2.下面说法中正确的个数为( )①π的相反数是-3.14;②-(-3.8)的相反数是 3.8;③一个数和它的相反数不可能相等;④+(-2014)的相反数为-2014.A.0B.1C.2D.3【解析】选 A.π的相反数是-π(π≠3.14);-(-3.8)=3.8,3.8的相反数是-3.8;0的相反数是0,它们相等;+(-2014)=-2014,-2014的相反数为2014.综上没有一个是正确的,故选A.3.一个数的相反数是非负数,这个数一定是( )A.正数或零B.非零的数C.负数或零D.零【解析】选C.负数的相反数是正数,0的相反数是0,因此所求的数为负数或零.【变式训练】数a+b的相反数是,-b的相反数是.【解析】求一个数的相反数,只要在它的前面加上“-”,然后化简即可.所以,数a+b的相反数是-(a+b),-b的相反数是-(-b)=b.答案:-(a+b) b二、填空题(每小题4分,共12分)4.若a=+3.2,则-a= ;若a=-,则-a= ;若-a=1,则a= ;若-a=-2,则a= . 【解析】本题考查求一个数的相反数.对于有理数a来说,它的相反数就是-a,或说-a的相反数就是a.答案:-3.2 -1 25.数轴上表示互为相反数的两点相距18个单位长度,这两个点所表示的数分别是.【解析】数轴上表示互为相反数的两点位于原点两侧,且到原点的距离相等,所以这两个点所表示的数分别是9,-9.答案:9,-9【变式训练】如图,数轴上的点A,B,C,D,E分别表示什么数?其中哪些数互为相反数? 【解析】由数轴上各点到原点的距离的大小可知各点所表示的数大致为:6.若-{-[-(-x)]}=-3,则x的相反数是.【解析】因为-{-[-(-x)]}=-3,所以x=-3.所以x的相反数是3.答案:3【变式训练】如果-x=2,那么-[-(-x)]= .【解析】由-x=2可知x为2的相反数,为-2,所以-[-(-x)]=-{-[-(-2)]}=2.答案:2三、解答题(共26分)7.(9分)化简下列各数:(1)-. (2)+.(3)-{-[+(-2)]}. (4)+.(5)+.(6)-{+[-(+1)]}.【解析】(1)-=-5.(2)+=3.(3)-{-[+(-2)]}=-2.(4)+=-4.(5)+=-.(6)-{+[-(+1)]}=1.【知识归纳】多重符号的化简(1)一个正数前面有偶数个“-”号,可以把“-”号一起去掉.(2)一个正数前面有奇数个“-”号,则化简后只剩一个“-”号.(3)0前面不论有多少个“+”号或“-”号,化简后仍是0.8.(8分)(1)已知x的相反数是-2,且2x+3a=5,求a的值.(2)已知-[-(-a)]=8,求-a的相反数.【解析】(1)由于2的相反数是-2,所以x=2.所以2×2+3a=5,所以a=.(2)由于-[-(-a)]=-a,即-a=8.因为8的相反数是-8,所以-a的相反数是-8.【培优训练】9.(9分)已知数a,b表示的点在数轴上的位置如图所示,(1)在数轴上表示出a,b的相反数的位置.(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?【解析】(1)如图:(2)若b与其相反数相距20个单位长度,则b离原点10个单位长度.由于b在数轴的负半轴上,所以b表示的数是-10.(3)由(2)知b表示-10,所以-b表示10.因为-b与a相距5个单位长度,所以a表示5.- 11 -。
1.2 数轴
一、选择题
1.−3的相反数是( )
A.3
B.−3
C.31
D.3
1-
2.实数5的相反数是( )
A.1
B.-5
1
C.-5
D.5
3.-2的相反数是( )
A.−2
B.2
C.21-
D.2
1
4.四位同学画数轴如下图所示,你认为正确的是( )
5.在1,0,3
5
,-3这四个数中,最大的数是( )
A.1
B.0
C.3
5
D.-3
6.如图,若A 是实数a 在数轴上对应的点,则关于a,−a,1的大小关系表示正确的是( )
A.a<1<−a
B.a<−a<1
C.1<−a<a
D.−a<a<1
7.2014相反数的是( )
A.2014
B.−2014
C.-
20141 D.2014
1
8.在−2,1,5,0这四个数中,最大的数是( )
A.−2
B.1
C.5
D.0 二、填空题
9.如果一个数的相反数是0,那么这个数是 ,−5的相反数是 ,相反数是7
2
的数是 10.如果−3<□<2,那么□内可以填写的有理数是 (写出3个). 11.−2的相反数是 .
12.在原点右边1个单位长度的点表示的数是 ,在原点左边2.5个单位长度的点表示的数是 .
13.数轴上离原点3个单位长度的点表示的数是 .
14.一把标有0至10的直尺,如图所示放在数轴上,且直尺上的刻度0,1,2,3,4和数轴上的−1,−2,−3,−4,−5分别对应.现把直尺向右平移5.4个单位长度,平移后数轴上的数与刻度尺上的读数相同,则这个数是.
三、解答题:
15.在数轴上,把表示−1的点先向右移动1个单位长度,再向左移动2个单位长度,这时它表示的数是多少?
16.根据如图数轴上标出的数值,写出点A和点B之间的点所表示的所有整数.
17.如图,数轴上的点A,B,C,D,E分别表示什么数?其中哪些数互为相反数?
18.A,B,C三个村庄的位置如图所示,已知村庄A到村庄B,C的距离分别为1200米和2400米.
(1)如果以村庄A为原点,向右为正方向画数轴,1个单位长度代表1米,那么村庄B,C在数轴上表示的数分别是多少?
(2)如果以村庄B为原点,那么村庄A,C所表示的数分别是多少? 它们互为相反数吗?
19.在数轴上表示数0,1,2.5,−3及它们的相反数.
20.如图,数轴的单位长度为1.
(1)如果点A表示的数既不是正数也不是负数,那么点C,E表示的数分别是什么?
(2)如果点A,B表示的数是互为相反数,那么点D表示的数是什么?如图六个点中还有表示互为相反数的点吗?找找看.
(3)如果点C,E表示的数是互为相反数,那么如图六个点表示的数中有几个负数?这六个点中哪一点与原点的距离最大?它表示的数是什么?
参考答案。