天体运动专题
- 格式:doc
- 大小:320.00 KB
- 文档页数:2
高三物理复习资料第五讲 万有引力定律第一单元 万有引力定律及其应用基础知识一.开普勒运动定律(1)开普勒第一定律:所有的行星绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上.(2)开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的面积相等.(3)开普勒第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等. 二.万有引力定律(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.(2)公式:F =G 221rmm ,其中2211/1067.6kg m N G ⋅⨯=-,称为为有引力恒量。
(3)适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离.注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G 的物理意义是:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力. 三、万有引力和重力重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,由于纬度的变化,物体做圆周运动的向心力F 向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g 随纬度变化而变化,从赤道到两极逐渐增大.通常的计算中因重力和万有引力相差不大,而认为两者相等,即m 2g =G 221rmm , g=GM/r 2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g 随物体离地面高度的增大而减小,即g h =GM/(r+h )2,比较得g h =(hr r+)2·g 在赤道处,物体的万有引力分解为两个分力F 向和m 2g 刚好在一条直线上,则有 F =F 向+m 2g ,所以m 2g=F 一F 向=G 221rm m -m 2R ω自2因地球目转角速度很小G 221r m m » m 2R ω自2,所以m 2g= G 221rm m假设地球自转加快,即ω自变大,由m 2g =G 221rm m -m 2R ω自2知物体的重力将变小,当G221r m m =m 2R ω自2时,m 2g=0,此时地球上物体无重力,但是它要求地球自转的角速度ω自=13Gm R ,比现在地球自转角速度要大得多. 四.天体表面重力加速度问题设天体表面重力加速度为g,天体半径为R ,由mg=2Mm G R 得g=2MG R ,由此推得两个不同天体表面重力加速度的关系为21212212g R M g R M =*五.天体质量和密度的计算原理:天体对它的卫星(或行星)的引力就是卫星绕天体做匀速圆周运动的向心力. G2r mM =m224T πr ,由此可得:M=2324GT r π;ρ=V M=334R M π=3223R GT r π(R 为行星的半径)由上式可知,只要用实验方法测出卫星做圆周运动的半径r 及运行周期T ,就可以算出天体的质量M .若知道行星的半径则可得行星的密度规律方法1、万有引力定律的基本应用【例1】如图所示,在一个半径为R 、质量为M 的均匀球体中,紧贴球的边缘挖去一个半径为R/2的球形空穴后,对位于球心和空穴中心连线上、与球心相距d 的质点m 的引力是多大?分析 把整个球体对质点的引力看成是挖去的小球体和剩余部分对质点的引力之和,即可得解.解 完整的均质球体对球外质点m 的引力这个引力可以看成是:m 挖去球穴后的剩余部分对质点的引力F 1与半径为R/2的小球对质点的引力F 2之和,即F=F 1+F 2.因半径为R/2的小球质量M /为M R M R R M 8134234234333/=⋅⎪⎭⎫ ⎝⎛=⋅⎪⎭⎫ ⎝⎛=ππρπ, 则()()22/22/82/R d Mm GR d mM GF -=-=所以挖去球穴后的剩余部分对球外质点m 的引力 ()22212/8R d Mm Gd Mm GF F F --=-=()22222/8287R d d R dR d GMm-+-=说明 (1)有部分同学认为,如果先设法求出挖去球穴后的重心位置,然后把剩余部分的质量集中于这个重心上,应用万有引力公式求解.这是不正确的.万有引力存在于宇宙间任何两个物体之间,但计算万有引力的简单公式2r MmGF =却只能适用于两个质点或均匀球体,挖去球穴后的剩余部分已不再是均匀球了,不能直接使用这个公式计算引力. (2)如果题中的球穴挖在大球的正中央,根据同样道理可得剩余部上式表明,一个均质球壳对球外质点的引力跟把球壳的质量(7M/8)集中于球心时对质点的引力一样.【例2】某物体在地面上受到的重力为160 N ,将它放置在卫星中,在卫星以加速度a =½g 随火箭加速上升的过程中,当物体与卫星中的支持物的相互压力为90 N 时,求此时卫星距地球表面有多远?(地球半径R =6.4×103km,g 取10m/s 2) 解析:设此时火箭上升到离地球表面的高度为h ,火箭上物体受到的支持力为N,物体受到的重力为mg /,据牛顿第二定律.N -mg /=ma ……①在h 高处mg /=()2h R Mm G +……② 在地球表面处mg=2R Mm G ……③ 把②③代入①得()ma R h mgR N ++=22∴⎪⎪⎭⎫⎝⎛--=1ma N mg R h =1.92×104km. 说明:在本问题中,牢记基本思路,一是万有引力提供向心力,二是重力约等于万有引力.【例3】有人利用安装在气球载人舱内的单摆来确定气球的高度。
天体运动一、开普勒行星运动定律(不仅适用于行星绕太阳,也适用于卫星绕行的运动)第一定律:轨道定律——行星(卫星)绕太阳的运动轨迹是椭圆,太阳(行星)处于椭圆的一个焦点上。
第二定律:面积定律——行星(卫星)与太阳(行星)的连线在相等的时间内扫过相等的面积。
推论:离中心天体越近,线速度越大,角速度越大。
第三定律:周期定律——轨道半长轴的三次方与周期平方的比值是一个定值,该定值与中心天体有关。
k Ta =23二、求解天体质量的两个思路1、黄金代换式 2gR GM =➩GgR M 2=G :引力常量 M :天体自身质量 g :天体表面重力加速度 R :天体自身半径 2、利用环绕天体做匀速圆周运动的相关物理量计算中心天体质量——万有引力提供向心力r T m r m r v m r Mm G 2222)2(πω===(r :环绕天体到中心天体球心的距离)➪ G r v M 2= G r M 32ω= 2324GT r M π= GT v M π23= 3、对应天体密度公式VM=ρ GRgπρ43=3243GR r v πρ= 33243GR r πωρ= 3233R GT r πρ= 32383GR T v πρ=三、中心天体与环绕天体系统各物理量的变化关系rGMv =r ↑ v ↓ 3rGM=ω r ↑ ω↓ GM r T 32π= r ↑ T ↑ 2rGMa n =r ↑ n a ↓ 四、变轨问题升空过程:1→2→3需在Q 点和P 点分别点火加速速度关系:1Q v <2Q v 2P v <3P v又因为1和3轨道均为圆轨道,由r ↑ v ↓可知:2P v <3P v <1Q v <2Q v (2轨道上Q →P 过程中引力做负功)回收过程:3→2→1需在P 点和Q 点分别点火减速,故速度关系仍满足2P v <3P v <1Q v <2Q v 加速度关系:mF a 引=,故21Q Q a a =>32P P a a =。
天体运动问题的处理方法处理天体的运动问题时,一般来说建立这样的物理模型(1) 中心天体不动,环绕天体以中心天体的球心为圆心做匀速圆周运动(2) 环绕天体只受到的中心天体的万有引力提供环绕天体做匀速圆周运动的向心力, (3) 结合牛顿第二定律与圆周运动规律进行分析,一般来说有两个思路:一是环绕天体绕中心天体在较高轨道上做匀速圆周运动,所需要的向心力由万有引力提供,即222r v m r Mm G ==m ω2r=m 224Tπr=ma n ,二是物体绕中心天体在中心天体表面附近作近地运动,物体受到的重力近似等于万有引力,2RMmGmg =(R 为中心天体的半径)。
例题:(2011天津)质量为m 的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动。
已知月球质量为M ,月球半径为R ,月球表面重力加速度为g ,引力常量为G ,不考虑月球自转的影响,则航天器的 A .线速度GM v R = B .角速度gR ω= C .运行周期2RT g π= D .向心加速度2GM a R =针对练习1:(2011浙江)为了探测X 星球,载着登陆舱的探测飞船在该星球中心为圆心,半径为r 1的圆轨道上运动,周期为T 1,总质量为m 1。
随后登陆舱脱离飞船,变轨到离星球更近的半径为r 2 的圆轨道上运动,此时登陆舱的质量为m 2则A. X 星球的质量为21124GT r M π=B. X 星球表面的重力加速度为21124T r g X π=C. 登陆舱在1r 与2r 轨道上运动是的速度大小之比为122121r m r m v v = D. 登陆舱在半径为2r 轨道上做圆周运动的周期为313212r r T T =一、中心天体质量和密度的估算天体作圆周运动时向心力由万有引力提供,即222r v m r Mm G ==m ω2r=m 224Tπr=ma n 。
由上式知,若能测出行星绕中心天体运动的某些物理量,则可求出中心天体的质量,一般情况下是通过观天体卫星运动的周期T 和轨道半径r 或天体表面的重力加速度g 和天体的半径R ,就可以求出天体的质量M 。
天体运动章节知识点总结1. 日的运动太阳是太阳系中的主要天体之一,其运动对太阳系中其他天体的运动都有着重要的影响。
日的运动包括日冕的运动、日球的自转和公转。
据观测,太阳自转是不均匀的,赤道区域的自转速度要比极区快得多。
此外,太阳还会产生大规模的太阳风和太阳黑子等现象。
这些现象都会影响着地球和其他行星的运动。
2. 月的运动月球是地球的天然卫星,月球的运动对地球的潮汐和太阳系其他行星的运动都有着显著的影响。
月球有自己的自转和公转运动,但由于月球的自转周期和公转周期相等,使得我们只能从地球上看到月球的一面。
另外,由于地球自转产生的离心力和引力的作用,月球的轨道还会发生变形。
月球的周期性现象也是天文学家们研究的重要对象,例如日食和月食等现象都是由月球的运动引起的。
3. 行星的运动在太阳系中,行星的运动也是天文学家们关注的重点。
根据观测结果,行星的轨道都呈椭圆形,且它们的公转速度和周期都是不相同的。
这也是开普勒三定律的一个重要内容。
此外,由于行星的自转轴倾角、自转速度和公转速度的不同,使得我们在不同的时间和位置观测到行星的外观也会有所不同。
4. 彗星的运动彗星是太阳系中的一种小天体,它的运动规律和其他天体有所不同。
彗星的轨道一般十分长而狭窄,其中一部分建立在近日点的轨道上,广大部分则建立在充满星际空间的轨道上。
一般来说,彗星的轨道可以划分为椭圆形、抛物线和双曲线三种,而椭圆形轨道的彗星更多为周期性彗星。
彗星的运动规律和光度变化也成为了天文学家们研究的重要课题。
5. 引力与牛顿运动定律牛顿的引力定律是自然科学的基本定律之一,它揭示了天体之间相互作用的规律。
根据牛顿的引力定律,每两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
而牛顿的运动定律可以描述物体的运动状态和受力情况。
这些定律对于天体运动的研究有着重要的意义,也为我们理解宇宙的运动提供了重要的基础。
总而言之,天体运动是天文学中的重要课题,它包括日、月、行星和彗星的运动规律,引力和牛顿运动定律等多个方面。
全国天体运动知识点总结天体运动是指天体在天空中的运动和变化。
天体包括太阳、月亮、行星、恒星、流星、彗星、卫星等各种宇宙天体。
天体运动包括天文现象的周期、周期性现象、非周期性现象和变化规律等方面的知识。
下面将从这几个方面对全国天体运动知识点进行总结。
一、天文现象的周期1.太阳的周期太阳是太阳系的中心天体,其周期性现象有日、四季、岁差和11年黑子等现象。
太阳的周期包括太阳的自转周期和地球围绕太阳的公转周期。
太阳的公转周期是地球的公转周期也就是一年。
太阳的四季是地球围绕太阳公转一周后,运行轨道上地球的日照面变化导致的,四季变化也是一种周期性现象。
太阳岁差是地球公转轨道的轴偏转所产生的现象,大约21,000年产生一个岁差周期,这个现象也是一种周期性现象。
太阳黑子是太阳黑子周期的一种现象,大约每11年产生一次太阳黑子周期,这个现象也是一种周期性现象。
2.月亮的周期月亮是地球的卫星,月亮的周期性现象有月相、潮汐和月食、月球日等。
月相是月球在公转过程中由于太阳光照照射到月球上而产生的亮暗不同的现象,月相的周期是一个月亮的周期,也叫月相周期。
潮汐是地球和月亮之间的引力产生的潮汐现象,也是月球周期的一种现象,叫做潮汐周期。
月食和月球日也是月球周期的现象,月球日是指月球一次自转的时间,月球日大约是27.3天。
3.行星的周期行星是太阳系的行星,行星的周期性现象有行星的日、行星的月、行星的年等。
行星的日是指行星自转一次所需的时间,行星的自转速度和轴倾角决定了行星的自转周期的长短。
行星的年是指行星公转一周所需的时间,行星的公转轨道决定了行星的公转周期的长短。
行星的月是指行星的自然卫星所绕行星公转所需的时间,行星的卫星数量和密度决定了行星的月数。
二、周期性现象1.日食和月食日食是地球在运行轨道上,月亮阴影照射到地球上而使得地球上出现日食的现象,日食是一个周期性现象。
月食是地球在运行轨道上,地球阴影照射到月球上而使得月球上出现月食的现象,月食也是一个周期性现象。
卫星运行参量的分析、近地、同步卫星与赤道上物体的比较一、卫星运行参量与轨道半径的关系1.天体(卫星)运行问题分析将天体或卫星的运动看成匀速圆周运动,其所需向心力由万有引力提供. 2.物理量随轨道半径变化的规律G Mmr 2= ⎩⎪⎨⎪⎧ma →a =GM r 2→a ∝1r2m v 2r →v =GM r →v ∝1r mω2r →ω=GM r 3→ω∝1r3m 4π2T 2r →T =4π2r3GM→T ∝r 3即r 越大,v 、ω、a 越小,T 越大.(越高越慢)3.公式中r 指轨道半径,是卫星到中心天体球心的距离,R 通常指中心天体的半径,有r =R +h .4.同一中心天体,各行星v 、ω、a 、T 等物理量只与r 有关;不同中心天体,各行星v 、ω、a 、T 等物理量与中心天体质量M 和r 有关.5.所有轨道平面一定通过地球的球心。
如右上图6.同步卫星的六个“一定”二、宇宙速度1.第一宇宙速度的推导 方法一:由G Mm R 2=m v 12R,得v 1=GMR = 6.67×10-11×5.98×10246.4×106m/s≈7.9×103 m/s.方法二:由mg =m v 12R得v 1=gR =9.8×6.4×106 m/s≈7.9×103 m/s.第一宇宙速度是发射人造卫星的最小速度,也是人造卫星的最大环绕速度,此时它的运行周期最短,T min =2πRg=2π 6.4×1069.8s≈5 075 s≈85 min. 2.宇宙速度与运动轨迹的关系(1)v 发=7.9 km/s 时,卫星绕地球表面做匀速圆周运动. (2)7.9 km/s<v 发<11.2 km/s ,卫星绕地球运动的轨迹为椭圆. (3)11.2 km/s≤v 发<16.7 km/s ,卫星绕太阳运动的轨迹为椭圆.(4)v 发≥16.7 km/s ,卫星将挣脱太阳引力的束缚,飞到太阳系以外的空间.三、近地卫星、同步卫星及赤道上物体的运行问题1.如图所示,a 为近地卫星,半径为r 1;b 为地球同步卫星,半径为r 2;c 为赤道上随地球自转的物体,半径为r 3。
1:已知“神舟”五号载人航天飞船在太空中运行的轨道是一个椭圆。
椭圆的一个焦点是地球的球心。
如右图所示,飞船在运行中是无动力飞行,只受到地球对它的万有引力的作用,在飞船从轨道的A 点沿箭头方向运行到B 点过程中。
有以下说法正确的是( )①飞船的速度逐渐减小 ②飞船的速度逐渐增大③飞船的机械能守恒④飞船的机械能逐渐增大2.关于天体运动学说中正确的是( )A :天体运动的比值32R T因中心天体而异,对于不同的中心天体,这个比值是不同的 B.天体运动的比值32R T是定值,所有天体的比值都相同 C.绕太阳运行的行星,轨道半径R 越大,自转周期T 就越大D .绕太阳运行的行星,轨道半径R 越大,公转周期T 就越大3.宇航员在月球上做自由落体实验,将某物体由距月球表面高h 处释放,经时间t 后落到月球表面(设月球半径为R).据上述信息推断,飞船在月球表面附近绕月球做匀速圆周运动所必须具有的速率为 ( )A :t Rh 2B :t Rh 2C :t RhD :tRh 24、宇航员在一星球表面上的某高处,沿水平方向抛出一小球。
经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L 。
若抛出时初速度增大到2倍,则抛出点与落地点之间的距离为3L 。
已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G 。
求该星球的质量M 。
5.在天体演变的过程中,红色巨星发生“超新星爆炸”后,可以形成中子星(电子被迫同原子核中的质子相结合而形成中子),中子星具有极高的密度。
(1)若已知该中子星的卫星运行的最小周期为1.2×10-3s ,求该中子星的密度;(2)中子星也绕自转轴自转,为了使该中子星不因自转而被瓦解,则其自转角速度最大不能超过多少?6: 已知火星的质量是地球质量的p 倍。
其半径是地球表面半径的q 倍,在地球上发射人造卫星。
其第一宇宙速度为到v l ,在火星上发射一颗人造卫星,其发射速度最小为多少?)(1v qp v 火7、地球表面的重力加速度为g ,地球半径为R ,自转周期为T ,求地球的同步卫星离地面的高度、线速度.8:我中已经拥有甘肃酒泉、山西太原和四川西昌三个卫星发射中心,又计划在海南建设一个航天发射场,预计2010年前投入使用.关于我国在2010年用运载火箭发射一颗同步卫星,下列说法正确的是( )A .在海南发射同步卫星可以充分利用地球自转的能量,从而节省能源B .在酒泉发射同步卫星可以充分利用地球自转的能量,从而节省能源C .海南和太原相比,在海南的重力加速度略微小一点,同样的运载火箭在海南可以发射质量更大的同步卫星D .海南和太原相比,在太原的重力加速度略微小一点,同样的运载火箭在太原可以发射质量更大的同步卫星9:2008年9月我国成功发射了“神州七号”载人飞船。
专题:人造天体的运动高考考纲:1、万有引力定律及其应用2、环绕速度3、第二宇宙速度和第三宇宙速度4、经典时空观和相对论时空观教材重点、难点:环绕速度、宇宙航行基础知识一、卫星的绕行角速度、周期与高度的关系(1)由()()22mMv G m r h r h =++,得v =h ↑,v ↓ (2)由G ()2h r mM +=m ω2(r+h ),得ω=()3h r GM +,∴当h ↑,ω↓ (3)由G ()2h r mM +()224m r h T π=+,得T=()GM h r 324+π ∴当h ↑,T ↑ 二、三种宇宙速度:① 第一宇宙速度(环绕速度):v 1=7.9km/s ,人造地球卫星的最小发射速度。
也是人造卫星绕地球做匀速圆周运动的最大速度。
② 第二宇宙速度(脱离速度):v 2=11.2km/s ,使卫星挣脱地球引力束缚的最小发射速度。
③ 第三宇宙速度(逃逸速度):v 3=16.7km/s ,使卫星挣脱太阳引力束缚的最小发射速度。
三、第一宇宙速度的计算.方法一:地球对卫星的万有引力就是卫星做圆周运动的向心力.G ()2h r mM+=m ()h r v +2,v=hr GM +。
当h ↑,v ↓,所以在地球表面附近卫星的速度是它运行的最大速度。
其大小为r >>h (地面附近)时,1V =.9×103m/s 方法二:在地面附近物体的重力近似地等于地球对物体的万有引力,重力就是卫星做圆周运动的向心力.()21v mg m r h =+.当r >>h 时.g h ≈g 所以v 1=gr =7.9×103m/s 第一宇宙速度是在地面附近h <<r ,卫星绕地球做匀速圆周运动的最大速度.四、两种最常见的卫星⑴近地卫星。
近地卫星的轨道半径r 可以近似地认为等于地球半径R ,由式②可得其线速度大小为v 1=7.9×103m/s ;由式③可得其周期为T =5.06×103s=84min 。
1.我国发射的嫦娥一号探月卫星沿近似圆形轨道绕月球飞行,测出卫星距月球表面高度为h ,运行周期为T ,假若还知道引力常量G 与月球半径R ,仅利用以上条件求出:①月球的密度②月球表面的重力加速度③卫星绕月球运行的加速度④卫星绕月球运行的线速度为2.我国利用长征三号乙改进型运载火箭成功发射嫦娥四号探测器,对月球背面南极艾特肯盆地开展着陆巡视探测,实现了人类首次月球背面软着陆和巡视勘察.假设探测器在近月轨道上绕月球做匀速圆周运动,经过时间t (小于绕行周期)运动的弧长为s ,探测器与月球中心连线扫过的角度为θ (弧度),引力常量为G 则( )A .探测器的轨道半径为θtB .探测器的环绕周期为πθtC .月球的质量为s 3Gθt 2 D .月球的密度为3θ24Gt3.“畅想号”火星探测器首次实现火星软着陆和火星表面巡视勘察,并开展地质构造等科学探测.“畅想号”在地球表面的重力为G 1,在火星表面的重力为G 2;地球与火星均视为球体,其半径分别为R 1、R 2;地球表面重力加速度为g .则( )A .火星与地球的质量之比为 G 2R 22G 1R 12B .卫星分别绕火星表面与地球表面运行的速率之比为 √G 1R 1G 2R 2 B .火星表面的重力加速度为 G 1gG 2C .“畅想号”火星探测器环绕火星表面做匀速圆周运动的周期为2π√G 2R 2G 1g4.2022年5月,航天飞机在完成对哈勃空间望远镜的维修任务后,在 A 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ, B 为轨道Ⅱ上的一点,如图所示,关于航天飞机的运动,下列说法中正确的有( )A .在轨道Ⅱ上经过A 的速度小于经过B 的速度B .在轨道Ⅱ上经过 A 的动能小于在轨道Ⅰ上经过A 的动能C .在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期D .在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度5.我国已经发射了一百多个航天器。
其中发射的货运飞船“天舟一号”与已经在轨运行的“天宫二号”成功对接形成组合体,如图所示。
卫星的变轨问题、天体追及相遇问题一、卫星的变轨、对接问题1.卫星发射及变轨过程概述人造卫星的发射过程要经过多次变轨方可到达预定轨道,如右图所示。
(1)为了节省能量,在赤道上顺着地球自转方向发射卫星到圆轨道 Ⅰ上。
(2)在A 点点火加速,由于速度变大,万有引力不足以提供向心力,卫星做离心运动进入椭圆轨道Ⅰ。
(3)在B 点(远地点)再次点火加速进入圆形轨道Ⅰ。
2.卫星的对接问题(1)低轨道飞船与高轨道空间站对接如图甲所示,低轨道飞船通过合理地加速,沿椭圆轨道(做离心运动)追上高轨道空间站与其完成对接.(2)同一轨道飞船与空间站对接如图乙所示,后面的飞船先减速降低高度,再加速提升高度,通过适当控制,使飞船追上空间站时恰好具有相同的速度.二、变轨前、后各物理量的比较1.航天器变轨问题的三点注意事项(1)航天器变轨时半径的变化,根据万有引力和所需向心力的大小关系判断;稳定在新圆轨道上的运行速度由v =GM r判断。
(2)航天器在不同轨道上运行时机械能不同,轨道半径越大,机械能越大。
(3)航天器经过不同轨道的相交点时,加速度相等,外轨道的速度大于内轨道的速度。
2.卫星变轨的实质 两类变轨离心运动 近心运动 变轨起因卫星速度突然增大 卫星速度突然减小 受力分析 G Mm r 2<m v 2rG Mm r 2>m v 2r 变轨结果变为椭圆轨道运动或在较大半径圆轨道上运动变为椭圆轨道运动或在较小半径圆轨道上运动 3.变轨过程各物理量分析(1)速度:设卫星在圆轨道Ⅰ和Ⅰ上运行时的速率分别为v 1、v 3,在轨道Ⅰ上过A 点和B 点时速率分别为v A、v B.在A点加速,则v A>v1,在B点加速,则v3>v B,又因v1>v3,故有v A>v1>v3>v B.(2)加速度:因为在A点,卫星只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅰ上经过A点,卫星的加速度都相同,同理,经过B点加速度也相同.(3)周期:设卫星在Ⅰ、Ⅰ、Ⅰ轨道上的运行周期分别为T1、T2、T3,轨道半径分别为r1、r2(半长轴)、r3,由开普勒第三定律r3T2=k可知T1<T2<T3.(4)机械能:在一个确定的圆(椭圆)轨道上机械能守恒.若卫星在Ⅰ、Ⅰ、Ⅰ轨道的机械能分别为E1、E2、E3,则E1<E2<E3.三、卫星的追及与相遇问题1.相距最近两卫星的运转方向相同,且位于和中心连线的半径上同侧时,两卫星相距最近,从运动关系上,两卫星运动关系应满足(ωA-ωB)t=2nπ(n=1,2,3,…)。
天体运动知识点范文天体运动是指在天体之间互相影响下的运动。
主要包括行星、卫星、恒星等天空中的天体以及它们之间的相对运动。
以下是天体运动的几个重要知识点:一、日月运动1.自转:地球自西向东自转一周约24小时,导致我们眼中的太阳和月亮从东方升起,西方落下。
2.公转:地球绕太阳公转一周约365天,形成一年。
3.月球运动:月球绕地球公转一周约27.3天,形成一个月。
二、行星运动1.行星公转:行星绕太阳公转,形成行星运动,公转周期各异,如水星约88天,金星约225天,地球约365天等。
2.行星自转:行星也有自转运动,自转周期不同。
例如地球自转一周约24小时,金星自转一周约243天。
三、椭圆轨道1.开普勒定律:行星绕太阳运动的轨道为椭圆,太阳位于椭圆的一个焦点上。
2.卫星轨道:卫星绕行星或其他天体的运动也遵循开普勒定律,轨道为椭圆,行星或其他天体位于椭圆焦点上。
四、理解黄道和赤道黄道:地球绕太阳公转所形成的轨道。
因为地球轴线倾斜,所以黄道和赤道有交点,这些交点被称为春分点和秋分点,分别是春分和秋分时太阳直射地球的位置。
赤道:是地球表面上一条经纬线,和地球自转轴相交成90度,被定义为赤道面。
赤道为太阳直射地球的区域,因此赤道附近气温较高。
五、四季变化1.轨道倾角:地球的轴倾角是23.5度,这意味着地球在绕太阳公转时,北半球与南半球接收到的太阳辐射不同,导致了四季的变化。
2.日照时间:当地球一些地区倾斜朝向太阳时,该地区会接受到更多的阳光,白天时间更长,温度更高,这就是夏季。
相反,当地区远离太阳时,白天时间更短,温度更低,这就是冬季。
六、恒星运动1.恒星自转:恒星也有自转运动,不同恒星的自转周期各异,但通常会比行星长得多。
2.恒星行星绕行:行星围绕恒星公转,这是我们观察到的恒星运动。
七、天体互相影响1.重力:行星、卫星和恒星等天体之间相互吸引,形成重力。
根据万有引力定律,任何两个天体之间都存在引力,大小与它们的质量和距离有关。
天体运动专题(一)一、人类认识宇宙的过程(1)模型及学说1.地心说:代表:托勒密内容:地球是世界的中心,并且静止不动,一切行星围绕地球做匀速圆周运动。
2.日心说:代表:哥白尼内容; 太阳是世界的中心,并且静止不动,一切行星都围绕太阳做圆周运动(2)探究方法假设法; 假设火星的轨道是圆形+精确计算和推理→得出火星位置的理论值与第谷观测的火星位置的实际值→偏差较大→假设不成立→再一次运用假设法; 假设火星的轨道是椭圆+精确计算和推理→得出火星位置的理论值与第谷观测的火星位置的实际值→几乎密合→假设成立(3)开普勒行星运动规律定律内容图示开普勒第一定律所有的行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上开普勒第二定律对任意一个行星而言,它与太阳的连线在相等的时间内扫过相等的面积开普勒第三定律所有行星轨道半长轴的三次方跟它的公转周期的二次方的比值都相等.32/a T K特别提示:(1)开普勒三定律虽然是根据行星绕太阳的运动总结出来的,但也适用于卫星绕行星的运动.(2)开普勒第三定律中的k是一个与运动天体无关的量,只与被环绕的中心天体有关.专题训练一1.2016(全国新课标III卷,14)关于行星运动的规律,下列说法符合史实的是( )A.开普勒在牛顿定律的基础上,导出了行星运动的规律B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律2、[2014·浙江卷] 长期以来“卡戎星(Charon)”被认为是冥王星唯一的卫星,它的公转轨道半径r1=19 600 km,公转周期T1=6.39天.2006年3月,天文学家新发现两颗冥王星的小卫星,其中一颗的公转轨道半径r2=48 000 km,则它的公转周期T2最接近于()A.15天B.25天C.35天D.45天3、(2013江苏】火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()(A)太阳位于木星运行轨道的中心(B)火星和木星绕太阳运行速度的大小始终相等(C)火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方(D)相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积4.【2017•新课标Ⅱ卷】如图,海王星绕太阳沿椭圆轨道运动,P为近日点,Q为远日点,M、N为轨道短轴的两个端点,运行的周期为T0。
高中物理【天体运动的三类典型问题】专题练习题课时作业(A)[A组基础达标练]1.(多选)2021年10月19日至23日,美国星链2305持续轨道变化,对中国空间站产生安全影响。
中国空间站于10月21日3点16分进行变轨规避风险。
图示为10月20日至23日期间星链2303和中国空间站的轨道距离地面高度数据图。
假设除变轨过程,中国空间站在不同高度轨道上都是绕地球进行匀速圆周运动,则下列说法正确的是()A.10月21日3点16分,发动机向后喷气使得中国空间站速度增加B.10月21日3点16分,发动机向前喷气使得中国空间站速度减小C.中国空间站在10月22日运行的线速度大于其在10月20日运行的线速度D.中国空间站在10月22日运行的线速度小于其在10月20日运行的线速度解析:由题图可知,中国空间站从低轨道调整到高轨道运行,则空间站需做离心运动,根据GMmR2=m v2R可知,空间站做离心运动,需要发动机向后喷气使得中国空间站速度增加,使得该位置处万有引力小于空间站所需要的向心力,故B错误,A正确;根据GMmR2=m v2R,可得v=GMR,空间站运行轨道半径越大,线速度越小,由题图可知,中国空间站在10月22日运行的半径大于其在10月20日运行的半径,则中国空间站在10月22日运行的线速度小于其在10月20日运行的线速度,故C错误,D正确。
答案:AD2.(多选)“神舟十一号”飞船曾与“天宫二号”目标飞行器顺利完成自动交会对接。
关于交会对接,以下说法正确的是()A.飞船在同轨道上加速直到追上“天宫二号”完成对接B.飞船从较低轨道,通过加速追上“天宫二号”完成对接C.在同一轨道上的“天宫二号”通过减速完成与飞船的对接D.若“神舟十一号”与“天宫二号”原来在同一轨道上运动,则不能通过直接加速或减速某飞行器的方式完成对接解析:“神舟十一号”飞船与“天宫二号”目标飞行器正确对接的方法是处于较低轨道的“神舟十一号”飞船在适当位置通过适当加速,恰好提升到“天宫二号”目标飞行器所在高度并与之交会对接。
天体运动题型整理天体运动六大题型:1、开普勒定律2、赤道和两极3、万有引力和牛顿运动结合4、求质量和密度5、双星/多星问题6、宇宙速度和卫星变轨一、开普勒定律1.(2018·甘肃省西北师范大学附属中学模拟)若金星和地球的公转轨道均视为圆形,且在同一平面内,如图所示。
在地球上观测,发现金星与太阳可呈现的视角(太阳与金星均视为质点,它们与眼睛连线的夹角)有最大值,最大视角的正弦值为k,则金星的公转周期为A.(1-k2)年B.(1-k2)年C.年D.k3年1.C【解析】金星与太阳的最大视角出现的情况是地球上的人的视线看金星时,视线与金星的轨道相切,如图所示。
θ为最大视角,由图可知:sinθ=;根据题意,最大正弦值为k,则有:;根据开普勒第三定律有:;联立以上几式得:;解得:年,C正确,ABD错误;故选C。
2.(2018·河北省石家庄市模拟)地球和木星绕太阳的运动可近似看成是同一平面内的同方向绕行的匀速圆周运动,已知木星的轨道半径约为地球轨道半径的5.2倍,估算木星与地球距离最近的相邻两次时间间隔约为 A .1年 B .1.1年 C .1.5年 D .2年2.B 【解析】地球、木星都绕太阳运动,所以根据开普勒第三定律可得3322=R R T T 木地地木,即333== 5.21=11.9R T T R ⨯木木地地年,设经时间t 两星又一次距离最近,根据t θω=,则两星转过的角度之差2π2π2πt T T θ⎛⎫∆=-= ⎪ ⎪⎝⎭地木,解得 1.1t =年,B 正确。
3.(2018·江西省浮梁一中模拟)如图所示,由中山大学发起的空间引力波探测工程“天琴计划”于2015年启动,拟采用三颗全同的卫星(SC1、SC2、SC3)构成一个边长约为地球半径27倍的等边三角形阵列,地球恰好处于三角形中心,卫星将在以地球为中心、高度约10万公里的轨道上运行,对一个周期仅有5.4分钟的超紧凑双白矮星系统RX10 806.3+1 527产生的引力波进行探测,若地球近地卫星的运行周期为T 0,则三颗全同卫星的运行周期最接近A .6T 0B .30T 0C .60T 0D .140T 03.C 【解析】由几何关系可知,等边三角形的几何中心到各顶点的距离等于边长的,所以卫星的轨道半径与地球半径的关系,由开普勒第三定律的推广形式,可知地球近地卫星与这三颗卫星的周期关系,所以,C 最为接近,C正确。
天体运动及其运用专题
主备人:王刚
课前预学案(课前独立完成)
一、开普勒三大定律的内容是什么?
第一定律:
第二定律:
第三定律:
二、回顾向心力的公式有哪一些?万有引力定律的公式是怎样的?万有引力常量G是谁通过什么实验推
导出来的?
三、所有行星或卫星运行的轨道都可以近似看做园,那么它们做圆周运动是由什么力提供向心力呢?请
推导出行星或卫星绕中心天体运行的线速度、角速度、周期、向心加速度公式。
(我)
四、通过上面的推导你能得出开普勒第三定律中R3/T2=k中的k为什么只由中心天体的质量决定吗?
五、地球上的物体所受的重力近似等于万有引力,那么关系式是怎么样的?
六、回顾三大宇宙速度,并自己试着推导第一宇宙速度。
课前复习作业:
1.(多选)在讨论地球潮汐成因时,地球绕太阳运行轨道与月球绕地球运行轨道可视为圆轨道.已知太阳质量约为月球质量的2.7×107倍,地球绕太阳运行的轨道半径约为月球绕地球运行的轨道半径的400倍.关于太阳和月球对地球上相同质量海水的引力,以下说法正确的是()
A.太阳引力远大于月球引力B.太阳引力与月球引力相差不大
C.月球对不同区域海水的吸引力大小相等D.月球对不同区域海水的吸引力大小有差异
2.如图4-4-1所示,在火星与木星轨道之间有一小行星带.假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动.下列说法正确的是()
图4-4-1
A.太阳对各小行星的引力相同B.各小行星绕太阳运动的周期均小于一年
C.小行星带内侧小行星的向心加速度值大于外侧小行星的向心加速度值
D.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值
3.为了对火星及其周围的空间环境进行探测,我国已发射第一颗火星探测器“萤火一号”.假设探测器在离火星表面高度分别为h1和h2的圆轨道上运动时,周期分别为T1和T2.火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G.仅利用以上数据,可以计算出() A.火星的密度和火星表面的重力加速度B.火星的质量和火星对“萤火一号”的引力
C.火星的半径和“萤火一号”的质量D.火星表面的重力加速度和火星对“萤火一号”的引力4.2012年4月30日,西昌卫星发射中心发射的中圆轨道卫星,其轨道半径为2.8×107m.它与另一颗同质量的同步轨道卫星(轨道半径为4.2×107 m)相比()
A.向心力较小B.动能较大
C.发射速度都是第一宇宙速度D.角速度较小
教师对学生预习情况进行评估:
课堂导学案
一、中心天体质量和密度的计算(教师引导,学生独立完成)
同步训练1(2012·福建高考)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v.假设宇航员在该行星表面上用弹簧测力计测量一质量为m的物体重力,物体静止时,弹簧测力计的示数为N.已知引力常量为G,则这颗行星的质量为()
A.m v 2GN
B.m v 4GN
C.N v 2Gm
D.N v 4Gm
解题思路及扩张延伸:
迁移应用1.如图所示,是美国的“卡西尼”号探测器经过长达7年的“艰苦”旅行,进入绕土星飞行的轨道.若“卡西尼”号探测器在半径为R 的土星上空离土星表面高h 的圆形轨道上绕土星飞行,环绕n 周飞行时间为t ,已知万有引力常量为G ,则下列关于土星质量M 和平均密度ρ的表达式正确的是( )
A .M =4π2(R +h )3Gt 2,ρ=3π(R +h )3Gt 2R 3
B .M =4π2(R +h )2Gt 2,ρ=3π(R +h )2Gt 2R 3
C .M =4π2t 2(R +h )3Gn 2,ρ=3πt 2(R +h )3Gn 2R 3
D .M =4π2n 2(R +h )3Gt 2,ρ=3πn 2(R +h )3
Gt 2R 3
二、卫星的发射、运行和变轨
1、所用卫星绕地球运行是由什么力提供向心力的?所以卫星绕地球运行的轨道的圆心在哪里?若是同步卫星又该怎样运行呢?
2、请计算同步卫星绕地球运行时距离地球表面的高度。
(已知M 、R 、G 、T ),所有同步卫星有哪些物理量是相同的?
同学们现在你能计算其他卫星的同步卫星的高度了吗?
同步训练2(2013·广东高考)如图4-4-3,甲、乙两颗卫星以相同的轨道半径分别绕质量为M 和2M 的行星做匀速圆周运动.下列说法正确的是( )
A .甲的向心加速度比乙的小
B .甲的运行周期比乙的小
C .甲的角速度比乙的大
D .甲的线速度比乙的大
3、请同学们结合离心运动和近心运动分析卫星如何才能实现变轨?
同步训练3(2012·天津高考)一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,动能减小为原的1
4
,不考虑卫星质量的变化,则变轨前后卫星的( )
A .向心加速度大小之比为4∶1
B .角速度大小之比为2∶1
C .周期之比为1∶8
D .轨道半径之比为1∶2 同步训练4 (多选)(2013届湖南衡阳八中模拟)2012年6月18日早上5点43分“神舟九号”飞船完成了最后一次变轨,在与“天宫一号”对接之前“神舟九号”共完成了4次变轨,“神舟九号”某次变轨的示意图如图所示,在A 点从椭圆轨道Ⅱ进入圆形轨道Ⅰ,B 为轨道Ⅱ上的一点.关于飞船的运动,下列说法中正确的有( )
A .在轨道Ⅱ上经过A 的速度小于经过
B 的速度
B .在轨道Ⅱ上经过A 的动能小于在轨道Ⅰ上经过A 的动能
C .在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期
D .在轨道Ⅱ上经过A 的加速度小于在轨道Ⅰ上经过A 的加速度 三、双星及三星模型(由教师补充完善)
作业布置:
同学们,通过本节的回顾,你有什么收获呢?。