分式的基本性质[人教版]
- 格式:pdf
- 大小:1.19 MB
- 文档页数:9
16.1.2分式的基本性质第一课时教学设计教材分析:“分式的基本性质(第1课时)”是人教版八年级数学下册第十六章第一节“分式”的重点内容之一,是在小学学习了分数的基本性质的基础上进行的,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,使学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键。
教学目标:知识目标:1)通过具体例子,引导学生回忆前面学段学过的分数通分、约分的依据——分数的基本性质,再用类比的方法得出分式的基本性质。
2)引导学生用语言和式子表示分式的基本性质,使学生对其有更深的理解。
3)通过例题的讲解,让学生初步理解“性质”的运用,再通过不同类型的练习,使其掌握“性质”的运用。
4)引导学生对本节课进行小结,使学生的知识结构更合理、更完善。
能力目标:通过类比分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。
情感目标:通过研究解决问题的过程,培养学生合作交流意识与探究精神。
教学重、难点:重点:理解分式的基本性质。
难点:运用分式的基本性质进行分式的变形。
教法分析:本节课主要采用启发引导探索的教学方法。
学生在教师营造的“可探索”的环境里,积极参与,互相讨论,一步步地理解分式的基本性质,并通过应用此性质进行不同的练习,让学生得到更深刻的体会,实现教学目标。
教学教具:课件ppt教学过程:活动一、创设问题情境导入新课教师提出问题(具体问题见课件),学生思考交流,回答问题。
在此环节中,教师先用三道小题对上节课内容进行简单的回顾,重点在第四道小题上,通过分数的通分、约分,让学生回忆所学过的分数的基本性质,为引出分式的基本性质做铺垫。
在活动中教师要关注学生对学过的知识是否掌握得较好;学生对新知识的探究是否有浓厚的兴趣。
通过具体例子,引导学生回忆前面学段学过的分数通分、约分的依据——分数的基本性质,再用类比的方法得出分式的基本性质。
在这个活动中,首先激活了学生原有的知识,体现了学生的学习是在原有知识上自我生成的过程。
第十五章 分式一、知识概念:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A叫做分式,A 为分子,B为分母。
1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.3.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.6.分式有意义:分母不为0(0B ≠)7.分式无意义:分母为0(0B =)8.分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) 9.分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )10.分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) 11.分式值为1:分子分母值相等(A=B )12.分式值为-1:分子分母值互为相反数(A+B=0)二、分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭ 三、整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()n m mn a a =(m n 、是正整数) ⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >) ⑸n n n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n na a -=(0a ≠,n 是正整数) 四、分式方程的意义:分母中含有未知数的方程叫做分式方程.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程); ②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。
初中数学《分式的基本性质》精品教案一、教学内容本节课选自人教版初中数学教材八年级上册第十四章《分式》,详细内容包括:分式的定义、分式的基本性质、分式的约分与通分、分式的乘除法及分式的乘方。
二、教学目标1. 理解并掌握分式的基本性质,能够运用基本性质对分式进行简化。
2. 能够运用约分与通分的方法对分式进行运算。
3. 学会分式的乘除法及乘方运算,并能够灵活运用解决实际问题。
三、教学难点与重点重点:分式的基本性质、约分与通分、分式的乘除法及乘方运算。
难点:分式的简化,尤其是含有绝对值的分式简化;分式的乘除法及乘方运算在实际问题中的应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:教材、练习本、计算器。
五、教学过程1. 实践情景引入:通过一个关于速度、时间和路程的实际问题,让学生列出分式表达式,引导学生思考如何简化分式。
2. 知识讲解:(1)回顾分式的定义,引导学生掌握分式的结构。
(2)讲解分式的基本性质,如分子分母同乘(除)一个非零常数,分式的值不变。
(3)通过例题讲解,演示如何运用基本性质简化分式。
3. 随堂练习:设计一些关于分式简化、约分与通分的练习题,让学生当堂完成,巩固所学知识。
4. 例题讲解:(1)分式的乘除法运算。
(2)分式的乘方运算。
(3)含有绝对值的分式简化。
5. 课堂小结:六、板书设计1. 分式的定义与结构。
2. 分式的基本性质。
3. 分式的约分与通分。
4. 分式的乘除法及乘方运算。
5. 例题及解题步骤。
七、作业设计1. 作业题目:(1)简化分式:2/(4x8)。
(2)计算分式的乘除:3x/(x+2) ÷ 2x/(x2)。
(3)计算分式的乘方:(x^24)/(x+2)^2。
2. 答案:(1)1/(2x4)。
(2)3x(x2)/(2(x+2)(x2))。
(3)(x2)^2/(x+2)^2。
八、课后反思及拓展延伸1. 反思:本节课学生对分式的基本性质、约分与通分掌握较好,但在解决实际问题中运用分式的乘除法及乘方运算时,部分学生还存在困难,需要在今后的教学中加强练习。
人教版八年级数学上册15.1.2《分式的基本性质》教学设计一. 教材分析人教版八年级数学上册15.1.2《分式的基本性质》是分式部分的重要内容,主要让学生了解分式的基本性质,包括分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变;分式的分子、分母都加(或减)同一个整式,分式的值也加(或减)同一个整式;分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变。
这些性质为后续分式的运算提供了重要的理论基础。
二. 学情分析八年级的学生已经学习了有理数的运算,对运算规律有一定的了解,但分式作为新的运算对象,其性质和运算规律与有理数有很大差异,需要学生在已有的知识基础上进行适当的延伸和拓展。
同时,学生可能对分式的实际应用场景还不够清晰,需要在教学过程中加以引导。
三. 教学目标1.理解分式的基本性质,并能灵活运用。
2.掌握分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变的规律。
3.掌握分式的分子、分母都加(或减)同一个整式,分式的值也加(或减)同一个整式的规律。
4.能运用分式的基本性质解决实际问题。
四. 教学重难点1.重点:分式的基本性质。
2.难点:分式的实际应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。
通过设置问题引导学生思考,通过案例让学生理解分式的基本性质,通过小组合作让学生互相讨论、交流,提高解决问题的能力。
六. 教学准备1.PPT课件。
2.相关案例和练习题。
3.小组合作学习材料。
七. 教学过程1.导入(5分钟)利用PPT课件,展示分式的实际应用场景,如分数的简化、化学方程式的计算等,引出分式的基本性质。
2.呈现(10分钟)通过PPT课件,展示分式的基本性质,包括:a.分式的分子、分母都乘以(或除以)同一个不为0的整式,分式的值不变。
b.分式的分子、分母都加(或减)同一个整式,分式的值也加(或减)同一个整式。
同时,结合案例进行讲解,让学生理解并掌握这些性质。
《分式的概念》课堂笔记一、分式的概念定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。
注意:分母中必须含有字母,分子、分母都是整式。
二、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不等于0的整式,分式的值不变。
用式子表示为:BA=B×CA×C(A、B、C为整式,且B、C=0)三、分式的约分1.定义:把一个分式的分子和分母的公因式约去,叫做分式的约分。
2.方法:把分子、分母分解因式,然后约去它们的公因式。
3.注意:约分时,分子、分母必须是公因式的最高次幂。
四、分式的通分1.定义:把几个异分母的分式分别化为与原来的分式相等的同分母的分式,叫做分式的通分。
2.方法:把各个分式的分子、分母分解因式,然后求出它们的最简公分母,再把各个分式的分子、分母分别乘以适当的整式,使各个分式的值不变。
3.注意:通分时,最简公分母必须选取适当的字母。
五、典型例题例1:计算下列分式:(1)x2+44x2;(2)x2−1x−1;(3)x2−96xy;(4)a2+4a+4a2−4。
解:(1)原式=(x+2)24x2;(2)原式=(x+1)(x−1)x−1=x+11;(3)原式=(x+3)(x−3)6xy;(4)原式=(a+2)2(a+2)(a−2)=a+2a−2。
例2:把下列各分式约分:(1)4m2n28m2n;(2)x2−1x−1;(3)a2+b2a2−b2;(4)9−x2x+3。
解:(1)原式=4n8=n2;(2)原式=(x+1)(x−1)x−1=x+11;(3)原式=(a+b)2(a+b)(a−b)=a+ba−b;(4)原式=(3+x)(3−x)−(x−3)=−(x2−9)−(x−3)=x2−9x−3。