常用加工方法综述
- 格式:ppt
- 大小:9.81 MB
- 文档页数:37
常用塑料改性加工工艺综述塑料改性加工是指通过改变塑料材料的物理或化学结构,使其性能得到改善或满足特定的使用要求。
常用的塑料改性加工工艺主要包括添加剂改性、填充料改性、增容改性和改性共混等。
1.添加剂改性添加剂是指向塑料中加入一定量的化学物质,目的是改善塑料的一些性能。
常用的添加剂有阻燃剂、稳定剂、增塑剂、抗氧化剂等。
阻燃剂能够提高塑料的阻燃性能,使其在火灾时不易燃烧或延缓燃烧速度;稳定剂能够提高塑料的耐热性和抗氧化性,延长其使用寿命;增塑剂能够增加塑料的柔韧性,提高其加工性能。
2.填充料改性填充料是指向塑料中加入一定量的无机或有机纤维、颗粒等物质,以增加塑料的强度、刚度等力学性能,同时降低成本。
常用的填充料有玻璃纤维、碳纤维、石墨、木粉、矿物填料等。
填充料改性能够显著提高塑料的强度、硬度、耐磨性和热稳定性,但也会降低塑料的冲击韧性和透明性。
3.增容改性增容改性是指在塑料中添加一种或多种低聚物或高分子物质,以增加塑料的分子量和粘度。
常用的增容剂有聚合物增容剂、氧化物增容剂等。
增容改性可以提高塑料的拉伸强度、断裂伸长率、热变形温度等力学性能,但也会增加塑料的熔体粘度,降低其加工性能。
4.改性共混改性共混是指将两种或多种不同的塑料混合在一起,通过分子间相容或界面相容改善塑料的性能。
常用的改性共混方式有物理共混和化学共混。
物理共混是将两种或多种塑料通过熔融混合使其相容,形成共混相。
化学共混是在两种或多种塑料中加入一种能够反应的化合物,使其发生化学反应而形成共混相。
总的来说,常用的塑料改性加工工艺主要包括添加剂改性、填充料改性、增容改性和改性共混等。
这些工艺能够显著改善塑料的性能,满足各种特定的使用要求。
在实际应用中,需要根据具体的塑料材料和使用要求,选取合适的改性工艺,以达到最佳的改性效果。
切削加工技术综述切削加工技术是一种通过物理力学原理和工具与工件之间的相对运动来改变工件形状和尺寸的方法。
它是制造业中最常用的一种加工方法,广泛应用于各个领域,如机械、汽车、航空航天等。
切削加工技术的基本原理是利用切削工具对工件进行削除材料的操作,以达到所需的形状和尺寸。
切削工具一般由硬质材料制成,如高速钢、硬质合金等,具有较高的硬度和耐磨性。
在切削加工过程中,切削工具与工件之间的相对运动产生剪切力,使工件表面的材料被削除,从而形成所需的形状。
切削加工技术包括多种方法,常见的有车削、铣削、钻削、刨削等。
车削是利用车床上的主轴和刀具对工件进行旋转切削的方法,常用于加工圆柱形工件。
铣削是通过铣床上的刀具进行旋转切削的方法,常用于加工平面和复杂曲面形状的工件。
钻削是利用钻床上的钻头对工件进行旋转切削的方法,常用于加工孔洞。
刨削是利用刨床上的刀具对工件进行直线切削的方法,常用于加工平面和棱角。
切削加工技术的优点是加工精度高、表面质量好、适用于各种材料和形状的工件。
然而,切削加工也存在一些限制和挑战。
首先,切削加工需要专业的设备和工具,成本较高。
其次,切削加工过程中产生的切屑和废料需要处理和清理,对环境造成一定影响。
此外,切削加工对工件的形状和尺寸有一定限制,无法加工过于复杂和小尺寸的工件。
随着科技的不断进步,切削加工技术也在不断发展。
近年来,随着数控技术的应用,切削加工实现了自动化和智能化,提高了加工效率和精度。
同时,切削工具的材料和结构也得到了改进和创新,提高了切削效果和工具寿命。
切削加工技术的发展为制造业的进步和发展提供了坚实的基础。
切削加工技术是一种重要的制造工艺,具有广泛的应用前景和发展空间。
随着科技的不断进步,切削加工技术将会更加高效、精确和智能化,为制造业的发展做出更大贡献。
同时,我们也需要不断学习和掌握新的切削加工技术,以适应市场需求和技术发展的变化。
常用机械加工方法综述摘要机械加工是制造业中常见的一种加工方法,广泛应用于各个行业中。
本文主要介绍了常用的机械加工方法,包括车削、铣削、钻削、磨削、线切割等。
通过对这些方法的综述,可以帮助读者了解不同机械加工方法的原理、特点和应用领域,从而更好地选择适合自己需求的加工方法。
1. 车削车削是一种常见的机械加工方法,通过旋转工件,并用刀具将材料去除来达到加工的目的。
车削广泛应用于各种形状的零件加工,如轴、套、齿轮等。
车削的主要特点是加工精度高、表面光洁度好,适用于批量生产和精密加工。
1.1 车削的工艺流程车削的工艺流程主要包括以下几个步骤:1.选择合适的车床和刀具;2.安装和夹紧工件;3.调整车刀的位置和切削参数;4.进行车削加工;5.检查零件的加工质量。
1.2 车削的优缺点车削的优点包括:•加工精度高;•表面光洁度好;•适用于批量生产。
车削的缺点包括:•不能加工内孔;•对材料硬度要求较高;•加工效率相对较低。
1.3 车削的应用领域车削广泛应用于各个行业中,特别是需要加工轴类零件和套类零件的制造业。
例如汽车制造、航空航天、机械制造等行业都需要使用车削进行零件加工。
2. 铣削铣削是一种常用的机械加工方法,通过旋转刀具将工件上的材料去除,来达到加工的目的。
铣削适用于各种平面和曲面的加工,可以加工出复杂形状的零件。
铣削的主要特点是加工效率高、加工精度较高。
2.1 铣削的工艺流程铣削的工艺流程主要包括以下几个步骤:1.选择合适的铣床和刀具;2.安装和夹紧工件;3.调整切削参数;4.进行铣削加工;5.检查零件的加工质量。
2.2 铣削的优缺点铣削的优点包括:•加工效率高;•加工精度较高;•可以加工复杂形状的零件。
铣削的缺点包括:•切削力较大,对机床要求高;•刀具磨损较快;•不适合加工大型和重型零件。
2.3 铣削的应用领域铣削广泛应用于各个行业中,特别是需要加工平面和曲面零件的制造业。
例如模具制造、船舶制造、航空航天等行业都需要使用铣削进行零件加工。
辅助能场加工方法综述辅助能场加工方法是一种利用辅助能场来实现对材料加工的方法。
辅助能场可以是热能场、化学能场、电磁能场等,通过这些能场的作用,可以对材料进行加工、改性或处理。
下面我将从热能场、化学能场和电磁能场三个方面对辅助能场加工方法进行综述。
首先是热能场。
热能场加工方法包括激光加工、等离子加工、火焰加工等。
激光加工利用高能密度的激光束对材料进行加工,可以实现高精度、高速加工,适用于金属、非金属材料的切割、打孔、焊接等。
等离子加工利用等离子体对材料进行加工,具有高速、高效、适用于金属、合金的切割、焊接等。
火焰加工利用火焰对材料进行加热、熔化或氧化,适用于金属的切割、焊接等。
其次是化学能场。
化学能场加工方法包括化学蚀刻、化学沉积等。
化学蚀刻利用化学溶液对材料表面进行腐蚀,可以实现微细结构的加工,适用于半导体器件、微机械加工等。
化学沉积利用化学反应在材料表面沉积新的材料,可以实现薄膜、纳米材料的制备,适用于光电子器件、纳米器件等。
最后是电磁能场。
电磁能场加工方法包括电火花加工、电子束加工等。
电火花加工利用电脉冲在工件和电极之间产生电火花放电,可以实现对硬质材料的加工,适用于模具加工、精密零件加工等。
电子束加工利用高速电子束对材料进行加工,具有高能量、高密度、高温的特点,适用于材料的熔化、汽化加工。
综上所述,辅助能场加工方法涵盖了热能场、化学能场和电磁能场等多种加工方式,可以实现对材料的精密加工、改性和处理,广泛应用于航空航天、汽车制造、电子器件等领域。
随着科学技术的不断进步,辅助能场加工方法也在不断创新和发展,为材料加工领域带来了新的机遇和挑战。
综述机械加工制造技术引言:机械加工是一个利用相应的技术和设备对工件的几何参数或性能进行改造的过程,为社会生产提供必需的元件,其精确度和优质度决定着产品的实用价值,提高生产效率才能创造更大的经济效益,而纵观时代发展,机械加工的发展必将走智能化与生态化的道路。
?一、机械加工模式1、机械加工技术向着高速和超高速加工方向发展。
最常见的机械加工技术是切削加工技术,高速和超高速加工是切削加工技术的一个发展方向。
高速和超高速加工技术包括高速软切、高速干切削和大进给切削等。
目前,高速和超高速切削加工技术在提高生产效率方面取得了很大进展,促进了机械加工工业的发展,主要表现在:一是CAD/CAM 技術在机械加工中的应用,CAD/CAM技术比较适合机械产品的模具加工,主要以单件加工、多种类小数量加工产品为主,该项技术在我国还不太成熟,应用范围有待进一步推广;二是激光加工技术的应用。
计算机控制激光束加工技术已经是现代机械工业加工的主要手段,将计算机激光加工技术机械人工操纵的导光系统联合在一起,构成高性能激光复合灵活加工系统;三是机械视觉装置的应用。
自机械视觉系统产生以来,一直应用于机电一体化,伴随着科技的发展,机械视觉系统在硬件和软件性能方面得到很大的完善;四是电火花加工技术应用。
电火花机床加工技术的应用不仅要受到加工材料的硬度、柔韧性、和精度的限制,而且要考虑产品的几何形状、曲率半径。
?2、机械加工朝着自动化和数字化方向发展。
先进的机械制造与加工技术离不开自动化的操作,从单机加工到生产线加工,再到系统加工,从工人操纵机器到高度自动化,经历了一个很长的发展时期。
机械加工的数字化技术是机械加工发展的趋势,这一技术将数字化与产品、模型和生产控制技术相结合发展,数字化技术加快了产品的流通速度,应用范围也扩展到民用产品,如数字电视、数码产品等。
电子计算机的发明和广泛应用对机械加工工业产生了革命性的影响,主要体现在机电一体化技术。