初中九年级数学 圆 1、圆的认识
- 格式:ppt
- 大小:2.94 MB
- 文档页数:15
苏科版九年级上册圆知识点精讲圆是几何学中最基础的概念之一,不仅在数学中有着广泛的应用,而且在生活中也随处可见。
今天我们就来精讲苏科版九年级上册关于圆的知识点,深入了解圆的性质和相关定理。
1. 圆的定义圆是由在同一平面内离该平面一定距离的所有点组成的集合。
其中,距离被定义为圆心到圆上任意点的距离,称为半径。
2. 圆的性质(1) 圆心:圆心是圆上任意两点间的线段的中点,用字母O表示。
(2) 半径:半径是从圆心到圆上任意一点的线段,用字母r表示。
(3) 直径:直径是通过圆心且在圆上的线段,直径的长度是半径的两倍,用字母d表示。
(4) 弦:弦是圆上两点之间的线段。
(5) 弧:弧是圆上的一段弯曲部分。
(6) 弧长:弧长是弧的长度,在计算时用字母L表示。
(7) 圆周:围绕圆形的线段,它的长度用字母C表示。
3. 圆的相关定理(1) 圆的半径相等性质:在同一圆中,任意两条半径相等。
(2) 弧对应角相等定理:在同一圆中,对应于同一弧的两个交角相等。
(3) 弧的度数:一个弧所对应的圆心角的度数等于这个扇形所占的整个圆所对应的度数。
(4) 弧长公式:弧长L等于弧所对应的圆心角的度数除以360度再乘以圆的周长C。
(5) 弦切定理:如果一条切线与一条弦相交,那么它的切点到圆心的线段是弦的中垂线。
(6) 切线与半径的垂直性:当半径和切线相交时,相交点处的半径垂直于切线。
通过对这些圆的性质和相关定理的理解,我们可以在解决几何问题时灵活运用,进一步推导和分析。
同时,这也为我们理解更高级的几何知识打下了基础。
4. 应用示例(1) 例题一:已知圆的半径是3cm,求圆的面积。
解答:圆的面积公式为A = πr²,其中r是半径。
代入已知条件,即可求得圆的面积为A = 3.14×(3)² = 28.26cm²。
(2) 例题二:已知圆的周长是10π,求圆的半径。
解答:圆的周长公式为C = 2πr,其中r是半径。
圆的认识教学目标1.理解圆的定义;理解半径、直径、等圆的概念;2.理解圆的对称性;3.并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法;学习内容知识梳理一、圆的定义1.圆的定义如图,平面内到定点的距离等于定长的所有点组成的图形叫做圆,其中,定点叫做圆心,定长叫做半径. 以点O为圆心的圆,记作“⊙O”,读作“圆O”.总结:⊙圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;⊙圆是平面内到定点的距离等于定长的点的轨迹.2. 等圆的概念圆心为O,半径为r的圆是平面内到定点O的距离等于定长r的点的集合.平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点.圆的内部可以看作是到圆心的距离小于半径的的点的集合;圆的外部可以看成是到圆心的距离大于半径的点的集合.要点诠释:⊙定点为圆心,定长为半径;⊙圆指的是圆周,而不是圆面;⊙强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.3.弦(1)弦:连结圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做直径.(3)弦心距:圆心到弦的距离叫做弦心距.注意:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.证明:连结OC、OD⊙AB=AO+OB=CO+OD≥CD(当且仅当CD过圆心O时,取“=”号)⊙直径AB是⊙O中最长的弦.4.弧(1)弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.(2)半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;(3)优弧:大于半圆的弧叫做优弧;(4)劣弧:小于半圆的弧叫做劣弧.总结:⊙半圆是弧,而弧不一定是半圆;⊙无特殊说明时,弧指的是劣弧.5. 等弧在同圆或等圆中,能够完全重合的弧叫做等弧.总结:⊙等弧成立的前提条件是在同圆或等圆中,不能忽视;⊙圆中两平行弦所夹的弧相等.二、圆的对称性圆是轴对称图形,过圆心的直线是它的对称轴,有无数条对称轴.圆是中心对称图形,对称中心为圆心.注:圆具有旋转不变的特性.即一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.(一)圆心角与弧的定义1.圆心角定义:顶点在圆心的角叫做圆心角.如图所示,⊙AOB 就是一个圆心角. 要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征; (2)圆心角∠AOB 所对的弦为线段AB ,所对的弧为弧AB. 2.1°的弧的定义1°的圆心角所对的弧叫做1°的弧。
九年级圆的知识点总结圆作为数学中的基本图形之一,是九年级数学教学中的重要内容之一。
在九年级的学习中,学生将会接触到圆的相关定义、性质、定理等知识点。
以下是对九年级圆的知识点的总结。
一、圆的定义与性质圆是由平面上与一个定点的距离相等于定长的点构成的图形。
在平面直角坐标系中,圆的方程为(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。
圆的性质包括以下几个方面:1. 圆心:圆心为圆上任意两点的中点。
2. 半径:圆心到圆上任意一点的距离称为半径,用r表示。
3. 直径:通过圆心的一条线段,且两端点在圆上的线段称为直径,直径的长度等于半径的两倍。
4. 弦:连接圆上两点的线段称为弦,弦的长度小于等于直径。
5. 弧:由圆上两点之间的部分所构成的曲线称为弧。
6. 周长:圆的周长为2πr,其中π=3.14或22/7。
二、圆的相关定理在九年级的学习中,我们会接触到一些和圆相关的定理,这些定理可以用于解题,并且进一步拓展我们对圆的认识。
1. 切线的性质:过圆外一点,有且仅有一条直线与圆相切,且切线垂直于半径。
2. 弦切角定理:两条弦交于圆内一点,两个交角之和等于它们所对的弧所对圆心角的一半。
3. 切线切圆定理:圆的切线与半径的垂直线段所构成的直角三角形,直角边上的两条线段相乘等于切点到圆心的距离的平方。
4. 弧切角定理:连接弧上两点与圆心的线段所夹的角等于这两个弧所对圆心角的一半。
5. 直径的性质:两个相互垂直的割线所对的圆心角之和等于180度,其中一个割线与圆的直径重合。
三、圆和其他几何图形之间的关系圆与其他几何图形之间存在着一些重要的关系,这些关系能帮助我们解题,进一步掌握几何知识。
1. 圆与直线的关系:直线与圆的交点可以有0个、1个或2个。
当直线不与圆相交时,称为直线和圆之间无关系;当直线与圆相切时,称为直线切圆;当直线穿过圆时,称为直线截圆。
2. 圆与角的关系:圆心角是指以圆心为顶点的角,它的大小等于所在的弧所对圆心角的一半。
数学九年级下册圆的知识点圆是数学几何中的一个重要概念,广泛应用于各个领域。
在九年级的数学学习中,我们将更加深入地学习圆的相关知识。
本文将围绕圆的定义、性质、公式和应用等方面展开详细介绍。
一、圆的定义在数学中,圆是由平面上到一个固定点距离相等的所有点组成的图形。
其中,距离固定点最远的点称为圆的半径,固定点称为圆心。
圆心与圆上任意一点之间的线段称为半径。
二、圆的性质1. 圆的半径相等性质:圆上任意两点间的线段都是半径,且长度相等。
2. 圆的直径性质:圆的直径是圆上任意两点的连线,且长度是半径的两倍。
3. 圆的弦性质:圆上的弦分为等弦和不等弦两种。
等弦对应的弦长相等,而不等弦对应的弦长不相等。
4. 圆的切线性质:过圆上一点可以作无数条切线,这些切线与以该点为顶点的两条切线相等,且相互垂直。
三、圆的公式1. 圆的周长公式:圆的周长称为圆周长,通常用C表示,公式为C = 2πr,其中r为圆的半径,π取近似值3.14。
2. 圆的面积公式:圆的面积称为圆面积,通常用A表示,公式为A = πr²,其中r为圆的半径,π取近似值3.14。
四、圆的应用1. 圆的运动学应用:在物理学中,圆的运动学应用非常广泛,例如机械运动中的回转运动、行星围绕太阳的椭圆轨道等。
2. 圆的建筑应用:在建筑学中,圆被广泛应用于设计和构建中,例如建筑物中的圆形窗户、圆形拱门等。
3. 圆的电子应用:在电子工程中,圆被广泛应用于电路板设计、天线设计等领域。
4. 圆的地理应用:在地理学中,圆被用于表示地球的形状,地球是近似于一个球体。
总结:在数学九年级下册中,我们系统学习了圆的定义、性质、公式和应用等知识点。
掌握了这些知识,我们能够更好地理解圆的特性,应用于各种实际问题中。
通过灵活运用圆的相关知识,我们可以提高解决问题的能力和思维能力,为今后的数学学习打下坚实的基础。
圆的认识及垂径定理【知识导图】知识梳理知识点一 圆的认识(弦,弧)1、什么叫弦?直径与弦的关系?弦:连接圆上任意两点的线段叫做弦,直径是过圆心的弦,但弦不一定是直径.2、什么叫弧?什么叫优弧?什么叫劣弧?什么是等弧?弧:圆上任意两点间的部分叫做圆弧,大于半圆的叫优弧,小于半圆的叫劣弧,能够完全重合的两条弧叫等弧.3、圆的对称性质?作为轴对称图形,其对称轴是?圆即是轴对称图形也是中心对称图形,经过圆心的每一条直线都是它的对称轴.知识点二 垂径定理1、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.已知:直径CD 、弦AB 且CD ⊥AB 垂足为M求证:,⌒AC =⌒BC ,⌒AD =⌒BD.分析:要证,只要证AM 、BM 构成的两个三角形全等.因此,只要连结OA、BM AM=BM AM =OB 或AC 、BC 即可.证明:如图,连结OA 、OB ,则OA=OB在和中∴∴∴点A 和点B 关于CD 对称∵⊙O 关于直径CD 对称∴当圆沿着直线CD 对折时,点A 与点B 重合,⌒AC 与⌒BC 重合,⌒AD 与⌒BD 重合.∴⌒AC =⌒BC ,⌒AD =⌒BD进一步,我们还可以得到结论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.垂径定理推论:1、推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论扩展推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
2、垂径定理及其推论可概括为OAM Rt ∆OBM Rt ∆⎩⎨⎧==OM OM OB OA OBM Rt OAM Rt ∆≅∆BM AM=考点解析类型一圆的认识(弦、弧)【例题1】下列五个命题:(1)平分弦的直径必垂直于弦(2)圆是轴对称图形,对称轴是直径(3)圆中两点之间的部分叫做弧(4)长度相等的两条弧叫等弧(5)直径是过圆心的弦,但弦不一定是直径其中真命题有()A.1个B.2个C.3个D.4个【解析】(1)平分弦(不是直径)的直径必垂直于弦,故原命题是假命题,(2)圆的对称轴是直径所在的直线,故原命题是假命题,(3)圆上两点之间的部分叫做弧,故原命题是假命题,(4)能够完全重合的两条弧叫等弧,故原命题是假命题,(5)直径是过圆心的弦,但弦不一定是直径,原命题是真命题,其中真命题有1个.故选;A.【总结与反思】本题考查圆的相关概念及垂径定理,理解概念及定理即可解决,要求学生掌握圆的相关概念及垂径定理内容。
圆1.圆的认识(1)以点O 为圆心的圆叫作“圆O ”,记为“⊙O ”。
(2)线段OA 、OB 、OC 都是圆的半径,线段AC 为直径。
(3)连结圆上任意两点之间的线段叫做弦。
直径是圆中最长的弦。
(4)圆上任意两点间的部分叫做弧。
小于半圆周的圆叫做劣弧。
大于半圆周的圆弧叫做优弧。
(5)圆心角:顶点在圆心,两边与圆相交的角叫做圆心角。
如∠AOB 、∠AOC 、∠BOC 就是圆心角。
(6)同心圆:圆心相同,半径不同的圆。
(7)等圆:圆心不同,半径相同的圆。
2.圆的对称性(1)圆是轴对称图形,任意一条直径所在的直线都是它的对称轴。
圆是中心对称图形,圆心是它的对称中心。
(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
此定理中共5个结论中,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD只要知道其中2个即可推出其它3个结论,简称知2得3。
3.圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,所对的弦的弦心距相等。
即:①AOB DOE ∠=∠;②AB DE =;③OC OF =;④ 弧BA =弧BDF E DCAOO EDCB A上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论。
4.圆周角(1)圆周角:顶点在圆上,两边与圆相交的角叫做圆周角。
(2)半圆或直径所对的圆周角都相等,都等于90°。
90°的圆周角所对的弦是圆的直径。
(3)同圆或等圆中,一条弧所对的圆周角等于该弧所对的圆心角的一半。
(4)同弧(或等弧)所对的圆周角相等;相等的圆周角所对的弧相等。
5.圆内接四边形:如果四边形的所有顶点都在一个圆上,那么这个多边形叫做圆的内接四边形,这个圆叫做四边形的外接圆.性质定理:(1)圆的内接四边形的对角互补。
九年级上册数学圆上知识点在九年级的数学课程中,圆是一个重要的内容。
我们将通过本文介绍九年级上册数学中关于圆的知识点,包括圆的定义、圆的性质、圆的周长和面积等。
1. 圆的定义圆是一个平面上所有到一个固定点距离相等的点的集合。
这个固定点叫做圆心,距离叫做半径。
圆可以由圆心和半径唯一确定。
2. 圆的性质(1)圆的直径是通过圆心的一条线段,它的两个端点在圆上。
直径等于两倍的半径。
(2)圆的弦是圆上的一条线段,它的两个端点在圆上。
直径也是一条弦。
(3)圆的切线是与圆相切的直线,切线与半径相垂直。
(4)圆的弧是圆上的一段曲线,它与弦的两个端点相连。
3. 圆的周长圆的周长是圆上任意两点间的弧长。
弧长等于圆心角所对的弧,而圆心角是以圆心为顶点的角。
圆的周长公式为C = 2πr,其中C表示周长,r表示半径。
4. 圆的面积圆的面积是圆内部的所有点的集合。
圆的面积公式为A = πr²,其中A表示面积,r表示半径。
圆的面积公式可以通过求圆的周长来推导出来。
5. 圆的公式(1)圆的周长和面积公式是圆的重要公式,可以应用到许多问题中。
它们的推导和证明都是基于圆的性质和几何关系。
(2)在解题时,我们可以根据已知条件运用圆的周长和面积公式,求解未知量。
例如,给定圆的半径,可以计算出周长和面积;反之,给定面积,可以计算出半径。
6. 圆的应用(1)圆的应用非常广泛,不仅仅在数学中。
在日常生活中,我们可以看到许多圆形的物体和结构,例如钟面、轮胎等。
(2)圆的几何性质也可以应用到其他几何形体的推导和计算中。
例如,利用圆的性质可以求解与圆相关的三角形、四边形的问题。
总结:本文主要介绍了九年级上册数学中关于圆的知识点,包括圆的定义、性质、周长和面积公式以及应用等内容。
通过学习圆的知识,我们可以更好地理解和应用数学概念,为日常生活和进一步学习打下坚实的基础。
希望读者能够通过本文对圆的认识有所启发,并能够运用所学知识解决实际问题。