正方形的判定
- 格式:ppt
- 大小:1.07 MB
- 文档页数:31
正方形的性质与判定二、正方形判定方法① 简单地说,要判定一个四边形是正方形,就要判定它既是菱形,又是矩形; 如上表中的判定原理1—4,都是这种方法;② 判定正方形需要四个条件,比较平行四边形、菱形和矩形的判定,判定平行四边形只要两个条件,判定菱形和矩形都要三个条件;③ 也可以先判定一个四边形是平行四边形,再加一个条件判定成菱形(或矩形),最后再加一个条件判定成矩形(或菱形),就成了正方形。
三、平行四边形、菱形、矩形与正方形性质比较四、例题与练习【例】如图Z-01,Rt ABC 中,∠ACB=90o ,CD 平分∠ACB ,DE ⊥BC 于E , DF ⊥AC 于F ,求证:四边形CFDE 是正方形。
〖思路分析〗要判定一个四边形是正方形,就要判定它既是菱形,又是矩形;或反之亦然。
本例可以先证它是矩形,再证它有一组邻边相等;或先证它是菱形,再证它有一个直角。
证法一:先证矩形,再证一组邻边相等 证: ∵DE ⊥BC ,DF ⊥AC ,∠ACB=90o ,∴∠ACB=∠CFD= ∠CED= 90o , ∴有矩形CFDE(三个角是直角的四边形是矩形) 又∵CD 平分∠ACB ,DE ⊥BC ,DF ⊥AC∴DE=DF (角平分线上的点到两边的距离相等) ∴有正方形CFDE (一组邻边相等的矩形是正方形)图Z-01证法二:先证菱形,再证一个内角为90o 证:∵DE ⊥BC ∴∠DEB=90o ,又∵∠ACB=90o , ∴∠ACB=∠DEB ∴DE ∥CF 同理DF ∥CE ∴有CFDE又∵CD 平分∠ACB ,DE ⊥BC ,DF ⊥AC∴DE=DF (角平分线上的点到两边的距离相等) ∴有菱形CFDE 又∵∠DEB=90o∴有正方形CFDE (一个角是直角的菱形是正方形) 〖练习〗⒈如图Z-02,矩形ABCD 中,AE 平分∠DAB ,交CD 于E ,EF ⊥AB 于F 求证:四边形AFED 是正方形〖提示〗用“一组邻边相等的矩形是正方形”⒉如图Z-03,在正方形ABCD 中,AE=BF ,AF 、ED 相交于G ①求证:AF=DE ②求证:AF ⊥DE〖提示〗①证ABF ≌DAE (SAS )②证∠2+∠3=90o :由①得∠1=∠3;∠1+∠2=90o⒊① 如图Z-04,正方形ABCD 对角线相交于O ,E 为AC 上一点,过A 作于G ,AG 交BD 于F ,求证:OE=OF 〖提示〗证AOF ≌BOE (AAS )② 如图Z-05,若点E 在AC 的延长线上,AG ⊥BE 交EB 延长线于G ,AG 交DB 延长线于F ,其它条件不变,OE=OF 还成立吗?请证明你的结论图Z-02图Z-03图Z-04图Z-05。
正方形的性质与判定1.定义:四条边都相等,四个角都是直角的四边形叫做正方形.2.性质:(1)对边平行;(2)四条边都相等;(3)四个角都是直角;(4)对角线互相垂直平分且相等,对角线平分对角;(5) 两条对角线把正方形分成四个全等的等腰直角三角形;(6)中心对称图形,轴对称图形.3.面积:=S 正方形边长×边长=12×对角线×对角线 4.判定:(1)有一个角是直角的菱形是正方形;(2)对角线相等的菱形是正方形;(3)一组邻边相等的矩形是正方形(4)对角线互相垂直的矩形是正方形; (5)对角线互相垂直平分且相等的四边形是正方形;(6)四条边都相等,四个角都是直角的四边形是正方形随堂练习1.菱形、矩形、正方形都具有的性质是( )A .对角线相等B .对角线互相垂直C .对角线互相平分D .对角线平分一组对角2. 已知四边形ABCD 是平行四边形,再从①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种选法,其中错误的是( )A .选①②B .选②③C .选①③D .选②④3.如图,在△ABC 中,∠ACB =90°,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且BE =BF ,添加一个条件,仍不能证明四边形BECF 为正方形的是( )A .BC =ACB .CF ⊥BFC .BD =DF D .AC =BF第3题 第4题 第5题 第6题4.如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠BFC 为( )A .45°B .55°C .60°D .75°5.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,),则点B 的坐标为( )A .(1﹣, +1)B .(﹣, +1)C .(﹣1,+1) D .(﹣1,)6.如图,已知正方形ABCD的边长为1,连结AC、BD,CE平分∠ACD交BD于点E,则DE长()A. B. C.1 D.1﹣7.正方形ABCD中E为线段BC上的动点如图①,过A作AF⊥DE,F为垂足,延长AF交DC于G如图②,①求证:AG=DE②连接BF,当E为BC中点时,求证:AB=FB.巩固提升1.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①② B.②③C.①③ D.②④2.如图,E为边长为2的正方形ABCD的对角线上一点,BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于R,则PQ+PR的值为()A. B. C.D.第2题第3题第4题3.如图,正方形ABCD的面积为4,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.3C.23 D 34.一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1、E1、E2、C2、E3、E4、C3 (x)上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3…,则正方形A 2019B 2019C 2019D 2019的边长是( )A.()201821B .()201921C .()201833D .()2019335.如图,正方形CEFG 的边GC 在正方形ABCD 的边CD 上,延长CD 到H ,使DH =CE ,K 在BC 边上,且BK =CE ,求证:四边形AKFH 为正方形.。
正方形的所有判定方法正方形是一种具有特殊性质的四边形,它具有以下几个判定方法。
1. 边长相等:正方形的四条边的长度相等。
这是判定正方形的最基本条件,如果一个四边形的四条边长都相等,则可以判定它为正方形。
2. 内角相等:正方形的四个内角度数均为90度。
我们可以通过测量四个内角的度数来判断一个四边形是否为正方形,如果四个角度均为90度,则可以确定该四边形是正方形。
3. 对角线相等:正方形的对角线长度相等。
正方形的两条对角线相等,可以通过测量两条对角线的长度来判断一个四边形是否为正方形,如果两条对角线长度相等,则可以确定该四边形是正方形。
4. 对边平行:正方形的相对边是平行的。
正方形的相对边是平行的,可以通过测量四条边之间的夹角来判断一个四边形是否为正方形,如果四条边之间的夹角均为90度,则可以确定该四边形是正方形。
5. 对边垂直:正方形的相对边是垂直的。
正方形的相对边是垂直的,可以通过测量四个角度的度数来判断一个四边形是否为正方形,如果四个角度均为90度,则可以确定该四边形是正方形。
6. 对角线相交于中点:正方形的对角线相交于中点。
正方形的两条对角线相交于中点,可以通过测量对角线的交点是否在中点位置来判断一个四边形是否为正方形,如果对角线的交点在中点位置,则可以确定该四边形是正方形。
7. 对边长度和对角线长度的关系:正方形的对边长度和对角线长度有特定的关系。
正方形的对边和对角线之间存在一定的比例关系,可以通过测量对边长度和对角线长度来判断一个四边形是否为正方形,如果对边长度和对角线长度满足特定的比例关系,则可以确定该四边形是正方形。
正方形具有边长相等、内角相等、对角线相等、对边平行、对边垂直、对角线相交于中点以及对边长度和对角线长度的关系等判定方法。
通过观察和测量这些特点,我们可以准确判断一个四边形是否为正方形。
正方形作为一种特殊的几何形状,在数学和几何学中具有重要的地位和应用价值。
正方形的性质与判定正方形是一种特殊的四边形,具有独特的性质。
在本文中,我将介绍正方形的定义、性质和判定方法。
首先,我们来定义正方形。
正方形是一种具有四条相等边和四个直角的四边形。
其中,相等边长称为边长,直角处的两个边称为邻边,相邻的两个直角称为相邻角,对角线的重合点称为中心。
下面,我们将详细介绍正方形的性质。
正方形具有以下性质:1. 边长相等:正方形的四条边长相等,可以用a表示。
这意味着正方形的周长为4a。
2. 内角为直角:正方形的四个内角都是直角(90度)。
这是因为正方形的两条相邻边构成一条直角线段。
3. 对角线相等:正方形的两条对角线相等,可以用d表示。
这是由于正方形的两个对角线是两条等边三角形的斜边。
4. 对角线互相垂直:正方形的两条对角线相互垂直。
这是由于正方形的对角线是两个相交的垂直直角三角形的斜边。
5. 中心对称:正方形的中心是对称中心,即以中心为对称中心将正方形折叠,两边能完全重合。
6. 内切圆:正方形有一个内接圆,即一个与正方形的四条边相切的圆。
7. 外接圆:正方形有一个外接圆,即一个与正方形的四个顶点相切的圆。
接下来,我们来讨论如何判定一个四边形是否为正方形。
判定一个四边形是否为正方形通常有以下几种方法:1. 判断边长是否相等:一个四边形的四条边长都相等时,可以判定为正方形。
2. 判断内角是否为直角:一个四边形的四个内角都是直角时,可以判定为正方形。
3. 判断对角线是否相等:一个四边形的对角线相等时,可以判定为正方形。
4. 判断对角线是否垂直:一个四边形的对角线互相垂直时,可以判定为正方形。
5. 判断是否为菱形:如果一个四边形既是菱形又是矩形,那么它就是正方形。
这些方法可以单独或者组合使用来判断一个四边形是否为正方形。
总之,正方形是一种具有独特性质的四边形,包括边长相等、内角为直角、对角线相等等。
我们可以通过判断边长、内角、对角线的相等性以及对角线的垂直性来判定一个四边形是否为正方形。
正方形的判定方法正方形是一种具有特殊性质的几何图形,它的四条边长度相等,四个角也都是直角。
在日常生活和数学学习中,我们经常会遇到正方形,因此了解正方形的判定方法是非常重要的。
接下来,我们将详细介绍正方形的判定方法。
首先,要判定一个四边形是否为正方形,我们需要知道正方形的特征。
正方形具有以下两个特征,边长相等和对角线相等。
因此,我们可以根据这两个特征来判定一个四边形是否为正方形。
其次,判定一个四边形是否为正方形的方法之一是通过边长来判断。
如果一个四边形的四条边长度都相等,那么它就是一个正方形。
在实际操作中,我们可以通过测量四条边的长度,如果它们都相等,那么这个四边形就是正方形。
这种方法简单直观,适用于日常生活中的测量和判断。
另外,判定一个四边形是否为正方形的方法之二是通过对角线来判断。
正方形的对角线相等,并且平分对角线的交点是正方形的中心。
因此,我们可以通过测量对角线的长度并验证是否相等来判断一个四边形是否为正方形。
如果一个四边形的对角线相等,那么它就是一个正方形。
除了以上两种方法,我们还可以通过角度来判断一个四边形是否为正方形。
正方形的四个角都是直角,因此我们可以通过测量四个角的大小来判断一个四边形是否为正方形。
如果一个四边形的四个角都是直角,那么它就是一个正方形。
需要注意的是,以上提到的三种方法并非是孤立的,而是相互印证的。
也就是说,如果一个四边形满足了其中一种判定方法,那么它就很有可能是一个正方形。
而如果一个四边形同时满足了以上三种方法,那么它就可以被确定为一个正方形。
总的来说,判定一个四边形是否为正方形,我们可以通过边长、对角线和角度三个方面来进行判断。
这些方法既可以单独使用,也可以相互印证,从而得出准确的结论。
在实际操作中,我们可以根据具体情况选择合适的方法进行判断,以确保判定的准确性。
通过本文的介绍,相信大家对正方形的判定方法有了更清晰的认识。
在日常生活和学习中,我们可以根据正方形的特征,灵活运用判定方法,准确地判断一个四边形是否为正方形。
正方形判定条件(一)
正方形判定条件
简介
正方形是一种特殊的四边形,具有四条边相等且四个角均为直角的特点。
为了判定一个图形是否为正方形,我们需要考虑以下条件。
条件一:四边长相等
•正方形的四条边必须具有相等的长度。
•如果有一条边的长度与其他边不等,则该图形不是正方形。
条件二:四个角均为直角
•正方形的四个角必须都是直角(即90度角)。
•通过测量角度或者使用直角工具可以判断角度是否为直角。
条件三:对角线相等
•正方形的两条对角线必须具有相等的长度。
•如果对角线的长度不相等,则该图形不是正方形。
条件四:对角线互相垂直
•正方形的两条对角线必须互相垂直。
•可以使用测量工具或者判定对角线角度是否为90度来判断是否垂直。
总结
通过以上四个条件的判定,我们可以确定一个图形是否为正方形。
需要满足四边长相等、四个角为直角、对角线相等且相互垂直的条件。
只要有一个条件不满足,那么该图形就不是正方形。
在实际生活中,正方形的应用广泛。
例如,在建筑设计中,正方
形常用于规划场地或房间布局;在制造业中,正方形的工件往往更容
易加工和组装;在数学领域,正方形是许多重要概念的基础。
了解正方形的判定条件可以帮助我们在实际应用中正确识别和使
用正方形,提高工作效率和准确性。
希望本文能对读者有所启发,提
升对正方形的认识和理解。