2019年苏州市初中毕业暨升学考试数学试卷附评分标准.
- 格式:docx
- 大小:802.95 KB
- 文档页数:15
2020年苏州市初中毕业暨升学考试试卷数学注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,并认真核对条形码上的准考号、姓名是否与本人相符合;3.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题须用0.5毫米黑色墨水签字笔填写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。
一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
请将选择题的答案用2B铅笔涂在答题卡相对应的.......位置上。
....1.12()2⨯-的结果是A.-4 B.-1 C.14- D.322.△ABC的内角和为A.180° B.360° C.540° D.720°3.已知地球上海洋面积约为316 000 000km2,316 000 000这个数用科学记数法可表示为A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×109 4.若m·23=26,则m等于A.2 B.4 C.6 D.85.有一组数据:3,4,5,6,6,则下列四个结论中正确的是A.这组数据的平均数、众数、中位数分别是4.8,6,6 B.这组数据的平均数、众数、中位数分别是5,5,5 C.这组数据的平均数、众数、中位数分别是4.8,6,5 D.这组数据的平均数、众数、中位数分别是5,6,66.不等式组30,32xx-≥⎧⎪⎨<⎪⎩的所有整数解之和是A.9 B.12 C.13 D.157.已知1112a b-=,则aba b-的值是A.12B.-12C.2 D.-28.下列四个结论中,正确的是A.方程12xx+=-有两个不相等的实数根B.方程11xx+=有两个不相等的实数根C.方程12xx+=有两个不相等的实数根D.方程1x ax+=(其中a为常数,且2a>)有两个不相等的实数根9.如图,在四边形ABCD中,E、F分别是AB、AD的中点。
盐城市二O 一九年初中毕业与升学考试数学试卷本次考试时间为120分,卷面总分150分.一、选择题(本大题共有8小題,每小题3分,共24分,在每小题所给出的四个选项,只有一项符合题目要求的.1.如图,数轴上点A 表示的数是( )A.-1B.0C.1D.2 【答案】C【解析】考查对数轴的理解,A 点在1的位置,故选C2.下列图形中,既是轴对称图形又是中心对称图形的是( )【答案】B【解析】考查对轴对称和中心对称的理解,故选B. 3.若2 x 有意义,则x 的取值范围是( )A .x ≥2B .x ≥-2C .x >2D .x >-2 【答案】A【解析】二次根式里面不能为负数,所以x-2d ≥0,解得x ≥2,故选A. 4.如图,点D 、E 分别是△ABC 边BA 、BC 的中点,AC =3,则DE 的长为( ) A .2 B .34 C .3 D .23【答案】D【解析】中位线的性质,DE=21AC ,故选D.5.如图是由6个小正方体搭成的物体,该所示物体的主视图是( )【答案】C【解析】考查对三视图的理解.所以主视图是,故选C.6.下列运算正确的是( )【答案】B【解析】725a a a =⋅,故A 错;a a a 32=+,故C 错;632)(a a =,故D 错。
故选B7.正在建设中的北京大兴国际机场划建设面积约1 400 000平方米的航站极,数据1 400 000用科学记数法应表示为【答案】C【解析】1400000=1.4×106,故选C.8.关于x 的一元二次方程022=--kx x (k 为实数)根的情况是 A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .不能确定 【答案】A.【解析】方程022=--kx x 根的判别式08)2(14)(22>+=-⨯⨯--=∆k k ,所以有两个不相等的实数根。
二、填空题(本大题共有8小题,每小题3分,共24分,不需写出解答过程,请将答案直 接写在答题卡的相应位置上)9.如图,直线a ∥b ,∠1=50°,那么∠2=________. 【答案】 50°【解析】根据“两直线平行,同位角相等”得∠1=∠2=50°10.分解因式:=-12x ________. 【答案】 (x+1)(x-1)【解析】由平方差公式可得:)1)(1(11222-+=-=-x x x x .11.如图,转盘中6个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针落 在阴影部分的概率为________. 【答案】21。
2019江苏省徐州市中考数学满分:140分时间:120分钟一.选择题(本题共8个小题,每小题3分,共24分)1.-2的倒数是()A.21 B.21 C.2 D.-22.下列计算正确的是()A.422aaaB.222)(bab a C.933)(aa D.623aaa3.下列长度的三条线段,能组成三角形的是()A.2,2,4B.5,6,12C.5,7,2D.6,8,104.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500B.800C.1000D.12005.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40.该组数据的众数、中位数分别为()A.40,37B.40,39C.39,40D.40,386.下图均由正六边形与两条对角线组成,其中不是轴对称图形的是()7.若),(11y x A 、),(22y x B 都在函数xy2019的图象上,且21x x ,则()A.21y yB.21y yC.21y yD.21y y 8.如图,数轴上有O 、A 、B 三点,O 为原点,OA 、OB 分别表示仙女座星系,M87黑洞与地球的距离(单位:光年).下列选项中,与点B 表示的数最为接近的是()A.5×106B.107C.5×107D.108二.填空题(本大题共有10小题,每小题3分,共30分)9.8的立方根是.10.要使1x 有意义的x 的取值范围是.11.方程042x的解为.12.若2b a ,则代数式222b ab a的值为.13.如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点.若MN=4,则AC 的长为.14.如图,A 、B 、C 、D 为一个外角为40°的正多边形的顶点.若O 为正多边形的中心,则∠OAD=°15.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆半径r=2cm ,扇形的圆心角θ=120°,则该圆锥的母线长l 为cm.16.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45°,测得该建筑底部C 处的俯角为17°,若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为m.(参考数据:sin17°≈0.29,cos17°≈0.96,tan17°≈0.31)17.已知二次函数的图像经过点P (2,2),顶点为O (0,0),将该图像向右平移,当它再次经过点P 时,所得抛物线的函数表达式为18.函数y=x+1的图象与x 轴、y 轴分别交于A 、B 两点,点C 在x 轴上。
2006年苏州市初中毕业暨升学考试试卷化学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷l至2页,第Ⅱ卷3至8页;共5大题、30小题,满分100分;考试用时100分钟。
第Ⅰ卷(选择题,共30分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、考点名称用钢笔或圆珠笔写在答题卡的相应位置上;将考场号、座位号、准考证号、考试科目用铅笔涂在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试卷上。
3.考试结束,请将本试卷和答题卡一并交回。
可能用到的相对原子质量:H—l C—12 O一16 S一32 Ca一40个.选项符合题意。
)一、选择题(本题包括15小题,每小题2分,共30分。
每小题只有一...1.《苏州市国民经济和社会发展第十一个五年规划纲要》提出了关于资源环境发展的目标,其中有利于控制我市空气污染的是A.二氧化硫年排放总量在2005年的基础上减少5%以上B.城市生活污水集中。
处理率达85%以上C.氨氮等主要水污染物年排放总量在2005年的基础上减少8%以上D.通过资源空间配置,提高土地集约利用效率2.考古发现,早在一万多年前我国已开始制造和使用陶器。
现代人们已能生产新型陶瓷材料,如用氧化铝等为原料生产的陶瓷已制造发动机零件。
下列有关氧化铝陶瓷的说法错误..的是A.该陶瓷属于无机非金属材料B.该陶瓷中的原料氧化铝属于非金属氧化物C.该陶瓷耐高温、强度高D.该陶瓷耐酸、碱等化学物质的腐蚀3.下列化学符号与名称相符合的是A.氧元素O2 B.氯离子C1-C.碳酸钠NaCO3D.金AU4.下列物质属于纯净物的是A.食用醋B.天然气C.含碘盐D.蒸馏水5.氧气是空气的主要成分之一,有关氧气说法错误..的是A.用带火星的木条可以检验氧气B.用加热高锰酸钾的方法可以制取氧气C.鱼类能在水中生活,证明氧气易溶于水D.铁丝能在氧气中燃烧,火星四溅,产生黑色固体6.有道是:水火无情。
2019年苏州市初中毕业暨升学考试试卷数 学注意事项:1.本试卷共21题,满分130分,考试用时150分钟;2.答题前,考生务必将由己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,井认真核对条形码上的准考号、姓名是否与本人的相符合;3.答选择题须用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;4.考生答题,必须答在答题卡上,答在试卷和草稿纸上无效。
一、选择题:本大题目共10小题.每小题3分.共30分.在每小题给出的四个选项中,只有一顶是 符合题目要求的.请将选择题的答案用2B 铅笔涂在答题卡相应位置上......... 1.23的倒数是 A. 32 B. 32- C. 23 D. 23-2.肥皂泡的泡壁厚度大约是0.0007㎜,将0.0007用科学记数法科表示为() A. 30.710-⨯ B. 3710-⨯ C. 4710-⨯ D. 5710-⨯3.下列运算结果正确的是A. 23a b ab +=B. 22321a a -=C. 248a a a ⋅=D. 2332()()a b a b b -÷=-4.一次数学测试后,某班40名学生的成绩被分为5组,第14组的频数分别为12、10、6、8,则第5组的频数是A.0.1B.0.2C.0.3D.0.45.如图,直线//a b ,直线l 与a 、b 分别相交于A 、B 两点,过点A 做直线l 的垂线交直线b 于点C ,若∠1=58°,则 ∠2的度数为A.58°B.42°C.32°D.28°6.已知点1(2,)A y 、2(4,)B y 都是反比例函数(0)ky k x=<的图像上,则1y 、2y 的大小关系为A. 12y y >B. 12y y <C. 12y y = D .无法比较7.根据国家发改委实施“阶梯水价”的有关文件要求,某市结合地方实际,决定从20191月1日起对居民生活用水按照新的“阶梯水价”标准收费,某中学研究性学习小组的同学们在社会实践活动中调查了50户家用水量(吨)15 20 25 30 35 户数3 6 7 9 5 A.25 ,27.5 B.25,25 C.30 ,27.5 D. 30 ,258.如图,长4 m 的楼梯AB 的倾斜角∠ABD 为60度,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD 为45°免责调整后的楼梯AC 的长为A. 23mB. 26mC. (232)m -D. (262)m -9.矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),点D 是OA 的中的,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为 A. (3,1) B. 4(3,)3 C. 5(3,)3D. (3,2)10.如图,在四边形ABCD 中,∠ABC=90°,AB=BC=22,E 、F 分别是AD 、CD 的中点,连接BE 、BF 、EF.若四边形ABCD 的面积为6,则△BEF 的面积为 A.2 B.94 C. 52D.3 二、填空题:本文题共8小题.每小题3分,共24分,把答案直接填在答题卡相应位置上.......... 12.分解因式:21x -=_________ 13.当x =________时,分式225x x -+的值为0. 13.要从甲、乙两名运动员中选出一鸣参加“2019里约奥运会”100m 比赛,对这两名运动员进行了10次测试,经过数据分析,甲、乙两名运动员的平均成绩均为10.05(s),甲的方差为0.024(2s ),乙的方差为0.008(2s ),则这10次测试成绩比较稳定的是_________运动员。
2018-2019年小升初六年级期末毕业数学试题(共十套试卷)一、看清题目,巧思妙算。
(共30分) 1、直接写得数(每小题1分,共10分)85+0.25= 1787-998= 1÷20%= 6÷0.05=12.5×32×2.5= 5-=+9792 9.7-0.03= 54×25==+-+31213121=⨯÷737112、求未知数X (每小题2分,共8分) 1.8χ-0.7=2.9 7385=-χχ80%χ-18×32=4χ4.6=0.12:1.53、计算下列各题,能简算的要简算(每小题3分,共12分)。
1853-(2.35+8.6) 3.5×10.181×[)×(9105321÷] (43+611-2413)×12二、认真思考,谨慎填空(每空1分,共23分)1、 2时40分=( )时 3.8公顷=( )公顷( )平方米2、在86%,76,0.88,98四个数中,最大的数是( ),最小的数是( )。
3、一幢大楼地面以上有19层,地面以下有2层,地面以上第6层记作+6层,地面以下第2层记作( )层。
4、浩浩每天放学回家要花1小时完成语文、数学、英语三科作业。
如果每科作业花的时间都一样,完成每科作业需( )分钟,每科作业占总时间的( )。
5、将圆规两脚之间的距离定为( )厘米时,可以画出直径为6厘米的圆,这个圆的面积是( )平方厘米。
6、把右边的长方形以它的长为轴旋转一周,会得到一个( ),体积是( )立方厘米 。
7、按糖和水的比为1:19配制一种糖水,这种糖水的含糖率是( ) 现有糖50克,可配制这种糖水( )克。
8、有一种手表零件长5毫米。
在设计图纸上的长度是10厘米,这幅图纸的比例尺是( )。
9、右图是某粮食仓库储藏情况统计图。
已知仓库中大豆有4吨,那么其中玉米( )吨。
10、有40张5元和1元的人民币,面值共152元,5元的有( )张,1元的有( )张。
A.﹣5B.5C.-1A.x≠12019年江苏省无锡市初中毕业升学考试数学试题本试卷分试题和答题卡两部分,所有答案一律写在答题卡上.考试时间为120分钟.试卷满分130分.注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写在答题卡的相应位置上,并认真核对条形码上的姓名、准考证号是否与本人的相符合.2.答选择题必须用2B铅笔将答题卡上对应题目中的选项标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔作答,写在答题卡上各题目指定区域内相应的位置,在其他位置答题一律无效.3.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.4.卷中除要求近似计算的结果取近似值外,其他均应给出精确结果.一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内)1.5的相反数是1D.552.函数y=2x-1中的自变量x的取值范围是11B.x≥1C.x>D.x≥2223.分解因式4x2-y2的结果是A.(4x+y)(4x-y)B.4(x+y)(x-y)C.(2x+y)(2x-y)D.2(x+y)(x-y)4.已知一组数据:66,66,62,67,63这组数据的众数和中位数分别是A.66,62B.66,66C.67,62D.67,665.一个几何体的主视图、左视图、俯视图都是长方形,这个几何体可能是A.长方体B.四棱锥C.三棱锥D.圆锥6.下列图案中,是中心对称图形但不是轴对称图形的是7.下列结论中,矩形具有而菱形不一定具有的性质是y 把答案直接填写在相应的横线上) A9 12.2019 年 6 月 29 日,新建的无锡文化旅游城将盛大开业,开业后预计接待游客量约A .内角和为 360°B .对角线互相平分C .对角线相等D .对角线互相垂直8.如图,PA 是⊙O 的切线,切点为 A ,PO 的延长线交⊙O 于点 B ,若∠P=40°,则∠B 的度数为 A .20° B .25° C .40° D .50°9.如图,已知 A 为反比例函数 y = k( x <0)的图像上一点,过点 A 作 AB ⊥ y 轴,垂足为xB .若△OAB 的面积为 2,则 k 的值为 A .2 B .﹣2C .4D .﹣410.某工厂为了要在规定期限内完成 2160 个零件的任务,于是安排 15 名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3 人外出培训,若剩下的工人每人每天多加 工 2 个零件,则不能按期完成这次任务,由此可知 a 的值至少为 A .10 B .9 C .8 D .7yyAPABA B-6 O xOBOx O第 8 题 第 9 题 第 16 题二、填空题(本大题共 8 小题,每小题 2 分,本大题共 16 分.不需要写出解答过程,只需 y4 F E 11. 的平方根为.O-6 -6 O x O xB C20000000 人次,这个年接待客量可以用科学记数法表示为人次.13.计算: (a +3)2=.14.某个函数具有性质:当 x >0 时, y 随 x 的增大而增大,这个函数的表达式可以是(只要写出一个符合题意的答案即可).15.已知圆锥的母线成为 5cm ,侧面积为 15πcm 2,则这个圆锥的底面圆半径为 cm .16 .已知一次函数 y = kx +b 的图像如图所示,则关于x 的不等式 3kx - b > 0 的解集为.EF A A IOC B HGC BOOFAD EOD C B第17题第18题17.如图,在△ABC中,AC:BC:AB=5:12:13,⊙O在△ABC内自由移动,若⊙O的半径为1,且圆心O在△ABC内所能到达的区域的面积为103,则△ABC的周长为.△18.如图,在ABC中,AB=AC=5,BC=45,D为边AB上一动点(B点除外),以CD为一边作正方形CDEF,连接△BE,则BDE面积的最大值为.三、解答题(本大题共10小题,共84分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)计算:1(1)-3+()-1-(2019)0;(2)2a3⋅a3-(a2)3.220.(本题满分8分)解方程:(1)x2-2x-5=0;(2)14=.x-2x+121.(本题满分8分)如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(△1)求证:DBC≌△ECB;(2)求证:OB=OC.,AD EOB C22.(本题满分6分)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为;(2)如果小芳有两次摸球机会(摸出后不放回)求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.(本题满分6分)《国家学生体质健康标准》规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格.某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示.各等级学生人数分布扇形统计图各等级学生平均分统计表优秀等级优秀良好及格不及格平均分92.185.069.241.3不及格及格18%52%良好26%(1)扇形统计图中“不及格”所占的百分比是;(2)计算所抽取的学生的测试成绩的平均分;(3)若所抽取的学生中所有不及格等级学生的总分恰好等于某一个良好等级学生的分数,请估计该九年级学生中约有多少人达到优秀等级.24.(本题满分8分)O12.252.25(1)如图 1,A 为圆 O 上一点,请用直尺(不带刻度)和圆规作出得内接正方形;D一次函数 y = kx + b 的图像与 x 轴的负半轴相交于点 A ,与 y 轴的正半轴相交于点 B ,且 sin ∠ABO =3 2.△OAB 的外接圆的圆心 M 的横坐标为﹣3.(1)求一次函数的解析式; (2)求图中阴影部分的面积.yBMAOx25.(本题满分 8 分) “低碳生活,绿色出行”是一种环保,健康的生活方式,小丽从甲地出发沿一条笔直的 公路骑行前往乙地,她与乙地之间的距离 y (km)与出发时间之间的函数关系式如图 1 中线段 AB 所示,在小丽出发的同时,小明从乙地沿同一条公路汽骑车匀速前往甲地,两人之间的 距离 x (km)与出发时间 t (h)之间的函数关系式如图 2 中折线段 CD —DE —EF 所示.(1)小丽和小明骑车的速度各是多少? (2)求 E 点坐标,并解释点的实际意义.y36A36AEFBDBxO26.(本题满分 10 分) 按要求作图,不要求写作法,但要保留作图痕迹.A AEA(2)我们知道,三角形具有性质,三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高交于同一点,请运用上述性质,只用直尺(不带刻度)作图.①如图2□,在ABCD中,E为CD的中点,作BC 的中点F;②图△3,在由小正方形组成的网格中,的顶点都在小正方形的顶点上,作ABC 的高AH.AA DECB CB27.(本题满分10分)已知二次函数y=ax2+bx-4(a>0)的图像与x轴交于A、B两点,(A在B左侧,且OA<OB),与y轴交于点C.D为顶点,直线AC交对称轴于点E,直线BE交y轴于点F,AC:CE=2:1.(1)求C点坐标,并判断b的正负性;(2)设这个二次函数的图像的对称轴与直线AC交于点D,已知DC:CA=1:2,直线BD与y轴交于点E,连接△BC.①若BCE的面积为△8,求二次函数的解析式;②若BCD 为锐角三角形,请直接写出OA的取值范围.y yxxO O28.(本题满分10分)如图1,在矩形ABCD中,BC=3,动点P从B出发,以每秒1个单位的速度,沿射线BC方向移动,作△PAB关于直线PA的对称△PAB′,设点P的运动时间为t(s).(1)若AB=23.①如图2,当点B′落在AC上时,显然△PAB′是直角三角形,求此时t的值;②是否存在异于图2的时刻,使得△PCB′是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线PB′与直线CD相交于点M,且当t<3时存在某一时刻有结论∠PAM=45°成立,试探究:对于t>3的任意时刻,结论∠PAM=45°是否总是成立?请说明理由.D C D C D CB'B'PPA B A B A B参考答案1.A2.D3.C4.B5.A6.C7.C8.B9.D10.B11.±2312.2´10713.a2+6a+914.y=x2(答案不唯一)15.316.x<217.2518.8 19.(1)【解答】解:原式=4(2)【解答】解:原式=a6 20.(1)【解答】解:x=1+6,x=1-6;12(2)【解答】解:x=3,经检验x=3是方程的解21.(1)证明:∵AB=AC,∴∠ECB=∠DBC在∆DBC与∆ECB中⎨∠DBC = ∠ECB ⎪BC = CB ï 红1ïí 黑1 ï ï ïî 黑2 ì 红1 ï ï 红2 ïí 黑1 ï ï ïï ïî 黑2 ï 黑2 ïí 红2 ï î⎧BD = CE ⎪⎩∴ ∆DBC ≅ ∆ECB(2)证明:由(1)知 ∆DBC ≅ ∆ECB∴∠DCB=∠EBC ∴OB=OC22.(1)12ì ì 红2 ï ï ï ï ï ï ïï ïî 黑2(2)开始 í共有等可能事件 12 种 其中符合题目要求获得 2 份奖品的事件有ï ì 红1 ï 黑1í 红2 ï ï ï ï ì 红1 ï ï ï ïïî 黑12 种所以概率 P=1623.(1) 4%(2)92.1×52%+85.0×26%+69.2×18%+41.3×4%=84.1(3)设总人数为 n 个 , 80.0 ≤ 41.3×n×4%≤89.9 所以 48<n<54 又因为 4%n 为整数所以 n=50即优秀的学生有 52%×50÷10%=260 人 24. (1) 作 MN ⊥ BO ,由垂径定理得 N 为 OB 中点MN= 12OA∵MN=3∴OA=6,即 A (-6,0)(2 3)2 =4π- 3 3 236 ÷ 20= (h )16 ⨯ = (km )⇒ E , ⎪ 实际意义为小明到达甲地∵sin ∠ABO=32,OA=6∴OB= 2 3即 B (0, 2 3 )设 y = kx +b ,将 A 、B 带入得到 y =33x +2 3(2)∵第一问解得∠ABO=60°,∴∠AMO=120°所以阴影部分面积为 S = 1π(2 3) - 3yB 34 MNAOx25.(1)V =36 ÷ 2.25=16 (km / h ) 小丽V=36 ÷1-16=20 (km / h )小明(2)959 1445 5⎛ 9 144 ⎫ ⎝ 5 5 ⎭26.(1)连结 AE 并延长交圆 E 于点 C ,作 AC 的中垂线交圆于点 B ,D ,四边形 ABCD 即为所求DCEAB(2)①法一:连结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB于点F,F即为所求A D AOEEGB F CB C法二:连结AC,BD交于点O连结EO并延长交AB于点G连结GC,BE交于点M结AC,BD交于点O,连结EB交AC于点G,连结DG并延长交CB于点F,F即为所求连结OM并延长交CB于点F,F即为所求A D ADG OE EMBF C B C②ACHB27.(1)令x=0,则y=-4,∴C(0,-4)∵OA<OB,∴对称轴在y轴右侧,即-∵a>0,∴b<0(2)b2aφ0①过点D作DM⊥oy,则DC DM MC1 ===, CA OA CO2∴DM=1 AO 2设A(-2m,0)m>0,则AO=2m,DM=m ∵OC=4,∴CM=2∴D(m,-6),B(4m,0)A型相似可得DN BN=OE OB∴OE=8S 1△BEF =2⨯4⨯4m=8∴m=1∴A(-2,0),B(4,0)设y=a(x+2)(x-4)即y=ax2-2ax-8a 令x=0,则y=-8a∴C(0,-8a)∴-8a=-4,a=11∴y=x2-x-4 22②易知:B(4m,0)C(0,-4)D(m,-6),通过分析可得∠CBD一定为锐角计算可得CB2=16m2+16,CD2=m2+4,DB2=9m2+36故=,解得B'P=27-421°当∠CDB为锐角时,C D2+DB2>CB2m2+4+9m2+36>16m2+16,解得-2<m<22°当∠BCD为锐角时,C D2+CB2>DB2m2+4+16m2+16>9m2+36,解得m>2或m<-(舍)综上:2<m<2,22<2m<4∴22<OA<428.(1)①勾股求的AC=21易证△CB'△P∽CBA,23B'P321-23②1°如图,当∠PCB’=90°时,在PCB’中采用勾股得:错误!3)2+(3-t)2=t2,解得t=2D B'3C B'P3t3-tD C B'D323PtA23BA B A 2°如图,当∠PCB’=90°时,在△PCB’中采用勾股得:(33)2+(t-3)2=t2,解得t=62 33Ptt -3B'D32 3C3A2 3 B3°当∠CPB’=90 °时,易证四边形 ABP’为正方形,解得 t=2 3B' DC PB' D CA BAB(2)如图DMCB'P 4 32 1AB∵∠PAM=45°∴∠2+∠3=45°,∠1+∠4=45° 又∵翻折∴∠1=∠2,∠3=∠4又∵∠ADM=∠AB’M (AAS ) ∴AD=AB’=AB即四边形 ABCD 是正方形∴∠DAM=1如图,设∠APB=xMB'D PC D M CB'P432A B∴∠PAB=90°-x∴∠DAP=x易证△MDA≌△B’A M(HL)∴∠BAM=∠DAM∵翻折∴∠PAB=∠PAB’=90°-x∴∠DAB’=∠PAB’-∠DAP=90°-2x2∠DAB’=45°-x∴∠MAP=∠DAM+∠PAD=45°A1B。
2021年江苏省苏州市中考数学试题(含答案)2021年苏州市初中毕业暨升学考试试卷数学本试卷由选择题、填空题庭外和解答题三大题共同组成.共29小题,满分130分后.考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.请问选择题必须用2b铅笔把答题卡上对应题目的答案标号涂黑,例如须要改动,恳请用橡皮擦整洁后,出马涂抹其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写下在答题卡选定的边线上,无此答题区域内的答案一律违宪,严禁用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2b铅笔涂在答题卡相应的位置上.1.?2等于a.2b.-2c.±2d.±122.计算-2x2+3x2的结果为a.-5x23.若式子a.x>1b.5x2c.-x2d.x2x?1在实数范围内有意义,则x的取值范围是2b.x<1c.x≥1d.x≤14.一组数据:0,1,2,3,3,5,5,10的中位数是a.2.5b.3c.3.5d.55.世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为a.5b.6c.7d.86.已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是a.x1=1,x2=-1c.x1=1,x2=0b.x1=1,x2=2d.x1=1,x2=37.例如图,ab就是半圆的直径,点d就是ac的中点,∠abc=50°,则∠dab等同于a.55°b.60°c.65°d.70°[来源学科网]8.如图,菱形oabc的顶点c的坐标为(3,4),顶点a在x轴的正半轴上.反比例函数y=过顶点b,则k的值为a.129.已知x-b.20c.24d.32k(x>0)的图象经x113=3,则4-x2+x的值为x223a.1b.2c.52d.7210.例如图,在平面直角坐标系则中,rt△oab的顶点a在x轴的也已半轴上,顶点b的座标为(3,3),点c的座标为(a.1321,0),点p为斜边ob上的一动点,则pa+pc的最小值为23?1931b.c.d.2722二、填空题:本大题共8小题,每小题3分后,共24分后.把答案轻易填上在答题卡相对应当的边线上.11.排序:a4÷a2=▲.12.因式分解:a2+2a+1=▲.13.方程15的解为▲.?x?12x?114.任意抛掷一枚质地均匀的正方体骰子1次,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数大于4的概率为▲.15.按照右图右图的操作步骤,若输出x的值2,则输入的值▲.的弧长为▲.16.如图,ab切⊙o于点b,oa=2,∠oab=30°,弦bc∥oa,劣弧bc(结果保留π)17.例如图,在平面直角坐标系则中,四边形oabc就是边长为2的正方形,顶点a,c分别在x,y轴的也已半轴上.点q在对角线ob上,且oq=oc,相连接cq并缩短cq交边ab于点p,则点p的座标为(▲,▲).18.如图,在矩形abcd中,点e是边cd的中点,将△ade沿ae折叠后得到△afe,且点f在矩形abcd内部.将af延长交边bc于点g.若cg1ad?,则?▲(用含k的代数式则表示).gbkab三、答疑题:本大题共11小题,共76分后,把答疑过程写下在答题卡适当的边线上,答疑时应写下必要的排序过程、解题步骤或文字说明.作图时用2b铅笔或黑色墨水签字笔.19.(本题满分5分后)计算:??1??20.(本题满分5分后)解不等式组:?21.(本题满分5分后)先化简,再求值:22.(本题满分6分后)苏州某旅行社非政府甲、乙两个旅游团分别至西安、北京旅游.未知这两个旅游团共计55人,甲旅游团的人数比乙旅游团的人数的2倍太少5人.问甲、乙两个旅游团各存有多少人?23.(本题满分6分)某企业500名员工参加安全生产知识测试,成绩记为a,b,c,d,e共5个等级,为了解本次测试的成绩(等级)情况,现从中随机抽取部分员工的成绩(等级),统计整理并制作了如下的统计图:(1)谋这次抽样调查的样本容量,并移去图①;3?3?1?9.0x212x?1?x?3x?2?3???x?1??,其中x=3-2.x?1?x?1?(2)如果测试成绩(等级)为a,b,c级的定为优秀,请估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数.(图②)[来源学科网]24.(本题满分7分后)例如图,在方格纸中,△abc的三个顶点及d,e,f,g,h五个点分别坐落于大正方形的顶点上.(1)现以d,e,f,g,h中的三个点为顶点画三角形,在所画的三角形中与△abc不全等但面积相等的...三角形是▲(只需要填一个三角形);(2)先从d,e两个Behren任一挑一个点,再从f,g,h三个Behren任一挑两个相同的点,以所出的这三个点为顶点画三角形,谋所画三角形与△abc面积成正比的概率(用画树状图或列表格解).25.(本题满分7分)如图,在一笔直的海岸线l上有a,b两个观测站,a在b的正东方向,ab=2(单位:km).有一艘小船在点p处,从a测得小船在北偏西60°的方向,从b测得小船在北偏东45°的方向.(1)谋点p至海岸线l的距离;(2)小船从点p处沿射线ap的方向航行一段时间后,到达点c处.此时,从b测得小船在北偏西15°的方向.求点c与点b之间的距离.(上述2小题的结果都保留根号)26.(本题满分8分后)例如图,点p就是菱形abcd对角线ac上的一点,相连接dp 并缩短dp交边ab于点e,相连接bp并缩短bp交边ad于点f,交cd的延长线于点g.(1)求证:△apb≌△apd;(2)未知df:fa=1:2,设立线段dp的短为x,线段pf的短为y.①谋y与x的函数关系式;②当x=6时,谋线段fg的长.27.(本题满分8分)如图,在rt△abc中,∠acb=90°,点d是边ab上一点,以bd为直径的⊙o与边ac相切于点e,连接de并延长de交bc的延长线于点f.(1)澄清:bd=bf;(2)若cf=1,cosb=3,求⊙o的半径.5。
2024年初中毕业暨升学考试模拟试卷15 数学 2024.5一.选择题(每题3分,共24分)1.-2的相反数是( )A. 2B. -2C. 0.5D.−122.1, 5, 2, 4, 3的中位数是( )A. 1B.2C.3D.43.若某三角形的三边长分别为3,4,m,则m的值可以是( )A. 1B. 5C. 7D. 94. 若直线y=kx(k是常数, k≠0)经过第一、第三象限, 则k的值可为( )A. -2B. -1C.−12D. 25.方程2x =1x+1的解为( )A. x=-2B. x=2C. x=-4D. x=46.关于x的一元二次方程x²+2ax+a²−1=0的根的情况是( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.实数根的个数与实数a的取值有关7.如图,△ABC中, ∠BAC=90°, AB=6, BC=10, 点D为斜边 BC上一任意点, 连接AD, 将点B关于直线AD作轴对称变换得到点 E, 连接AE, BE, 则△ABE面积的最大值为( )A. 18B. 30C. 15D. 248.如图,已知点 A(0,6)在y轴上,点B为x轴正半轴上一动点,连接AB,将线段AB绕点A逆时针旋转90°得到线段AC, 连接BC, 取BC中点D, 连接OD, 移动点B, 若OD∥AC,则此时点B横坐标为( )A. 3B. 5C. 6D. 8初三数学第1页共8页二.填空(每题3分,共24分)9.苏州市景范中学校本部为北宋名相范仲淹祖宅所在地,公元1049年范仲淹捐祖宅开办“义庄”、设立“义学”,距今已有975年,975用科学计数法表示为 .10.不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有 个.11.如图, △ABC 内接于以AB 为直径的⊙O, AB 是⊙O 的直径, 点 D 是⊙O 上一点,∠CDB=55°, 则∠ABC= °.12.边长为3的正六边形面积为 .13.如图, 在菱形ABCD 中, AB=10, ∠A=120°, 则BD 的长为 .14. 如图,将平行四边形ABCD 绕点A 逆时针旋转得到平行四边形 AEFG ,使点E 落在边BC上, 且点 D 巧合是 FG 的中点, 若 AB AD =45,则 BE CE 的值为 .15.如图,将一等腰直角三角形ABC 放置在平面直角坐标系的第一象限,其一锐角顶点与原点O 重合,点A 、点B 正好经过一双曲线,则直角边OB 与x 轴所成锐角的正切值为 .16.对于平面直角坐标系内点M(m ,n),我们定义如下变换K :将点M 的横坐标m 乘以2再减去1,纵坐标n 加上3就可以得到新的一点N(2m-1, n+3),已知点A(0,0) , B(5,5),点 P 在线段AB 上运动(不包含点A ,B),将点P 进行K 变换后得到点Q ,连接PQ ,则线段PQ 长度的范围是 .初三数学 第2页 共8页三.解答题(共82分)17. (5分) 计算 sin30∘−(52−1)0+1−3218.(5分) 解不等式组 {2x−4≤1−x 1−3x 2>2−x 19. (6分) 化解并求值: (1a +3+1a 2−9)÷a−22a +6 (其中a=-1)20. (6分)文明是一座城市的名片,更是一座城市的底蕴.苏州市某学校于细微处着眼,于贴心处落地,积极组织师生参加“创建全国文明典范城市志愿者服务”活动,其服务项目有“清洁卫生”“敬老服务”“文明宣传”“交通劝导”,每名参加志愿者服务的师生只参加其中一项.为了解各项目参与情况,该校随机调查了参加志愿者服务的部分师生,将调查结果绘制成如下两幅不完整的统计图.初三数学 第3页 共8页根据统计图信息,解答下列问题:(1)本次调查的师生共有人,请补全条形统计图;(2)在扇形统计图中,求“敬老服务”对应的圆心角度数:(3)该校共有1500名师生,若有80%的师生参加志愿者服务,请你估计参加“文明宣传”项目的师生人数.21. (6分)一只不透明的袋子中装有4个小球,分别标有编号1,2,3,4,这些小球除编号外都相同.(1)搅匀后从中任意摸出1个球,这个球的编号是3 的概率为 .(2)搅匀后从中任意摸出1个球,记录球的编号后放回、搅匀,再从中任意摸出1个球.求第2次摸到的小球编号比第1次摸到的小球编号小1的概率是多少?(用画树状图或列表的方法说明)初三数学第4页共8页22. (8分) 为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD ,斜面坡度i=3:4是指坡面的铅直高度AF与水平宽度BF的比. 已知斜坡CD长度为20米, ∠C=18°,求斜坡AB的长. (结果精确到米)(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)23. (8分)如图,在平面直角坐标系中,一次函数y=mx+n与反比例函数y=kx的图象在第一象限内交于A(a,4)和B(4,2)两点, 直线AB与x轴相交于点 C, 连接OA.(1)求一次函数与反比例函数的表达式;(2)过点B 作BD平行于x轴,交OA于点 D, 求梯形OCBD 的面积.初三数学第5页共8页24. (8分) 互不相等的有理数m, n, p在数轴上分别表示点M, N, P,若MN=2r且MP=NP,则称两数m,n关于数p对称,对称半径为r.例如有理数3和5关于4对称,对称半径为1.(1)若m=3,p=1,则r=;(2) 若|m|=2|n|,p=2,求对称半径r.25. (10分)如图,圆O半径OA,OB互相垂直,弦(CA=CB,,过点C 的直线.MN‖AB (1) 求证: MN 是圆O的切线(2) 求tan∠CAO的值初三数学第6页共8页26. (10分) 如图, 已知函数y=mx²−6mx+8m(m≠0)与x轴交于点 B、C, 与y轴交于点 D, 连接BD、CD(1)该抛物线的顶点坐标为;(用m的代数式表示);(2)如果点O关于直线BD 的对称点O′正好落在抛物线对称轴上,求此时m的值;(3)在(2)的条件下,在x轴上有一动点M,横坐标为t,过点M作x轴的垂线l,请问若在直线l上有且只有一个点P,使得.∠DPB=90°,此时t的值为多少.初三数学第7页共8页27. (10分)如图1, 从第一象限内一点C(4, 3)向坐标轴作垂线得到矩形OBCD, 在矩形OBCD 边OB上取一动点E, 连接DE, 以DE为边作等边△DEG,取 DE边中点 F ,已知点 E 以每秒1个单位的速度向从点原点向终点B移动,运动时间为t(1) 求当点G落在CD边上时t的值;(2) ①点F坐标为 ;(用t的代数式表示)②用t的代数式表示点G 的坐标;(3) 如图2, 当点E 向点 B移动的同时, 矩形OBCD边BC也以12个单位每秒的速度向右平行移动, 得到线段KH, 连接GK, GH, 求△GKH的面积.初三数学第8页共8页。
2019年苏州市初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共2小题,满分130分,考试时间120分钟,注意事项:1.答题前,考生务必将自己的姓名、考点名、考场号、座位号、用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符; 2.答选择题必须用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。
一、选择题:本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题要求的。
请将选择题的答案用2B 铅笔涂在答题卡相应位置上。
1.5的相反数是( )A .15B .15-C .5D .5-2.有一组数据:2,2,4,5,7这组数据的中位数为( ) A .2B .4C .5D .73.苏州是全国重点旅游城市,2018年实现旅游总收入约为26 000 000万元,数据26 000 000用科学记数法可表示为( ) A .80.2610⨯B .82.610⨯C .62610⨯D .72.610⨯4.如图,已知直线//a b ,直线c 与直线a b ,分别交于点A B ,.若154∠=o ,则2∠=( ) A .126oB .134oC .136oD .144o5.如图,AB 为O ⊙的切线,切点为A ,连接AO BO 、,BO 与O ⊙交于点C ,延长BOa与O ⊙交于点D ,连接AD ,若36ABO ∠=o ,则ADC ∠的度数为( )A .54oB .36oC .32oD .27o6.小明5元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为( ) A .15243x x =+ B .15243x x =- C .15243x x=+ D .15243x x=- 7.若一次函数y kx b =+(k b 、为常数,且0k ≠)的图像经过点()01A -,,()11B ,,则不等式1kx b +>的解为( ) A .0x <B .0x >C .1x <D .1x >8.如图,小亮为了测量校园里教学楼AB 的高度,将测角仪CD 竖直放置在与教学楼水平距离为的地面上,若测角仪的高度为1.5m ,测得教学楼的顶部A 处的仰角为30o ,则教学楼的高度是( ) A .55.5mB .54mC .19.5mD .18m9.如图,菱形ABCD 的对角线AC ,BD 交于点O ,416AC BD ==,,将ABO V 沿点A 到点C 的方向平移,得到A B C '''V ,当点A '与点C 重合时,点A 与点B '之间的距离为( ) A .6B .8C .10D .12102AD AB ==,AD AB ⊥,过点D 作DE AD ⊥,DE 交AC 于点E ,若1DE =,则ABC V 的面积为( )DBCBA.B .4 C. D .8二、 填空:本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相应位置上。
11.计算:23a a =_________________ 12.因式分解:2x xy -=__________________13.x 的取值范围为_________________、 14.若28,3418a b a b +=+=,则a b +的值为__________________15.“七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”,图①是由边长10cm 的正方形薄板分成7块制作成的“七巧板”图②是用该“七巧板”拼成的一个“家”的图形,该“七巧板”中7块图形之一的正方形边长为_______cm (结果保留根号)16.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方形,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为_________17.如图,扇形OAB 中,90AOB ∠=︒。
P 为弧AB 上的一点,过点P 作PC OA ⊥,垂足为C ,PC 与AB 交于点D ,若2,1PD CD ==,则该扇形的半径长为___________DABC18.如图,一块含有45︒角的直角三角板,外框的一条直角边长为10cm ,三角板的外框线,则图中阴影部分的面积为_______cm (结果保留根号)三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要得计算过程,推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.(本题满分5分)计算:()222π+---20.(本题满分5分) ()152437x x x +<⎧⎪⎨+>+⎪⎩解不等式组:21.(本题满分6分)先化简,再求值:2361693x x x x -⎛⎫÷- ⎪+++⎝⎭,其中3x =.22.(本题满分6分)在一个不透明的盒子中装有4张卡片.4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是: ;(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率(请用画树状图或列表等方法求解).23.(本题满分8分)某校计划组织学生参加“书法”、“摄影”、“航模”、“围棋”四个课外兴题小組.要求每人必须参加.并且只能选择其中一个小组,为了解学生对四个课外兴趣小组的选择情況,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的扇形统计图和条形统计图(部分信息未给出).请你根据给出的信息解答下列问题:(1)求参加这次问卷调查的学生人数.并补全条形统计图(画图后请标注相应的数据);(2)________, ________;==m n(3)若某校共有1200名学生,试估计该校选择“围棋”课外兴趣小组有多少人?24.(本题满分8分)如图,ABC△中,点E在BC边上,AE AB=,将线段AC绕点A旋转到∠=∠,连接EF,EF与AC交于点GAF的位置,使得CAF BAE(1)求证:EF BC=;(2)若65∠的度数.∠=︒,求FGCACBABC∠=︒,2825.(本题满分8分) 如图,A 为反比例函数ky x=()0x >其中图像上的一点,在x 轴正半轴上有一点B ,4OB =.连接OA ,AB,且OA AB ==(1)求k 的值;(2)过点B 作BC OB ⊥,交反比例函数ky x=()0x >其中的图像于点C ,连接OC 交AB 于点D ,求ADDB的值.26.(本题满分10分)如图,AE 为O 的直径,D 是弧BC 的中点BC 与AD ,OD 分别交于点E ,F . (1)求证:DO AC ∥;(2)求证:2DE DA DC ⋅=;(3)若1tan 2CAD ∠=,求sin CDA ∠的值.27.(本题满分10分)A已知矩形ABCD 中,AB =5cm ,点P 为对角线AC 上的一点,且AP=.如图①,动点M 从点A 出发,在矩形边上沿着A B C →→的方向匀速运动(不包含点C ).设动点M 的运动时间为t (s ),APM ∆的面积为S (cm ²),S 与t 的函数关系如图②所示: (1)直接写出动点M 的运动速度为 /cm s ,BC 的长度为 cm ;(2)如图③,动点M 重新从点A 出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N 从点D 出发,在矩形边上沿着D C B →→的方向匀速运动,设动点N 的运动速度为()/v cm s .已知两动点M 、N 经过时间()x s 在线段BC 上相遇(不包含点C ),动点M 、N 相遇后立即停止运动,记此时APM DPN ∆∆与的面积为()()2212,S cm S cm . ①求动点N 运动速度()/v cm s 的取值范围;②试探究12S S ⋅是否存在最大值.若存在,求出12S S ⋅的最大值并确定运动速度时间x 的值;若不存在,请说明理由.28.(本题满分10分)如图①,抛物线2(1)y x a x a =-++-与x 轴交于A 、B 两点(点A 位于点B 的左侧),与y 轴交于点C ,已知ABC ∆的面积为6. (1)求a 的值;(2)求ABC ∆外接圆圆心的坐标;(3)如图②,P 是抛物线上一点,点Q 为射线CA 上一点,且P 、Q 两点均在第三象限内,Q 、A 是位于直线BP 同侧的不同两点,若点P 到x 轴的距离为d ,QPB ∆的面积为2d ,且PAQ AQB ∠=∠,求点Q 的坐标.①(图)PBCDAS (cm²)t (s )图O2.57.5(图①) (图②)2019年苏州市初中毕业暨升学考试试卷数学(参考答案与解析)一、选择题:本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题要求的。
请将选择题的答案用2B 铅笔涂在答题卡相应位置上。
1.【分析】考察相反数的定义,简单题型 【解答】5的相反是为5- 故选D2.【分析】考察中位数的定义,简单题型【解答】该组数据共5个数,中位数为中间的数:4 故选B3.【分析】考察科学记数法表示较大的数,简单题型 【解答】726000000 2.610=⨯ 故选D4.【分析】考察平行线的性质,简单题型 【解答】根据对顶角相等得到1354∠=∠=o 根据两直线平行,同旁内角互补得到32180∠+∠=o 所以218054126∠=-=o o o 故选A5.【分析】主要考察圆的切线性质、三角形的内角和等,中等偏易题型【解答】切线性质得到90BAO ∠=oa903654AOB ∴∠=-=o o oOD OA =Q OAD ODA ∴∠=∠ AOB OAD ODA ∠=∠+∠Q27ADC ADO ∴∠=∠=o故选D6.【分析】考察分式方程的应用,简单题型 【解答】找到等量关系为两人买的笔记本数量 15243x x ∴=+ 故选A7.【分析】考察一次函数的图像与不等式的关系,中等偏易题型 【解答】如下图图像,易得1kx b +>时,1x > 故选D8.【分析】考察30o 角的三角函数值,中等偏易题目 【解答】过D 作DE AB ⊥交AB 于E ,在Rt ADE V 中,tan30AEDE=o18m AE ∴== 18 1.519.5m AB ∴=+=故选C9.【分析】考察菱形的性质,勾股定理,中xDE BC ==CA等偏易题型【解答】由菱形的性质得28AO OC CO BO OD B O '''======, 90AOB AO B ''∠=∠=oAO B ''∴V 为直角三角形10AB '∴===故选C10.【分析】考察相似三角形的判定和性质、等腰直角三角形的高,中等题型 【解答】AB AD DE AD ∴⊥⊥, 90BAD ADE ∴∠=∠=o//AB DE ∴易证CDE CBA V :V 12DC DE BC BA ∴== 即12DC BD DC =+由题得BD = ∴解得DC =ABC V11422ABC S BC ∴=⨯=⨯=V故选B二、填空:本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相应位置上 11.【解答】5a 12.【解答】()x x y - 13.【解答】6x ≥ 14.【解答】5 15.16.【解答】82717.【解答】5 18【解答】14+【解析】如右图:过顶点A 作AB ⊥大直角三角形底边D由题意:2CD AC =∴(2CD ==2∴(()22=2S -阴影=14=+三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上,解答时应写出必要得计算过程,推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔. 19.【解答】解:321=+-原式4=20.【解答】解:由①得15x +<4x <由②得()2437x x +>+2837x x +>+ 1x ->- 1x < 1x <所以21.【解答】解:原式()233633x x x x -+-=÷++ ()23333x x x x --=÷++ ()23333x x x x -+=⋅-+ 13x =+代入3x =-原式=22.【解答】解:(1)12 (2)82123P == 答:从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是12,抽取的2张卡片标有数字之和大于4的概率为23. 23.【解答】解:(1) 参加问卷调查的学生人数为()()3020%150÷=人;(2)36,16m n ==(3)选择“围棋”课外兴趣小组的人数为()241200=192150⨯人 答:参加问卷调查的学生人数为150人,36,16m n ==,选择“围棋”课外兴趣小组的人数为192人.24.【解答】解:(1)CAF BAE ∠=∠ BAC EAF ∴∠=∠AE AB AC AF ==又,()BAC EAF SAS ∴△≌△EF BC ∴=(2)65AB AE ABC =∠=︒, 18065250BAE ∴∠=︒-︒⨯=︒ 50FAG ∴∠=︒ BAC EAF 又△≌△ 28F C ∴∠=∠=︒502878FGC ∴∠=︒+︒=︒25.【解答】解:(1)过点A 作AH OB ⊥交x 轴于点H ,交OC 于点M .4OA AB OB ===2OH ∴= 6AH ∴=()2,6A ∴12k ∴=(2)124x y x==将代入 ()4,3D 得3BC ∴=1322MH BC ==92AM ∴= AH x BC x ⊥⊥轴,轴 AH BC ∴∥ADM BDC ∴△∽△ 32AD AM BD BC ∴== 26.【解析】(1)证明:∵D 为弧BC 的中点,OD 为O 的半径 ∴OD BC ⊥又∵AB 为O 的直径 ∴90ACB ∠=︒ ∴AC OD ∥(2)证明:∵D 为弧BC 的中点 ∴CD BD = ∴DCB DAC ∠=∠ ∴DCE DAC ∆∆∽ ∴DC DEDA DC=即2DE DA DC ⋅=(3)解:∵DCE DAC ∆∆∽,1tan 2CAD ∠=∴12CD DE CE DA DC AC === 设CD =2a ,则DE =a ,4DA a = 又∵AC OD ∥ ∴AEC DEF ∆∽∴3CE AEEF DE== 所以83BC CE =又2AC CE = ∴103AB CE =即3sin sin 5CA CDA CBA AB ∠=∠== 27.【解析】(1)2/cm s ;10cm(2)①解:∵在边BC 上相遇,且不包含C 点 ∴57.515 2.5C vB v⎧⎪⎪⎨⎪≥⎪⎩<在点在点∴2/6/3cm s v cm s ≤<②如右图12()PAD CDM ABM N ABCD S S S S S S ∆∆∆+=---(N )矩形 ()()5152525751022x x ⨯-⨯-=---=15过M 点做MH ⊥AC,则12MH CM =∴112152S MH AP x =⋅=-+∴22S x =()122152S S x x ⋅=-+⋅=2430x x -+ =215225444x ⎛⎫--+ ⎪⎝⎭因为152.57.54<<,所以当154x =时,12S S ⋅取最大值2254.28.【解析】(1)解:由题意得()()1y x x a =--- 由图知:0a <所以A (,0a ),()1,0B ,()0,C a -()()112ABC S a a ∆=-⋅-=615-2x2x-5(N )34()a a =-=或舍∴3a =-(2)由(1)得A (-3,0),()1,0B ,()0,3C ∴直线AC 得解析式为:3y x =+ AC 中点坐标为33,22⎛⎫- ⎪⎝⎭∴AC 的垂直平分线为:y x =-又∵AB 的垂直平分线为:1x =- ∴1y x x =-⎧⎨=-⎩ 得11x y =-⎧⎨=⎩ABC ∆外接圆圆心的坐标(-1,1).(3)解:过点P 做PD ⊥x 轴 由题意得:PD =d ,∴12ABP S PD AB ∆=⋅=2d∵QPB ∆的面积为2d∴ABP BPQ S S ∆∆=,即A 、D 两点到PB 得距离相等 ∴AQ PB ∥设PB 直线解析式为;y x b =+过点(1,0)B ∴1y x =-∴2123y x y x x =-⎧⎨=--+⎩易得45x y =-⎧⎨=⎩ 1()0x y =⎧⎨=⎩舍 所以P (-4,-5),由题意及PAQ AQB ∠=∠ 易得:ABQ QPA ∆∆≌ ∴BQ =AP设Q (m ,-1)(0m <) ∴()221126m -+=4m =-∴Q ()4,1-。