初一数学频数分布表和频数分布直方图练习题
- 格式:doc
- 大小:337.00 KB
- 文档页数:8
七年级数学下册《直方图》练习题及答案(人教版)4.已知数据其中无理数出现的频率是()A.20%B.40%C.60%D.80%4050次的人数最多不足30次的人数有次的人数占7.如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是().A.100,55%B.100,80%C.75,55%D.75,80%8.一次数学测试,将全班45名学生的成绩(得分为整数)进行整理后分成5组,绘制了频数分布直方图(如图,每组含最小值不含最大值),通过此图读出的信息,不正确的是()A.小明同学考了70分,他的成绩划在了60﹣70组B.70﹣80分数段中共有10名同学C.如果80分及以上为优秀,本次考试的优秀率为60%D.本次考试没有50分以下的同学9.在英文词组was a sunny in park中,字母n出现的频率是()A.0.2B.0.3C.0.13D.0.2210.某次数学测验,抽取部分同学的成绩(得分为整数)整理制成频数分布直方图,如图所示.根据图示信息,下列描述不正确的是()A.共抽取了50人B.90分以上的有12人C.80分以上的所占的百分比是60%D.60.5~70.5分这一分数段的频数是12三、解答题16.市环保部门为了解城区某一天18:00时噪声污染情况,随机抽取了城区部分噪声测量点这一时刻的测量数据进行统计,把所抽取的测量数据分成A、B、C、D、E五组,并将统计结果绘制了两幅不完整的统计图表.根据以上信息解决下列问题:(1)在统计表中,m=__________,n=__________,并补全直方图;(2)扇形统计图中“E组”所对应的圆心角的度数是__________度;(3)若该校共有964名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.18.为贯彻落实习总书记关于“传承和弘扬中华优秀传统文化”的重要讲话精神,2018年5月27日我市举办了第二届湖南省青少年国学大赛永州复赛,本次比赛全市共有近200所学校4.6万名学生参加.经各校推荐报名、县区初赛选拔、市区淘汰赛的层层选拔,推选出优秀的学生参加全省的总决赛,下面是某县初赛时选手成绩的统计图表(部分信息未给出).1.A2.C3.D4.B5.D6.D7.B8.A9.A11.1512.0.313.8014.50人15. 20 0.3125.16.(1)12、6;(2)72;(3)260个17.(1)30 20% (2)72;(3)48218. 【详解】(1)解:由表可知:105120x ≤<的频数和频率分别为15、0.3 ∴本次调查的人数为:150.350÷=10500.2m ∴=÷=500.420n =⨯=故答案为0.2,20(2)解:由(1)知,20n =补全完整的频数分布直方图如右图所示;(3)解:成绩不低于120分为优秀,则本次测试的优秀率():0.40.1100+⨯%50=% 答:本次测试的优秀率是50%.。
7.4 频数分布表和频数分布直方图一.选择题1.一个容量为40的样本最大值为35,最小值为12,取组距为4,则可以分为()A.4组 B.5组 C.6组 D.7组2.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.33.通常在频率分布直方图中,用每小组对应的小矩形的面积表示该小组的组频率.因此,频率分布直方图的纵轴表示()A.B.C.D.4.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起坐次数在30~35次之间的频率是()A.0.2 B.0.17 C.0.33 D.0.145.某校随机抽查了八年级的30名女生,测试了1分钟仰卧起坐的次数,并绘制成如图的频数分布直方图(每组含前一个边界,不含后一个边界),则次数不低于42个的有()A.6人 B.8个 C.14个D.23个6.在对60个数进行整理的频数分布表中,这组的频数之和与频率之和分别为()A.60,1 B.60,60 C.1,60 D.1,17.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9 B.18 C.12 D.68.某单位在植树节派出50名员工植树造林,统计每个人植树的棵树之后,绘制成如图所示的频数分布直方图(图中分组含最低值,不含最高值),则植树7棵以上的人数占总人数的()A.40% B.70% C.76% D.96%二.填空题9.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是.10.某区从近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图.从中可知卖出的110m2~130 m2的商品房套.11.为了解某校九年级学生体能情况,随机抽查了其中35名学生,测试1分钟仰卧起坐的次数,并绘制成频数分布直方图(如图所示),那么仰卧起坐的次数在40~45的频率是.12.某校对九年级全部240名学生的血型作了调查,列出统计表,则该校九年级O型血的学生有人.组别A型B型AB型O 型频率0.40.350.10.1513.某班学生参加环保知识竞赛,已知竞赛得分都是整数.把参赛学生的成绩整理后分为6小组,画出竞赛成绩的频数分布直方图(如图所示),根据图中的信息,可得成绩高于60分的学生占全班参赛人数的百分率是.14.在1000个数据中,用适当的方法抽取50个作为样本进行统计.在频数分布表中,54.5~57.5这一组的频率为0.12,那么这1000个数据中落在54.5~57.5之间的数据约有个.15.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)201695则通话时间不超过10min的频率为.16.为了支援地震灾区同学,某校开展捐书活动,九(1)班同学积极参与,现将捐书数量绘制成频数分布直方图(如图所示),如果捐书数量在3.5﹣4.5组别的频率是0.3,那么捐书数量在4.5﹣5.5组别的人数是.三.解答题17.如图所示,某校七年级有学生400人,现抽取部分学生做引体向上的测试,成绩进行整理后分成五组,并画出频数分布直方图,已知从左到右前四个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数是25,根据已知条件回答下列问题:(1)第五小组频率是多少?(2)参加本次测试的学生总数是多少?(3)如果做20次以上为及格(含20次),估计全校七年级有多少名学生合格?18.为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.1981.19~1.29121.29~1.39a1.39~1.4910(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.19.随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样实验:即在同一条件下,被抽样的该型号汽车,在油耗1L的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:(注:记A为12~12.5,B为12.5~13,C为13~13.5,D为13.5~14,E为14~14.5)请依据统计结果回答以下问题:(1)试求进行该试验的车辆数;(2)请补全频数分布直方图;(3)若该市有这种型号的汽车约900辆(不考虑其他因素),请利用上述统计数据初步预测,该市约有多少辆该型号的汽车,在耗油1L的情况下可以行驶13km 以上?20.为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:课外阅读时间(单位:小时)频数(人数)频率0<t≤220.042<t≤430.064<t≤6150.306<t≤8a0.50t>85b请根据图表信息回答下列问题:(1)频数分布表中的a=,b=;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?21.某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.22.一次测试九年级若干名学生1分钟跳绳次数的频数分布直方图如图.请根据这个直方图回答下面的问题:(1)在频数分布直方图上画出频数分布折线图,并求自左至右最后一组的频率;(2)若图中自左至右各组的跳绳平均次数分别为137次,146次,156次,164次,177次.小丽按以下方法计算参加测试学生跳绳次数的平均数是:(137+146+156+164+177)÷5=156.请你判断小丽的算式是否正确,若不正确,写出正确的算式(只列式不计算);(3)如果测试所得数据的中位数是160次,那么测试次数为160次的学生至少有多少人?参考答案与解析一.选择题1.一个容量为40的样本最大值为35,最小值为12,取组距为4,则可以分为()A.4组 B.5组 C.6组 D.7组【分析】根据组数=(最大值﹣最小值)÷组距计算,注意小数部分要进位.【解答】解:在样本数据中最大值为35,最小值为12,它们的差是35﹣12=23,已知组距为4,那么由于23÷4=5.75,故可以分成6组,故选:C.【点评】本题考查的是组数的计算,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.2.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加书法兴趣小组的频率是()A.0.1 B.0.15 C.0.2 D.0.3【分析】根据频率分布直方图可以知道书法兴趣小组的频数,然后除以总人数即可求出加绘画兴趣小组的频率.【解答】解:∵根据频率分布直方图知道书法兴趣小组的频数为8,∴参加书法兴趣小组的频率是8÷40=0.2.故选C.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3.通常在频率分布直方图中,用每小组对应的小矩形的面积表示该小组的组频率.因此,频率分布直方图的纵轴表示()A.B.C.D.【分析】根据频率分布直方图中纵横坐标的意义,易得长方形的面积为长乘宽,即组距×频率/组距=频率;即答案.【解答】解:在频率直方图中纵坐标表示频率/组距,横坐标表示组距,则小长方形的高表示频率/组距,小长方形的长表示组距,则长方形的面积为长乘宽,即组距×频率/组距=频率;故选:B.【点评】本题考查频率直方图中横纵坐标表示的意义.4.某校为了了解九年级学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起坐次数在30~35次之间的频率是()A.0.2 B.0.17 C.0.33 D.0.14【分析】根据频率=频数÷总数,代入数计算即可.【解答】解:利用条形图可得出:仰卧起坐次数在30~35次的频数为5,则仰卧起坐次数在30~35次的频率为:5÷30≈0.17.故选B.【点评】此题主要考查了看频数分布直方图,中考中经常出现,考查同学们分析图形的能力.5.某校随机抽查了八年级的30名女生,测试了1分钟仰卧起坐的次数,并绘制成如图的频数分布直方图(每组含前一个边界,不含后一个边界),则次数不低于42个的有()A.6人 B.8个 C.14个D.23个【分析】由频数分布直方图可知仰卧起坐的次数x在42≤x<46的有8人,46≤x<50的有6人,可得答案.【解答】解:由频数分布直方图可知,次数不低于42个的有8+6=14(人),故选:C.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.6.在对60个数进行整理的频数分布表中,这组的频数之和与频率之和分别为()A.60,1 B.60,60 C.1,60 D.1,1【分析】根据频数和频率的定义求解.【解答】解:在对60个数进行整理的频数分布表中,这组的频数之和为60;频率之和为1.故选A.【点评】本题考查了频数(率)分别表:在统计数据时,经常把数据按照不同的范围分成几个组,分成的组的个数称为组数,每一组两个端点的差称为组距,称这样画出的统计图表为频数分布表.7.某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9 B.18 C.12 D.6【分析】由频数分布直方图上的小长方形的高为频数,即高之和为总数,知道高度比,即可算出个范围的频数,即各个范围的人数.【解答】解:由图形可知,从左到右的小矩形的高度比是1:3:6:4:2,且总数为48,即各范围的人数分别为3,9,18,12,6.所以分数在70.5~80.5之间的人数是18人.故选B.【点评】本题主要考查学生对频率直方图的认识和对频数的计算.8.某单位在植树节派出50名员工植树造林,统计每个人植树的棵树之后,绘制成如图所示的频数分布直方图(图中分组含最低值,不含最高值),则植树7棵以上的人数占总人数的()A.40% B.70% C.76% D.96%【分析】求得植树7棵以上的人数,然后利用百分比的意义求解.【解答】解:植树7棵以上的人数是20+15+3=38(人),则植树7棵以上的人数占总人数百分比是=76%.故选C.【点评】本题考查读频数分布直方图的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.二.填空题9.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是0.3.【分析】根据频率分布直方图可以知道绘画兴趣小组的频数,然后除以总人数即可求出加绘画兴趣小组的频率.【解答】解:∵根据频率分布直方图知道绘画兴趣小组的频数为12,∴参加绘画兴趣小组的频率是12÷40=0.3.故答案为0.3.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.10.某区从近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图.从中可知卖出的110m2~130 m2的商品房150套.【分析】根据频数直方图的意义,其他组的商品房的频数之和,又有总数为1000,计算可得110m2到130 m2的商品房的频数.【解答】解:由频数直方图可以看出:110m2到130 m2的商品房的频数为1000﹣50﹣300﹣450﹣50=150套.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.11.为了解某校九年级学生体能情况,随机抽查了其中35名学生,测试1分钟仰卧起坐的次数,并绘制成频数分布直方图(如图所示),那么仰卧起坐的次数在40~45的频率是.【分析】根据频率=频数÷总数,代入数计算即可.【解答】解:利用频数分布直方图可得出:仰卧起坐次数在40~45次的频数为20,则仰卧起坐次数在40~45次的频率为:20÷35=.故答案为:.【点评】此题主要考查了看频数分布直方图,频率是指每个对象出现的次数与总次数的比值(或者百分比).24.某校对九年级全部240名学生的血型作了调查,列出统计表,则该校九年级O型血的学生有36人.组别A型B型AB型O 型频率0.40.350.10.15【分析】根据该校九年级O型血的学生的频率为0.15,即可得出该校九年级O 型血的学生数.【解答】解:该校九年级O型血的学生有:240×0.15=36人,故答案为:36.【点评】本题主要考查了频数与频率,解题时注意:频率是指每个对象出现的次数与总次数的比值(或者百分比).13.某班学生参加环保知识竞赛,已知竞赛得分都是整数.把参赛学生的成绩整理后分为6小组,画出竞赛成绩的频数分布直方图(如图所示),根据图中的信息,可得成绩高于60分的学生占全班参赛人数的百分率是80%.【分析】根据频数分布直方图可得全班的总人数及成绩高于60分的学生,从而得出答案.【解答】解:∵全班的总人数为3+6+12+11+7+6=45人,其中成绩高于60分的学生有12+11+7+6=36人,∴成绩高于60分的学生占全班参赛人数的百分率是×100%=80%,故答案为:80%.【点评】本题主要考查频数分布直方图,根据频数分布直方图明确各分组人数是解题的关键.14.在1000个数据中,用适当的方法抽取50个作为样本进行统计.在频数分布表中,54.5~57.5这一组的频率为0.12,那么这1000个数据中落在54.5~57.5之间的数据约有120个.【分析】根据频率=频数÷样本总数解答即可.【解答】解:用样本估计总体:在频数分布表中,54.5~57.5这一组的频率是0.12,那么估计总体数据落在54.5~57.5这一组的频率同样是0.12,那么其大约有1000×0.12=120个.故答案为:120.【点评】本题考查频率、频数的关系:频率=.15.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)201695则通话时间不超过10min的频率为.【分析】求出第一、二组与总次数的比值即可求解.【解答】解:通话时间不超过10min的频率为==.故答案是:.【点评】本题考查了频率的计算公式,理解频率公式:频率=是关键.16.为了支援地震灾区同学,某校开展捐书活动,九(1)班同学积极参与,现将捐书数量绘制成频数分布直方图(如图所示),如果捐书数量在3.5﹣4.5组别的频率是0.3,那么捐书数量在4.5﹣5.5组别的人数是16.【分析】根据捐书数量在3.5﹣4.5组别的频数是12、频率是0.3,由频率=频数÷总数求得总人数,根据频数之和等于总数可得答案.【解答】解:∵捐书数量在3.5﹣4.5组别的频数是12、频率是0.3,∴捐书的总人数为12÷0.3=40人,∴捐书数量在4.5﹣5.5组别的人数是40﹣(4+12+8)=16,故答案为:16.【点评】本题主要考查频数(率)分布表,掌握频率=频数÷总数是解题的关键.三.解答题17.如图所示,某校七年级有学生400人,现抽取部分学生做引体向上的测试,成绩进行整理后分成五组,并画出频数分布直方图,已知从左到右前四个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数是25,根据已知条件回答下列问题:(1)第五小组频率是多少?(2)参加本次测试的学生总数是多少?(3)如果做20次以上为及格(含20次),估计全校七年级有多少名学生合格?【分析】(1)根据频率之和为1,即可解决问题;(2)根据百分比=,计算即可;(3)用样本估计作图的思想解决问题即可;【解答】解:(1)第五小组频率=1﹣0.05﹣0.15﹣0.25﹣0.30=0.25.(2)参加本次测试的学生总数=25÷0.25=100(人).(3)第三小组的频数为25,第四小组的频数为30,第五小组人数为25,估计全校七年级有,400×=320名学生合格.【点评】本题考查频数分布直方图、样本估计总体等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.18.为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表组别(m)频数1.09~1.1981.19~1.29121.29~1.39a1.39~1.4910(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.【分析】(1)利用总人数50减去其它组的人数即可求得a的值;(2)利用总人数乘以对应的比例即可求解.【解答】解:(1)a=50﹣8﹣12﹣10=20,;(2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×=300(人).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了样本估计总体.19.随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样实验:即在同一条件下,被抽样的该型号汽车,在油耗1L的情况下,所行驶的路程(单位:km)进行统计分析,结果如图所示:(注:记A为12~12.5,B为12.5~13,C为13~13.5,D为13.5~14,E为14~14.5)请依据统计结果回答以下问题:(1)试求进行该试验的车辆数;(2)请补全频数分布直方图;(3)若该市有这种型号的汽车约900辆(不考虑其他因素),请利用上述统计数据初步预测,该市约有多少辆该型号的汽车,在耗油1L的情况下可以行驶13km 以上?【分析】(1)根据C所占的百分比以及频数,即可得到进行该试验的车辆数;(2)根据B的百分比,计算得到B的频数,进而得到D的频数,据此补全频数分布直方图;(3)根据C,D,E所占的百分比之和乘上该市这种型号的汽车的总数,即可得到结果.【解答】解:(1)进行该试验的车辆数为:9÷30%=30(辆),(2)B:20%×30=6(辆),D:30﹣2﹣6﹣9﹣4=9(辆),补全频数分布直方图如下:(3)900×=660(辆),答:该市约有660辆该型号的汽车,在耗油1L的情况下可以行驶13km以上.【点评】本题主要考查了频数分布直方图以及扇形统计图的运用,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:课外阅读时间(单位:小时)频数(人数)频率0<t≤220.042<t≤430.064<t≤6150.306<t≤8a0.50t>85b请根据图表信息回答下列问题:(1)频数分布表中的a=25,b=0.10;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?【分析】(1)由阅读时间为0<t≤2的频数除以频率求出总人数,确定出a与b 的值即可;(2)补全条形统计图即可;(3)由阅读时间在8小时以上的百分比乘以2000即可得到结果.【解答】解:(1)根据题意得:2÷0.04=50(人),则a=50﹣(2+3+15+5)=25;b=5÷50=0.10;故答案为:25;0.10;(2)阅读时间为6<t≤8的学生有25人,补全条形统计图,如图所示:(3)根据题意得:2000×0.10=200(人),则该校2000名学生中评为“阅读之星”的有200人.【点评】此题考查了频率(数)分布表,条形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.21.某校八年级学生会为了解本年级600名学生的睡眠情况,将同学们某天的睡眠时长t(小时)分为A,B,C,D,E(A:9≤t≤24;B:8≤t<9;C:7≤t<8;D:6≤t<7;E:0≤t<6)五个选项,进行了一次问卷调查,随机抽取n名同学的调查问卷并进行了整理,绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该年级600名学生中睡眠时长不足7小时的人数.【分析】(1)将各频数相加即可;(2)先计算不足7小时(即最后两组:D和E组),两组的百分比,与总人数600的积就是结果.【解答】解:(1)n=12+24+15+6+3=60;(2)(6+3)÷60×600=90,答:估计该年级600名学生中睡眠时长不足7小时的人数为90人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.一次测试九年级若干名学生1分钟跳绳次数的频数分布直方图如图.请根据这个直方图回答下面的问题:(1)在频数分布直方图上画出频数分布折线图,并求自左至右最后一组的频率;(2)若图中自左至右各组的跳绳平均次数分别为137次,146次,156次,164次,177次.小丽按以下方法计算参加测试学生跳绳次数的平均数是:(137+146+156+164+177)÷5=156.请你判断小丽的算式是否正确,若不正确,写出正确的算式(只列式不计算);(3)如果测试所得数据的中位数是160次,那么测试次数为160次的学生至少有多少人?【分析】(1)先从图中求出总人数为4+6+8+12+20=50人,再用最后一组的人数除以总人数即可得出答案;(2)利用加权平均数的概念可知,小丽的算法是错误的;(3)根据第25,26个数据的平均数是中位数和第四组前一个边界值,即可求出答案.【解答】解:(1)从图中可知,总人数为4+6+8+12+20=50人,自左至右最后一组的频率=12÷50=0.24;(2)不正确.正确的算法:(137×4+146×6+156×8+164×20+177×12)÷50;(3)∵组距为10,∴第四组前一个边界值为160,又∵第一、二、三组的频数和为18,第25,26个数据的平均数是中位数,∴50÷2﹣18+1=8,即次数为160次的学生至少有8人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.。
7.4 频数分布表与频数分布直方图同步培优讲练综合1.组距:把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围).2.频数分布表:把各个组别中相应的频数分布用表格的形式表示出来,所得表格就是频数分布表.频数分布表能清楚地反映一组数据的大小分布情况.将一批数据分组,一般数据越多,分的组也越多.当数据在100个以内时,按照数据的多少,常分成5~12组.在分组时,要灵活确定组距,使所分组数合适,一般组数为的整数部分+1.组距(2)制作频数分布表的一般步骤:①计算最大值与最小值的差;②决定组距和组数;③确定分点;④列频数分布表.3.频数分布直方图根据频数分布表,用横轴表示各分组数据、纵轴表示各组数据的频数,绘制条形统计图.这样的条形统计图,直观地呈现了频数的分布特征和变化规律,称为频数分布直方图.4.画频数分布直方图的步骤(1)计算最大值与最小值的差;(2)决定组距与组数;(3)列频数分布表;(4)画频数分布直方图.5. 频数分布直方图与条形图的联系与区别(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;频数分布直方图是特殊的条形统计图.(2)区别:①由于分组数据具有连续性,频数分布直方图中各“条形”之间通常是连续排列,中间没有间隙,而条形图中各“条形”是分开排列的,中间有一定的间隙;②条形统计图用横向指标表示考察对象的类别,用纵向指标表示不同对象的数量. 频数分布直方图横向指标表示考察对象数据的变化范围,用纵向指标表示相应范围内数据的频数.一、组距【例1】一个样本最大值为143,最小值为50,取组距为10,则可以分成 组.【例2】一组数据的最大值与最小值的差为2.8 cm,若取组距为0.4 cm,应将该数据分为 组.二、 频数分布直方图【例1】某校为了解学生参与“凤城悦读”的情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t (单位:)min ,然后利用所得数据绘制成如图不完整的统计图表: 课外阅读时间频数分布表:根据图表中提供的信息,回答下列问题: (1)a = ,b = ; (2)将频数分布直方图补充完整;(3)若全校有1200名学生,估计该校有多少名学生平均每天的课外阅读时间不少于50min ?【例2】小文同学统计了他所在小区部分居民每天微信阅读的时间,绘制了直方图.得出了如下结论:①样本中每天阅读微信的时间没人超过1小时,由此可以断定这个小区的居民每天阅读微信时间超过1小时的很少;②样本中每天微信阅读不足20分钟的人数大约占16%;③选取样本的样本容量是60;④估计所有居民每天微信阅读35分钟以上的人数大约占总居民数的一半左右.其中正确的是()A.①②③B.①②④C.①③④D.②③④【例3】为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②三、综合应用(与条形统计图、扇形图的结合)【例1】为了了解春节晚会群众喜爱节目类型(“歌舞类”、“语言类”、“戏曲类”、“其他”)情况,对某地区的部分群众的喜爱节目类型做了调查,其中每人只能填选一项,现根据调查情况绘制了如图直方图和扇形统计图.请根据图中信息解答下列问题:(1)此次调查中一共调查了多少人?(2)求所调查的群众中,喜爱“戏曲”的人数,并补全直方图的空缺部分;(3)若该地区共有人口360万人,估计该地区喜爱“语言类”约有多少人.【例2】某校为了解九年级学生休息日时每天学习的时长情况,随机抽取了n名九年级学生进行调查,据调查每名学生休息日时每天学习时长都少于5小时.该校将所收集的数据分组整理,绘制了如图所示的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)在这次调查活动中,采取的调查方式是.(填写“全面调查”或“抽样调查”)(2)求n的值.(3)若该校九年级共有450名学生,请估计该校休息日时每天学习时长在3≤t<4范围的学生人数.3≤t<43≤t<4【例3】为了得到一种零件的加工精度,从中抽出40个进行检测,其尺寸数据如下(单位:cm):161 165 164 166 160 158 163162 168 159 147 170 167 151164 159 152 159 149 172 162157 162 169 156 164 163 157163 165 173 159 157 169 165154 153 163 168 169将数据适当分组,并绘制相应的频数分布直方图,图中所反映出这种零件的尺寸在哪个范围内的最多?1.某校组织部分学生参加安全知识竞赛,并将成绩整理后绘制成频数分布直方图,图中从左至右前四组的百分比分别是4%,12%,40%,28%,第五组的频数是8.则:①参加本次竞赛的学生共有100人;②第五组的百分比为16%;③成绩在70-80分的人数最多;④80分以上的学生有14人.其中正确的有( )A.1个B.2个C.3个D.4个2.某校在举办的“优秀小作文”评比活动中,共征集到小作文若干篇,对小作文评比的分数(分数均为整数)整理后,画出如图所示的频数分布直方图.已知从左到右5个小长方形的高的比为1∶3∶7∶6∶3,如果分数大于或等于80分以上的小作文有72篇,那么这次评比中共征集到的小作文有篇.3、三台县某中学“五.四”青年节举行了“班班有歌声”歌咏比赛活动.比赛聘请了10位教师和10位学生担任评委,其中甲班的得分情况如统计表和统计图.老师评委评分统计表:学生评委评分折线统计图师生评委评分频数分布直方图(1)补全频数分布直方图.(2)计分办法规定:老师评委、学生评委的评分各去掉一个最高分、一个最低分,并且按教师、学生各占60%、40%的方法计算各班最后得分,知甲班最后得分94.4分,试求统计表中的x.4、扬州市“五个一百工程”在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如下不完整的频数分布表和频数分布直方图.每天课外阅读时间t/h 频数频率0<t≤0.5 240.5<t≤1 36 0.31<t≤1.5 0.41.5<t≤2 12 b合计 a 1根据以上信息,回答下列问题:(1)表中a= ,b= ;(2)请补全频数分布直方图;(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1h的人数5、为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩的分布情况进行处理分析,制成如下图表(成绩得分均为整数):组别成绩分组频数A 47.5-59.5 2B 59.5-71.5 4C 71.5-83.5 aD 83.5-95.5 10E 95.5-107.5 bF 107.5-120 6图7-4-7根据图表中提供的信息解答下列问题:(1)在频数分布表中,a= ,b= ;在扇形统计图中,m= ,n= .(2)补全频数分布直方图.(3)已知全区八年级共有200个班(平均每班有40人),用这份试卷进行检测,108分及以上为优秀,预计优秀的人数约为人,72分及以上为及格,预计及格的人数约为人.。
第十章数据的收集、整理与描述10.2直方图基础过关全练知识点频数分布直方图1.(2022浙江金华中考)观察如图所示的频数分布直方图,其中99.5~124.5这一组的频数为( )20名学生每分钟跳绳次数的频数分布直方图A.5B.6C.7D.82.【新独家原创】“安全重于泰山,生命高于一切!”某校为强化师生安全意识,组织了安全知识竞赛活动.七年级(1)班将安全知识竞赛的成绩整理后绘制成直方图(每一组含前一个边界值,不含后一个边界值),图中从左至右前四组的百分比分别是4%、12%、40%、28%,第五组的频数是8,下列结论错误的是( )A.80分及以上的学生有14名B.该班有50名同学参赛C.成绩在70~80分的人数最多D.第五组的百分比为16%3.【教材变式·P150T1变式】小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了如图所示的频数分布直方图(每一组含前一个边界值,不含后一个边界值).根据图中信息,下列说法错误的是( )A.这栋居民楼共有居民125人B.每周使用手机支付在28~35次的人数最多的人每周使用手机支付在35~42次C.有15D.每周使用手机支付少于21次的有15人4.(2021重庆长寿期末)在一个样本中有50个数据,它们分别落在5个组内,已知第一、二、三、四、五组数据的个数分别为3,9,17,x,6,则第四组的频数为.5.【主题教育·中华优秀传统文化】【新独家原创】汉字是世界上使用时间最久、范围最广、人数最多的文字之一,汉字的创制和应用不仅推进了中华文化的发展,还对世界文化的发展产生了深远的影响.某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.6.(2022福建厦门九中期末)新修订的《北京市生活垃圾管理条例》于2020年5月1日正式施行.新修订的分类标准将生活垃圾分为厨余垃圾、有害垃圾、其他垃圾和可回收物四类,为了促使居民更好地了解垃圾分类知识,小明所在的小区随机抽取了50名居民进行线上垃圾分类知识测试.将参加测试的居民的成绩进行收集、整理,绘制成不完整的频数分布表和频数分布直方图.a.线上垃圾分类知识测试成绩频数分布表如下:b.线上垃圾分类知识测试成绩频数分布直方图如下:c.成绩在80≤x<90这一组的成绩分别为80,81,82,83,83,85,86,86,87,88,88,89.根据以上信息,回答下列问题:(1)本次抽样调查的样本容量为,表中m的值为;(2)请补全频数分布直方图;(3)小明居住的社区大约有居民2 000人,若测试成绩为80分及以上为良好,那么估计小明所在的社区成绩良好的人数为; (4)若给测试成绩的前十五名颁发“垃圾分类知识小达人”奖章,已知居民A的得分为88分,请问居民A是否可以领到“垃圾分类知识小达人”奖章?能力提升全练7.(2021上海中考,4,★★☆)商店准备确定一种包装袋来包装大米,经市场调查后,作出如图所示的统计图,请问选择什么样的包装最合适( )A.2 kg/包B.3 kg/包C.4 kg/包D.5 kg/包8.(2020浙江温州中考,14,★☆☆)某养猪场对200头生猪的质量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5 kg及以上的生猪有头.9.【主题教育·生命安全与健康】(2022内蒙古包头中考,20,★★☆)2022年3月28日是第27个全国中小学生安全教育日.某校为调查本校学生对安全知识的了解情况,从全校学生中随机抽取若干名学生进行测试,测试后发现所有测试的学生成绩均不低于50分.将全部测试成绩x(单位:分)进行整理后分为五组(50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100),并绘制成如下的频数直方图.测试成绩频数直方图请根据所给信息,解答下列问题:(1)在这次调查中,一共抽取了名学生;(2)若测试成绩为80分及以上为优秀,请你估计全校960名学生对安全知识的了解情况为优秀的学生人数;(3)为了进一步做好学生安全教育工作,根据调查结果,请你为学校提一条合理化建议.素养探究全练10.【数据观念】(2022浙江温州中考)为了解某校400名学生在校午餐所需的时间,抽查了20名学生在校午餐所花的时间,由图示分组信息得:A ,C ,B ,B ,C ,C ,C ,A ,B ,C ,C ,C ,D ,B ,C ,C ,C ,E ,C ,C.某校被抽查的20名学生在校午餐所花时间的频数表(1)请填写频数表,并估计这400名学生午餐所花时间在C 组的人数; (2)在既考虑学生午餐用时需求,又考虑食堂运行效率的情况下,校方准备在15分钟,20分钟,25分钟,30分钟中选择一个作为午餐时间,你认为应选择几分钟为宜?说明理由.分组信息A 组:5<x ≤10B 组:10<x ≤15C 组:15<x ≤20D 组:20<x ≤25E 组:25<x ≤30注:x (分钟)为午餐时间!答案全解全析基础过关全练1.D由直方图可得,99.5~124.5这一组的频数是20-3-5-4=8,故选D.2.A该班参赛的学生有8÷(1-4%-12%-40%-28%)=50(名),故选项B 正确;80分及以上的学生有50×28%+8=22(名),故选项A错误;成绩在70~80分的人数最多,故选项C正确;第五组的百分比为8÷50×100%=16%,故选项D正确.故选A.3.D3+10+15+22+30+25+20=125(人),所以这栋居民楼共有居民125人,选项A正确;从题中频数分布直方图上可以看出,每周使用手机支付在28~35次的人数最多,选项B正确;每周使用手机支付在35~42次的人数所占的比例为25125=15,选项C正确;每周使用手机支付少于21次的有3+10+15=28(人),选项D错误.故选D.4.答案15解析由各组频数之和等于样本容量可得3+9+17+x+6=50,解得x=15,故答案为15.5.答案90解析由直方图可得,成绩为“优良”(80分及以上)的学生有60+30=90(人),故答案为90.6.解析(1)由题意可得,本次抽样调查的样本容量为50,表中m的值为50-3-9-12-8=18.(2)补全的频数分布直方图如图所示.=800(人).(3)2 000×12+850故估计小明所在的社区成绩良好的人数为800.(4)由题意可得,居民A是第10名或者第11名,故居民A可以领到“垃圾分类知识小达人”奖章.能力提升全练7.A由题图知1.5~2.5这组的人数最多,因此取1.5~2.5范围内的数据2(kg/包),故选A.8.答案140解析由频数直方图可得,质量在77.5 kg及以上的生猪有90+30+20=140(头).9.解析(1)4+6+10+12+8=40(名).故答案为40.(2)960×12+8=480(人),40故优秀的学生人数约为480.(3)通过多种形式,提高安全意识,结合校内、校外具体活动,提高避险能力(答案不唯一).素养探究全练10.解析(1)频数表填写如表所示.某校被抽查的20名学生在校午餐所花时间的频数表正正12×400=240(名).20∴估计这400名学生午餐所花时间在C组的有240名.(2)答案不唯一,如:选择20分钟,有18人能按时完成用餐,占比90%,可以鼓励最后两位同学适当加快用餐速度.。
《频数分布表和频数分布直方图》课后练习一、选择题:1. 一个容量为80的样本最大值为141,最小值为50,取组距为10, 则可以分成( ).A. 10 组B. 9 组C. 8 组D. 7 组2. 已知在一个样本中,50 个数据分别落在5 个组内, 第一、二、三、五组数据频数分别为2、8、15、5,则第四组数据的频数和频率分别为( )A.25 .50%B. 20 。
50%C. 20.40%D.25.40%3. 下列说法正确的是( )A. 样本的数据个数等于频数之和B. 扇形统计图可以告诉我们各部分的数量分别是多少C. 如果一组数据可以用扇形统计图表示,那么它一定可以用频数分布直方图表示•D. 将频数分布直方图中小长方形上面一边的一个端点顺次连结起来, 就可以得到频数折线图.4. 在1000个数据中,用适当的方法抽取50 个作为样本进行统计,频数分布表中54.5~57.5 这一组的频率为0.12,那么估计总体数据落在54.5~57.5 之间的约有( )A. 120 个B. 60 个C. 12 个D. 6 个5. 在样本的频数分布直方图中,有11个小长方形,若中间一个长方形的面积等于其他10个小长方形面积的和的四分之一,且样本数据有160个,则中间一组的频数为( )A. 0.2B. 32C. 0.25D. 40二、填空题:6. 对某班同学的身高进行统计( 单位:厘米),频数分布表中165.5~170.5 这一组学生人数是12,频率为0.25,则该班共有_____ 名同学.7. 为了帮助班上的两名贫困学生解决经济困难,班上的20 名学生捐出了息的零化钱,他们捐款数如下:( 单位:元) 19,20,25,30,24,23,25, 29,27,27,28,28,26,27,21,30,20,19,22,20. 班主任老师准备将这组数据制成频数分布直方图,以表彰他们的爱心. 制图时先计算最大值与最小值的差是___,若取组距为2,则应分成_______ 组; 若第一组的起点定为18.5. 则在26.5~28.5 范围内的频数为三.解答题:8.2003年中考结束后,某市从参加中考的12000名学生中抽取200名学生的数学成绩(考生得分均为整数,满分120分)进行统计,评估数学考试情况,经过整理得到如下频数分布直方图,请回答下列问题:(1)此次抽样调查的样本容量是____ ;(2)补全频数分布直方图⑶若成绩在72分以上(含72分) 为及格,请你评估该市考生数学成绩的及格率与数学考试及格人数。
6.5 频数直方图知识点1频数直方图1.频数直方图:由若干个宽等于组距,面积表示每一组频数的长方形组成的统计图叫做频数直方图,简称直方图.2.频数直方图的结构:由横轴、纵轴、条形图三部分组成.横柚表示分组情况,纵轴表示频数,条形图中每一个条形是立于横轴上的一个长方形,长方形的宽等于组距,高度对应频数.1.在对样本数据进行分组统计时,若第一组的组别为57.5~62.5,则这一组的组中值是________.知识点2绘制频数直方图作频数直方图的步骤:1.列出频数表;2.画具有相同原点,横、纵两条互相垂直的数轴,分别表示各组别和相应的频数.然后分别以横轴上每一组的两边界点为端点的线段为底边,作高为相应频数的长方形,就得到所求的频数直方图.2.某中学为了了解本校学生的身体发育情况,对同年龄的40名女生的身高进行了测量,结果如下(数据均为整数,单位:cm):168,160,157,161,158,153,158,164,158,163,158,157,167,154,159,166,159,156,162,158,159,160,164,164,170,163,162,154,151,146,151,160,165,158,149,157,162,159,165,157.请将上述的数据整理后,列出频数表,画出频数直方图,并根据所画的直方图说明:大部分女生处于哪个身高段?身高的整体分布情况如何?探究学会从频数直方图中获取相关信息在一次体育测试中,七年级若干名学生1分钟跳绳次数的频数直方图如图6-5-1所示.请根据这个直方图求参加测试的总人数以及自左至右最后一组的频率.图6-5-1[反思] 如果从收集的数据出发,作出频数直方图需要经过哪些步骤?一、选择题1.在频数直方图中,各小长方形的宽等于( )A.频数B.频率C.所有数据中最大值与最小值的差D.组距2.对某班60名同学的一次数学测验成绩进行统计,如果频数直方图中80.5~90.5分这一组的频数是18,那么这个班的学生这次数学测验成绩在80.5~90.5分之间的频率是( ) A.18 B.0.4C.0.3 D.0.353.2016·温州图6-5-2是七年级(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是( )图6-5-2A.2~4小时B.4~6小时C.6~8小时D.8~10小时4.某校为了解学生的身体素质情况,对七年级(2)班的50名学生进行了立定跳远、铅球、100米短跑三个项目的测试,每个项目满分为10分,图6-5-3所示的是将该班学生所得的三项成绩(成绩均为整数)之和进行整理后,分成5组画出的频数直方图.已知从左到右前4个小组的频率分别为0.02,0.1,0.12,0.46.则下列说法中,正确的是( )①学生成绩大于或等于27分的有15人;②第四小组的人数最多;③第3名的学生在第四小组(22.5~26.5)内.A.①②B.②③C.①③D.①②③图6-5-3二、填空题5.某校对七年级学生进行了一次数学应用问题小测验,如图6-5-4所示是将(1)班60名学生的成绩(分数为整数)进行整理后,分成5组画出的频数直方图.已知从左至右4个小组的频率分别是0.05,0.15,0.35,0.30,那么在这次测试中成绩优秀(分数大于或等于80分为优秀)的有________人.图6-5-4三、解答题6.某校举行电脑设计作品比赛,各班派学生代表参加.现将所有比赛成绩(得分取整数,满分为100分)进行处理后分成五组,并绘制了频数直方图.请结合图6-5-5中提供的信息,解答下列问题:图6-5-5(1)参加比赛的学生的总人数是多少?(2)80.5~90.5这一分数段的频数、频率分别是多少?(3)根据统计图,请你也提出一个问题,并做出回答.7.2015·台州某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:时)进行分组整理,并绘制了如图6-5-6所示的不完整的频数直方图和扇形统计图.图6-5-6根据图中提供的信息,解答下列问题:(1)补全频数直方图;(2)求扇形统计图中m的值和E组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不少于6小时的人数.8.2016·无锡某校为了解全校学生上学期参加社区活动的情况,学校随机调查了本校50名学生参加社区活动的次数,并将调查所得的数据整理如下:参加社区活动次数的频数、频率分布表图6-5-7根据以上图表信息,解答下列问题:(1)表中的a=________,b=________.(2)请把频数直方图补充完整.(画图后请标注相应的数据)(3)若该校共有1200名学生,请估计该校在上学期参加社区活动超过6次的学生有多少人.某社区为了进一步提高居民珍惜水、保护水和水忧患意识,提倡节约用水,从本社区5000户家庭中随机抽取100户,调查他们家庭每月的平均用水量,并将调查的结果绘制成如下的两幅尚不完整的统计图表:图6-5-8用户月用水量频数分布表(1)在频数表中:m=________,n=________;(2)根据题中数据补全频数直方图;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社区用户中约有多少户家庭能够全部享受基本价格?详解详析教材的地位和作用频数直方图是条形统计图的延伸,是数形结合思想在实际生活中的具体应用教学目标知识与技能在现实情境中,体会数据分布情况;通过绘制频数表,绘制出频数直方图;会运用频数直方图解决简单的实际问题过程与方法通过经历调查、统计、分析等活动,拓展学生的实践能力与合作意识.经历收集、处理数据的过程,进一步了解频数与频率在实际生活中的应用.通过绘图,进一步掌握数形结合的思想方法情感、态度与价值观通过学习,培养学生提出问题,大胆设计,探索与解决问题的能力.能根据数据处理的结果,做出合理的判断和预测,从而解决实际问题,并在这一过程中体会统计对决策的作用教学重点难点重点绘制频数直方图难点用频数直方图解决实际问题易错点由于对频数直方图的概念掌握不牢,导致频率计算错误【预习效果检测】1.[答案] 602.[解析] 由于有40个数据,最小的数据为146 cm,最大的数据为170 cm,差为24 cm,可将数据分成5组,整理数据列出频数表,画出频数直方图,可从总体上把握数据的分布情况.解:列频数表如下:身高x(cm)划记频数146≤x<151 2151≤x<156正 5156≤x<161正正正18161≤x<166正正11166≤x<171 4观察频数直方图可知,大部分女生身高处于156 cm到166 cm之间,占抽查人数的72.5%,低于156 cm和高于166 cm(包括166 cm)的女生比较少,分别占17.5%和10%.【重难互动探究】例[解析] 从频数直方图中获取信息,并结合信息加以评价,解决相关问题.解:参加测试的总人数为50,自左至右最后一组的频率为12÷50=0.24.【课堂总结反思】[反思] 需要经过的步骤为:(1)分组;(2)划记;(3)编制频数表;(4)作出频数直方图.【作业高效训练】[课堂达标]1.D2.[解析] C 频率等于18÷60=0.3.故选C.3.B4.[解析] A 根据公式:频率=频数样本容量即可计算出各组的人数.即第一组人数为50×0.02=1;第二组人数为50×0.1=5;第三组人数为50×0.12=6;第四组人数为50×0.46=23;第五组人数为50×(1-0.02-0.1-0.12-0.46)=15.所以学生成绩大于或等于27分的有15人,第四小组的人数最多,第3名的学生在第五小组.5.[答案] 27[解析] 由于各小组频率之和等于1,所以89.5~99.5分数段的频率等于0.15,所以优秀人数为60×(0.30+0.15)=27.6.解:(1)参赛学生的总人数为4+12+20+10+6=52.(2)80.5~90.5这一分数段的频数为10,频率为5 26 .(3)答案不唯一,所提问题举例如下:①90.5~100.5这一分数段内的学生人数与50.5~60.5这一分数段内的学生人数哪一个多?答:在90.5~100.5这一分数段内的学生人数多.②若规定90分以上(不含90分)为优秀,则此次比赛的优秀率为多少?(精确到0.1%)答:652×100%≈11.5%. 7.解:(1)图略(D组频数25).(2)根据题意,E组对应的人数是4,而总人数是10÷10%=100,4100×100%=4%,所以E组对的圆心角的度数是4%×360°=14.4°,m%=1-10%-4%-25%-21%=40%.所以m=40.(3)∵每周的课外阅读时间不少于6小时的人数的百分数是25%+4%=29%,∴每周的课外阅读时间不少于6小时的人数为29%×3000=870.8.解:(1)12 0.08 (2)图略(频数:12)(3)1200×(1-0.20-0.24)=672(人).答:上学期参加社区活动超过6次的学生有672人.[数学活动]解:(1)10÷0.1=100,m÷100=0.2,解得m=20,n=25÷100=0.25.故答案为20,0.25.(2)补全频数直方图如图:用户月用水量频数直方图(3)5000×(0.1+0.2+0.36)=3300(户).答:该社区用户中约有3300户家庭能够全部享受基本价格.。
简单1、一组数据的最小值是149,最大值是172,如果取组距为4,则可以分成()A.5组B.6组C.7组D.8组【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【解答】解:在样本数据中最大值为172,最小值为149,它们的差是172-149=23,已知组距为4,那么由于23÷4=5.75,故可以分成6组.故选B.2、如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5~10元B.10~15元C.15~20元D.20~25元【分析】根据图形所给出的数据直接找出捐款人数最多的一组即可.【解答】解:根据图形所给出的数据可得:捐款额为15~20元的有20人,人数最多,则捐款人数最多的一组是15-20元.故选:C.3、如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()A.5~10元B.10~15元C.15~20元D.20~25元【分析】根据图形所给出的数据直接找出捐款人数最多的一组即可.【解答】解:根据图形所给出的数据可得:捐款额为15~20元的有20人,人数最多,则捐款人数最多的一组是15~20元.故选:C.4、在学校举行的“道德的力量”征文活动中,八年级有50名同学参加征文活动,如果频数分布直方图中,80~90分这一组的频数是15,那么八年级学生这次竞赛成绩在80~90分之间的频率是()A.15 B.0.3 C.0.4 D.0.8【分析】根据频率=频数÷数据总和计算.【解答】解:根据题意可得:共50人,其中有15人成绩在80~90分之间,那么成绩在80~90分之间的频率是15÷50=0.3.故选B.5、赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有__________人.A.18B.21C.27D.30【分析】根据频数分布直方图估计出89.5~109.5,109.5~129.5两个分数段的学生人数,然后相加即可.【解答】解:如图所示,89.5~109.5段的学生人数有24人,109.5~129.5段的学生人数有3人,所以,成绩不低于90分的共有24+3=27人.故选C.6、第一次模拟考试后,数学科陈老师把一班的数学成绩制成如图的统计图(图中每组数据包含横轴上左边的数据不含右边的数据),并给了几个信息:①前两组的频率和是0.14;②第一组的频率是0.02;③自左到右第二、三、四组的频数比为3:9:8.请结合统计图完成下列问题:(1)这个班学生是多少人?(2)成绩不少于90分为优秀,那么这个班成绩的优秀率是多少?A.(1)50;(2)50%B.(1)40;(2)40%【分析】(1)求得第二组的频率,然后根据频率公式即可求得总人数;(2)根据第二、三组的频数的比是3:9,则频率的比是3:9,据此即可求得第三组的频率,然后求得后边三组的频率的和即可.【解答】解:(1)这个班学生数是:6÷(0.14-0.02)=50(人);(2)第三组的频率是:(0.14-0.02)×9÷3=0.36,则这个班的优秀率是:1-0.14-0.36=0.50=50%.故选A7、下面是甲、乙两人10次射击成绩(环数)的条形统计图,则下列说法正确的是()A.甲比乙的成绩稳定B.乙比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定谁的成绩更稳定【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【解答】解:通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,故选B.8、为了了解全校1800名学生对学校设置的体操、球类、跑步、踢毽子等课外体育活动项目的喜爱情况,在全校范围内随机抽取了若干名学生.对他们最喜爱的体育项目(每人只选一项)进行了问卷调查,将数据进行了统计并绘制成了如图所示的频数分布直方图和扇形统计图(均不完整).(1)在这次问卷调查中,一共抽查了多少名学生?(2)补全频数分布直方图;(3)估计该校1800名学生中有多少人最喜爱球类活动?A.(1)80;(2)图略;(3)810B.(1)60;(2)图略;(3)720【分析】(1)利用体操的频数和百分比可求出总数为10÷12.5%=80(人);(2)利用总数和踢毽子的百分比可求出其频数是80×25%=20(人),补全图象即可;(3)用样本估计总体即可.【解答】解:(1)10÷12.5%=80(人),∴一共抽查了80人;(2)踢毽子的人数=80×25%=20(人),如图:(3)1800×36÷80=810(人).估计全校有810人最喜欢球类活动.故选A9、某频数分布直方图中,共有A、B、C、D、E五个小组,频数分布为10、15、25、35、10,则直方图中,长方形高的比为()A.2﹕3﹕5﹕7﹕2 B.1﹕3﹕4﹕5﹕1 C.2﹕3﹕5﹕6﹕2 D.2﹕4﹕5﹕4﹕2【分析】根据在频数分布直方图中,小长方形的高表示频数得出长方形高的比等于频数的比.【解答】解:∵在频数分布直方图中,小长方形的高表示频数,∴长方形高的比等于频数的比,∴长方形的高的比为:10:15:25:35:10=2:3:5:7:2.故选:A.10、将抽查的样本编成组号为①-⑧的8个组,如下表:组号①②③④⑤⑥⑦⑧频数1411131210频率0.140.12A0.13那么抽查的总数和A的值为分别是()A.100,0.14B.100,0.15C.168,0.14D.168,0.15【分析】总数=频数÷频率,A等于总体1减去其他七组的频率,这样就可求出解.【解答】解:14÷0.14=100,1-0.14-11÷100-0.12-13÷100-0.13-12÷100-10÷100=0.15,故选B.11、为了了解某地八年级男生的身高情况,从当地某学校选取了一个容量为60的样本(样本容量指样本中的数据个数),60名男生的身高(单位:cm)分组情况如下表所示,则表中a、b的值分别为()分组147.5~157.5157.5~167.5167.5~177.5177.5~187.5频数1026a频率0.3bA.18,6B.0.3,6C.18,0.1D.0.3,0.1【分析】因为和a对应的频率已知,所以根据频数=总数×频率,求出a的值,再求出b对应的频数,然后求出频率b的值.【解答】解:∵a=60×0.3=18,∴60-10-26-18=6,∴b=6÷60=0.1.故选C.难1、在某次考试中,某班级的数学成绩统计图如图所示,下列说法中错误的是()A.得分在70~80分之间的人数最多B.该班总人数为40人C.得分在90~100分之间的人数最少D.不低于60分为及格,该班的及格率为80%【分析】A、根据条形统计图找出人数最多的分数段即可做出判断;B、各分数段人数相加求出总人数即可做出判断;C、根据条形统计图找出人数最少的分数段即可做出判断;D、找出不低于60分的人数,除以总人数求出及格率即可做出判断.【解答】解:根据图形得:50~60分之间的人数为4人;60~70分之间的人数为12人;70~80分之间的人数为14人;80~90分之间的人数为8人;90~100分之间的人数为2人,则得分在70~80分之间的人数最多;得分在90~100分之间的人数最少;总人数为4+12+14+8+2=40人;不低于60分为及格,该班的及格率为(12+14+8+2)÷40=90%,故选D.2、如图,一次数学测试后,老师将全班学生的成绩整理后绘制成频数分布直方图,若72分及以上成绩为及格,由图得出该班这次测试成绩的及格率是__________%.A.85B.90C.95D.92.5【分析】分析频数直方图可得:72分及以上的人数与总人数,相比可得该班这次测试成绩的及格率.【解答】解:由频数直方图可以看出:72分及以上成绩的人数=9+12+9+6=36人,总人数=1+3+9+12+9+6=40人,则该班这次测试成绩的及格率为36÷40=0.9=90%.故选B.3、青少年“心理健康”问题越来越引起社会的关注,某中学为了了解学校600名学生的心理健康状况,举行了一次“心理健康”知识测试,并随即抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了下面未完成的频率分布表和频率分布直方图.请回答下列问题:分组频数频率50.5~60.540.0860.5~70.5140.2870.5~80.51680.5~90.590.5~100.5100.20合计 1.00(1)填写频率分布表中的空格,并补全频率分布直方图;(2)若成绩在70分以上(不含70分)为心理健康状况良好,同时,若心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否则就需要加强心里辅导.请根据上述数据分析该校学生是否需要加强心里辅导,并说明理由.A.(2)是B.(2)不是【分析】(1)由50.5~60.5的频数除以对应的频率求出样本的总人数,进而求出70.5~80.5的频率,90.5~100.5的频数,以及80.5~90.5的频率与频数,补全表格即可;(2)该校学生需要加强心理辅导,理由为:求出70分以上的人数,求出占总人数的百分比,与70%比较大小即可.【解答】解:(1)根据题意得:样本的容量为4÷0.08=50(人),则70.5~80.5的频率为16÷50=0.32,80.5~90.5的频率为1-(0.08+0.28+0.32+0.20)=0.12,频数为50×0.12=6;分组频数频率50.5~60.540.0860.5~70.5140.2870.5~80.5160.3280.5~90.560.1290.5~100.100.205合计50 1.00(2)该校学生需要加强心理辅导,理由为:根据题意得:70分以上的人数为16+6+10=32(人),∵心理健康状况良好的人数占总人数的百分比为32÷50×100%=64%<70%,∴该校学生需要加强心理辅导.故选A4、某住宅小区六月份1日至5日每天用水量变化情况如图所示.那么这5天平均每天的用水量是()A.30吨B.31吨C.32吨D.33吨【解答】解:由折线统计图知,这5天的平均用水量为:(30+32+36+28+34)÷5=32(吨).故选C.5、为了解某校学生每周购买瓶装饮料的情况,课外活动小组从全校30个班中采用菁优网科学的方法选了5个班.并随机对这5个班学生某一天购买瓶装饮料的瓶数进行了统计,结果如下图所示.(1)求该天这5个班平均每班购买饮料的瓶数;(2)估计该校所有班级每周(以5天计)购买饮料的瓶数;(3)若每瓶饮料售价在1.5元至2.5元之间,估计该校所有学生一周用于购买瓶装饮料的费用范围.A.(1)10;(2)1500;(3)2250至3750B.(1)10;(2)2000;(3)3250至3750【分析】(1)从条形图中得出各班的购买饮料的瓶数分别为8,9,12,11,10,根据平均数的概念即可得到平均数.(2)该校所有班级每周(以5天计)购买饮料的瓶数=平均数×天数×班级数.(3)根据(2)的结果直接计算即可.【解答】解:(1)平均数=(8+9+12+11+10)÷5=10(瓶).答:该天这5个班平均每班购买饮料10瓶.(2)该校所有班级每周(以5天计)购买饮料的瓶数=10×5×30=1500(瓶).答:该校所有班每周购买饮料1500瓶.(3)1.5×1500=2250(元),2.5×1500=3750(元).答:该校所有班级学生一周用于购买瓶装饮料的费用为2250元至3750元.故选A6、某校九年级学生共900人,为了解这个年级学生的体能,从中随机抽取部分学生进行1min 的跳绳测试,并指定甲、乙、丙、丁四名同学对这次测试结果的数据作出整理,下图是这四名同学提供的部分信息:甲:将全体测试数据分成6组绘成直方图(如图);乙:跳绳次数不少于105次的同学占96%;丙:第①、②两组频率之和为0.12,且第②组与第⑥组频数都是12;丁:第②、③、④组的频数之比为4:17:15.根据这四名同学提供的材料,请解答如下问题:(1)这次跳绳测试共抽取多少名学生?各组有多少人?(2)如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为多少?(3)以每组的组中值(每组的中点对应的数据)作为这组跳绳次数的代表,估计这批学生1min跳绳次数的平均值.A.(1)150名,6、12、51、45、24、12;(2)216;(3)127B.(1)150名,6、12、51、45、24、12;(2)116;(3)227【分析】(1)由直方图中,各组频率之和为1,可求出②③组的频率,再根据②③组的频数结合频数与频率的关系可求得总数;(2)从图中可以看出,第⑤⑥组的频数在135以上,故这两组优秀,所以用它们的频率乘总数;可估计总体;(3)直接根据平均数的计算公式计算即可.【解答】解:(1)∵跳绳次数不少于105次的同学占96%,即②③④⑤⑥组人数占96%,第①组频率为:1-96%=0.04.∵第①、②两组频率之和为0.12,∴第②组频率为:0.12-0.04=0.08,又∵第②组频数是12,∴这次跳绳测试共抽取学生人数为:12÷0.08=150(人),∵②、③、④组的频数之比为4:17:15,∴12÷4=3人,∴可算得第①~⑥组的人数分别为:①150×0.04=6人;②4×3=12人,③17×3=51人,④15×3=45人,⑥与②相同,为12人,⑤为150-6-12-51-45-12=24人.答:这次跳绳测试共抽取150名学生,各组的人数分别为6、12、51、45、24、12;(2)第⑤、⑥两组的频率之和为=0.16+0.08=0.24,由于样本是随机抽取的,估计全年级有900×0.24=216人达到跳绳优秀,答:估计全年级达到跳绳优秀的有216人;(3)(100×6+110×12+120×51+130×45+140×24+150×12)÷150=127次,答:这批学生1min跳绳次数的平均值为127次.故选A7、为了解“数学思想作为对学习数学帮助有多大?”一研究员随机抽取了一定数量的高校大一学生进行了问卷调查,并将调查得到的数据用下面的扇形图和下表来表示(图、表都没制作完成).选项帮助很大帮助较大帮助不大几乎没有帮助人数a543269b根据图、表提供的信息.(1)请问:这次共有多少名学生参与了问卷调查?(2)算出表中a、b的值.(注:计算中涉及到的“人数”均精确到1)A.(1)1244;(2)a=316,b=116B.(1)1044;(2)a=116,b=316【分析】(1)用“帮助较大”的人数除以所占的百分比计算即可得解;(2)用参与问卷调查的学生人数乘以“帮助很大”所占的百分比计算即可求出a,然后根据总人数列式计算即可求出b.【解答】解:(1)参与问卷调查的学生人数=543÷43.65%≈1244;(2)a=1244×25.40%=316,b=1244-316-543-269=1244-1128=116.故选A8、列频数分布表考查50名学生年龄时,这些学生的年龄落在5个小组中,第一、二、三、五组的数据个数分别是1,9,15,5,则第四组的频数是()A.10B.9C.15D.20【分析】由五个小组的频数总和等于50即可算出第四组的频数.【解答】解:∵第一、二、三、五组的数据个数分别是1,9,15,5,∴第四小组的频数是50-(1+9+15+5)=20.故选:D.9、一个容量为50的样本中,数据的最大值是123,最小值是45,若取每组终点值与起点值的差为10,则该样本可以分()A.5组或6组B.6组或7组C.7组或8组D.8组或9组【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【解答】解:在样本数据中最大值为123,最小值为45,它们的差是123-45=78,已知组距为10,那么由于78÷10=7.8,故可以分成个8或9组.故选D.10、崇左市江州区太平镇壶城社区调查居民双休日的学习状况,采取了下列调查方式;a:从崇左高中、太平镇中、太平小学三所学校中选取200名教师;b:从不同住宅楼(即江湾花园与万鹏住宅楼)中随机选取200名居民;c:选取所管辖区内学校的200名在校学生.并将最合理的调查方式得到的数据制成扇形统计图和部分数据的频数分布直方图.以下结论:①上述调查方式最合理的是b;②在这次调查的200名教师中,在家学习的有60人;③估计该社区2000名居民中双休日学习时间不少于4小时的人数是1180人;④小明的叔叔住在该社区,那么双休日他去叔叔家时,正好叔叔不学习的概率是0.1.其中正确的结论是()A.①④B.②④C.①③④D.①②③④【分析】①抽样调查时,为了获得较为准确的调查结果,所以抽样时要注意样本的代表性和广泛性,据此判断;②利用200名居民中,在家学习的占60%,求出在家学习的人数,即可判断;③首先求出在图书馆等场所学习的总人数,再求出在图书馆等场所学习4小时的人数,利用频数分布直方图中的有关数据,计算出双休日学习时间不少于4h的人数占样本的百分比,然后利用样本估计总体,算出该社区2000名居民中双休日学习时间不少于4h的人数,即可判断;④从扇形统计图中可以看出,不学习的占总体的百分比是10%,利用频率来估计概率求出正好叔叔不学习的概率,即可判断.【解答】解:①正确;②错误,在家学习的人数=200×60%=120人;③错误,在图书馆学习的人数=200×30%=60人,其中在图书馆学习有4小时的人数=60-14-16-6=24人,则2000人中双休日学习时间不少于4小时的人数=2000×[(24+50+16+36+6+10)÷200]=1420人;④正确,根据扇形统计图可得不学习的概率是10%,故正好叔叔不学习的概率是0.1.故选A.11、下列说法不正确的是()A.一组数据中,平均数、众数、中位数不可能都相同B.一组数据平均数一定大于其中每一个数据C.在频率分布直方图中,每个小长方形的面积等于相应小组的频率D.样本的容量越大,对总体的估计越精确【分析】根据平均数,中位数,众数的求法可判断A,B的正误;根据频数(率)分布直方图的表示可判断C的正误;根据样本估计总体可判断D的正误.【解答】解:A,一组数据中,平均数、众数、中位数不可能都相同,故说法正确;B,一组数据平均数不可能大于其中每一个数据,故说法错误;C,在频率分布直方图中,每个小长方形的面积等于相应小组的频率,说法正确;D,样本的容量越大,对总体的估计越精确,说法正确;故选:B.。
【基础卷】2024年浙教版数学七年级下册6.5频数直方图同步练习一、选择题1.一个容量为80的样本最大值为142,最小值为50,取组距为10.则可以分成()A.8组B.9组C.10组D.11组2.在频数直方图中有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积的和的一半,且数据总数为96,则中间一组的频数为()A.32B.0.5C.48D.0.333.某养猪场对200 头生猪的质量进行统计,得到频数分布直方图(每一组含前一个边界值,不含后一个边界值) 如图所示,其中质量在82.5kg及以上的生猪有()A.20 头B.50 头C.140 头D.200 头4.如图所示为某班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值),由图可知,每周课外阅读时间不少于6小时的人数是()每周课外阅读时间的频数直方图A.6B.8C.14D.365.观察如图所示的频数直方图,其中组界为99.5~124.5这一组的频数是()A.5B.6C.7D.86.对某校600名学生的体重(kg)进行统计,得到如图所示的统计图(横轴上每组数据包含最小值不包含最大值),则学生体重在60kg及以上的人数为()A.120B.150C.180D.3307.为了解某校九年级学生的体能情况,随机抽查了该校九年级若干名学生,测试了1分钟仰卧起坐的次数,并绘制成如图所示的直方图,请根据图示计算,仰卧起坐次数在25~30次的学生人数占被调查学生人数的百分比为()A.10%B.20%C.30%D.40%8.如图是某调查小组调查了100位旅客购票等候时间制作的频数直方图(每一组含前一个边界值,不含后一个边界值),其中购票等候时间小于3分钟的人数是()A.29人B.55人C.84人D.94人二、填空题9.组界为67.5~72.5 的一组数据的组中值是.10.一组数据的最大值是7.4,最小值是4.0,用频数分布直方图描述这一组数据,取组距为0.3,则可以分成组.11.某校学生自主建立了一个学习用品义卖平台,已知七年级200名学生义卖所得金额的频数直方图如图所示,则20~30元这个小组的频率是.某校七年级200名学生义卖所得金额的频数直方图12.为了解某校七年级学生的阅读时间情况,对部分学生的阅读时间情况展开调查,并列出了相应的频数分布直方图(如图所示)(每组数据含最小值,不含最大值),若该学校七年级共有200名学生,则阅读时间不低于3小时的是人.三、解答题13.为了参加全校年级之间的广播体操比赛,七年级准备挑选身高相差不多的40名同学参赛,现收集了63名同学的身高经过数据整理得到如下直方图.(1)身高在161≤x<164的范围内的人数有人;(2)身高在149≤x<152和170≤x<173的范围内的人数都少于人;(3)身高在范围内的人数最多.14.小李随机调查了一些顾客在某商场购物的时间(单位:分),并绘制成如图所示的频数直方图.(1)小李调查的顾客总人数是多少?(2)数据分组的组距是多少?(3)购物时间在8~22分之间的顾客约占百分之几?15.某市对当年初中升高中数学考试成绩进行抽样分析,试题满分100分,将所得成绩(均为整数)整理后,绘制了如图所示的统计图,根据图中所提供的信息,回答下列问题:(1)共抽取了多少名学生的数学成绩进行分析?(2)如果80分以上(包括80分)为优生,估计该年的优生率为多少?(3)该年全市共有22000人参加初中升高中数学考试,请你估计及格(60分及60分以上)人数大约为多少?答案解析部分1.答案:C解析:解:(142-50)÷10=9.3≈10,故可分为10组.故答案为:C.分析:根据组数=(最大值-最小值)÷组距,注意:小数部分要进位.2.答案:A解析:解:设中间一个小长方形的频率为x,则其他10个小长方形的频率和为(1-x),∵中间一个小长方形的面积等于其他10个小长方形面积的和的一半,∴x=12(1−x),解得x=13,∴中间一组的频数为96×13=32;故答案为:A.分析:根据小长方形的面积求出中间一组所占的频率,利用总数据乘以频率可得. 3.答案:B解析:解:由直方图可得:质量在82.5kg及以上的生猪有30+20=50头.故答案为:B.分析:根据频数分布直方图,即可得解.4.答案:C解析:解:由图可知,每周课外阅读时间不少于6小时的人数是6+8=14.故答案为:C.分析:根据直方图提供的信息,求出最右边两个长方形上的频数和即可.5.答案:D解析:解:∵20-3-5-4=8∴组界为99.5~124.5这一组的频数是8故答案为:D.分析:根据频数直方图上的数据,用总人数减去其他组界的人数即可.6.答案:B解析:解:由频率统计图可得学生体重在60kg及以上的频率为0.20+0.05=0.25;则学生体重在60kg及以上的人数为0.25×600=150(人);故答案为:B.分析:根据学生体重在60kg及以上的频率乘以总人数可得.7.答案:D解析:解:依题意,总人数=3+10+12+5=30.又仰卧起坐次数在25~30次的学生人数为12,故百分比为40%,故答案为:D.分析:根据频率直方图求得总人数,进而根据题意得出得出仰卧起坐次数在25~30 次的百分比.8.答案:B解析:解:由直方图提供的信息可得:购票等候时间小于3分钟的人数是17+38=55(人).故答案为:B.分析:由直方图提供的信息,将第一、二两组的人数相加即可.9.答案:70解析:解:该组的组中值=67.5+72.52=70.故答案为:70.分析:根据组中值等于组界两个数和的平均数,列式计算即可求解. 10.答案:12解析:解:(7.4-4)÷0.3≈12,则可分为12组;故答案为:12.分析:根据组数=(最大值-最小值)÷组距,注意:小数部分要进位. 11.答案:0.25解析:解:根据频数直方图可得20~30元这个小组的频数为50,故频率为50200=0.25.故答案为:0.25.分析:根据20~30元这个小组的频数除以总人数可得.12.答案:88解析:解:该学校七年级共有200名学生,则阅读时间不低于3小时的是200×(16+6)÷(4+10+14+16+6)=88故答案为:88.分析:用200乘以阅读时间不低于3小时的人数占比即可。
浙教版七年级下册第6章6.5频数直方图同步练习一、选择题1、某频数分布直方图中,共有A、B、C、D、E五个小组,频数分布为10、15、25、35、10,则直方图中,长方形高的比为()A、2﹕3﹕5﹕7﹕2B、1﹕3﹕4﹕5﹕1C、2﹕3﹕5﹕6﹕2 D、2﹕4﹕5﹕4﹕22、某校为了了解九年级500名学生的体能情况,随机抽查了其中的30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请你根据图示计算,估计仰卧起座次数在15~20之间的学生有()A、50B、85C、165D、2003、九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是()A、80%B、70%C、92%D、86%4.在频数分布直方图中,各小长方形的高分别表示对应组的( )A.频数B.频率C.组数D.组距5.如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是( )A.5~10元B.10~15元C.15~20元D.20~25元6.已知有30个数据,分组后在频数分布直方图中各小长方形的高的比依次为2∶4∶3∶1,则第二小组的频数为( )A.4B.12C.9D.87.依据某校九(1)班在体育毕业考试中全班所有学生成绩,制成的频数分布直方图如图(学生成绩取整数),则成绩在21.5﹣24.5这一分数段的频数是()A、1B、4C、10D、158.为了了解某校九年级学生的运算能力,抽取了100名学生进行测试,将所得成绩(单位:分)整理后,列出下表:本次测试这100名学生成绩良好(大于或等于80分为良好)的人数是( )A.22B.30C.60D.709.下列有关频数分布表和频数分布直方图的理解,正确的是( )A.频数分布表能清楚地反映事物的变化情况B.频数分布直方图能清楚地反映事物的变化情况C.频数分布直方图能清楚地表示出各部分在总体中所占的百分比D.二者均不能清楚地反映变化情况和在总体中所占的百分比,但能反映出每个项目的具体数目10.一组数据的最小数是12,最大数是38,如果分组的组距相等,且组距为3,那么分组后的第一组为( )A.11.5~13.5B.11.5~14.5C.12.5~14.5D.12.5~15.511、某班有48位同学,在一次数学检测中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A、9B、18C、12D、612、如图是初一某班全体50位同学身高情况的频数分布直方图,则身高在160﹣165厘米的人数的频率是()A、0.36B、0.46C、0.56D、0.6二、填空题(共6题;共6分)13、在样本的频数分布直方图中,有11个小长方形,若中间一个长方形的面积等于其他10个小长方形面积之和的四分之一.且样本数据有100个.则中间一组的频数为________ .14、将容量为n的样本中的数据分成6组,绘制频率分布直方图.若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n等于__________.15.王老师对河东中学九(一)班的某次模拟考试成绩进行统计后,绘制了频数分布直方图.根据图形,回答下列问题:(直接填写结果)(1)该班有__________名学生. (2)89.5~99.5这一组的频数是__________,频率是__________.(3)估算该班这次数学模拟考试的平均成绩是__________.16、某校为了解本校学生每周阅读课外书籍的时间,对本校全体学生进行了调查,并绘制如图所示的频率分布直方图(不完整),则图中m的值是________.17、为迎接学校艺术节,七年级某班进行班级歌词征集活动,作品上交时间为星期一至星期五.班委会把同学们上交作品件数按每天一组分组统计,绘制了频数分布直方图如下.已知从左至右各长方形的高的比为2:3:4:6:1,第二组的频数为9,则全班上交的作品有________件.18、某校为预测该校九年级900名学生“一分钟跳绳”项目的考试情况,从九年级随机抽取部分学生进行测试,并以测试数据为样本,绘制出如图所示频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值).若次数不低于130次的成绩为优秀,估计该校成绩为优秀的人数是________.三、解答题(共5题;共25分)19、某校九年级一班数学调研考试成绩绘制成频数分布直方图,如图(得分取整数).请根据所给信息解答下列问题:(1)这个班有多少人参加了本次数学调研考试?(2)60.5~70.5分数段的频数和频率各是多少?(3)请你根据统计图,提出一个与(1),(2)不同的问题,并给出解答.20、某校为了了解学生身高情况,对部分学生的身高进行统计,根据身高(身高取整数,最高179cm,最矮155cm),分别绘制如下统计表和统计图:身高(cm)160以下160及以上166及以上176及以上人数(人)5 40 27 3(1)这次抽取的学生有多少人?(2)分布在164.5~169.5这一组的人数是多少?补全直方图;(3)这次抽样的中位数落在第几组?(4)身高在170cm~175cm(包含170cm,175cm)的多少人?21、初三某班对最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如下图所示的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有__________名同学参加这次测验;(2)这次测验成绩的中位数落在__________分数段内;(3)若这次测验中,成绩80分以上(不含80分)为优秀,那么该班这次数学测验的优秀率是多少?22、新学期开学初,王刚同学对部分同学暑假在家做家务的时间进行了抽样调查(时间取整数小时),所得数据统计如下表:时间0.5~20.5~40.5~60.5~80.5~分组20.5 40.5 60.5 80.5 100.5频20 25 30 15 10数(1)王刚同学抽取样本的容量是多少?(2)请你根据表中数据补全图中的频数分布直方图;(3)若该学校有学生1260人,那么大约有多少学生在暑假做家务的时间在40.5~100.5小时之间?23、为了了解某校七年级男生的体能情况,从该校七年级抽取50名男生进行1分钟跳绳测试,把所得数据整理后,画出频数分布直方图.已知图中从左到右第一、第二、第三、第四小组的频数的比为1:3:4:2.(1)总体是多少,个体是多少?,样本容量是多少?(2)求第四小组的频数和频率;(3)求所抽取的50名男生中,1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比.答案一选择题1、A2、A3、C 4.A 5.C 6.B 7. C 8.D 9.D 10.B 11、B 12、A 二、填空题13、20 14、6015.(1)40(2)8 0.2(3)87.516、0.0517、48 18、400三、解答题19、解:(1)这个班有3+6+9+12+18=48(人)参加了本次数学调研考试;(2)60.5~70.5分数段的频数为12,频率为;(3)本次调查数据的中位数落在第几组内;∵一共有48个数∴本次调查数据的中位数落在第4组内.20、解:(1)这次抽取学生:5+40=45人;(2)164.5~169.5组有:45﹣(5+8+13+6)=13人;(3)第一组与第二组的人数和是:5+8=13,第三组的人数是13,13+13=26,所以第一组与第二组的人数和不到总人数的一半,第一、二、三组的人数和超过总人数的一半,所以中位数落在第三组;(4)13+6﹣3=16.答:身高在170cm~175cm(包含170cm,175cm)的有16人.21、解:(1)40(2)70.5~80.5(3)优秀率=19=47.5%.4022、解:(1)样本容量是20+25+30+15+10=100;(2)(3)样本中,暑假做家务的时间在40.5~100.5小时之间的人数为55人,∴该校有=693人在暑假做家务的时间在40.5~100.5小时之间.23、解:(1)总体是某校七年级男生的体能情况;个体是每个男生的体能情况,样本容量是50;故答案为:某校七年级男生的体能情况;每个男生的体能情况;50.(2)第四小组的频率是:=0.2;第四小组的频数是:50×=10;(3)根据题意得:1分钟跳绳次数在100次以上(含100次)的人数占所抽取的男生人数的百分比是:×100%=60%.。
图3数学: 12.3频数分布表和频数分布直方图一、选择题1、( 0 7 湖州)如图1是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形分布图(两图都不完整),则下列结论中错误的是( ) A.该班总人数为50人 B.步行人数为30人C.骑车人数占总人数的20%D.乘车人数是骑车人数的2.5倍2、(08温州)体育老师对九年级(1)班学生“你最喜欢的体育项目是什么?(只写一项)”的问题进行了调查,把所得数据绘制成频数分布直方图(如图2).由图可知,最喜欢篮球的频率是( )A .二、解答题3、 (07义乌) 每年的6月6日是全国的爱眼日,让我们行动起来,爱护我们的眼睛!某校为了做好全校2000名学生的眼睛保健工作,对学生的视力情况进行一次抽样调查,下图3是利用所得数据绘制的频数分布直方图(视力精确到0.1).请你根据此图提供的信息,回答下列问题: (1)本次调查共抽测了 名学生;(2)视力在4.9及4.9以上的同学约占全校学生比例为多少?步行 30%乘车50%骑车 图1图2(3)如果视力在第1,2,3组范围内(视力在4.9以下)均属视力不良,应给予治疗、矫正.请计算该校视力不良学生约有多少名?4、(08宁德)“五一”期间,新华商场贴出促销海报,内容如图4.在商场活动期间,统计了200人次的摸奖情况,绘制成如图5(1)补齐频数分布直方图;(2)求所调查的200人次摸奖的获奖率;(3)若商场每天约有2000人次摸奖,请估算商场一天送出的购物券总金额是多少元?图4 购物券人次图55、(08湛江)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图8),请结合图形解答下列问题.(1) 指出这个问题中的总体.(2) 求竞赛成绩在79.5~89.5这一小组的频率.(3) 如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.6、(08西宁)中考体育测试中,1分钟跳绳为自选项目.某中学九年级共有50名女同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进行统计后分为A B C D ,,,四等,并绘制成下面的频数分布表(注:6~7的意义为大于等于6分且小于7分,其余类似)和扇形统计图(如图9).频数分布表等级 分值 跳绳(次/1分钟) 频数A9~10 150~170 48~9 140~150 12 B 7~8 130~140 176~7 120~130 mC 5~6 110~120 04~5 90~110 nD3~4 70~90 1 0~3 0~70 0(1)求m n ,的值;(2)在抽取的这个样本中,请说明哪个分数段的学生最多?请你帮助老师计算这次1分钟跳绳测试的及格率(6分以上含6分为及格).7、(08湘潭市)某县七年级有15000名学生参加安全应急预案知识竞赛活动,为了了解6图8图9本次知识竞赛的成绩分布情况,从中抽取了400名学生的得分(得分取正整数,满分100分)进行统计:请你根据不完整的频率分布表. 解答下列问题: (1)补全频率分布表; (2)补全频数分布直方图;(3)若将得分转化为等级,规定得分低于59.5分评为“D ”,59.5~69.5分评为“C ”,69.5~89.5分评为“B ”,89.5~100.5分评为“A ”,这次15000名学生中约有多少人评为“D ”?如果随机抽取一名参赛学生的成绩等级,则这名学生的成绩评为“A ”、“B ”、“C ”、“D ”哪一个等级的可能性大?请说明理由.8、(08常州)为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行,并画了部分频数分布直方图(图、表如下):cm)成绩(分) 图10图11根据以上图表,回答下列问题:(1)M=_______,m=_______,N=_______,n=__________; (2)补全频数分布直方图.9、(08泰州)为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),将调查的数据进行处理(设所根据表中提供的信息解答下列问题:(1)频数分布表中的a =________,b =________,c =_________; (2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB 的测量点约有多少个?10、(08台州)八年级(1)班开展了为期一周的“孝敬父母,帮做家务”社会活动,并根据学生帮家长做家务的时间来评价学生在活动中的表现,把结果划分成A B C D E,,,,五个等级.老师通过家长调查了全班50名学生在这次活动中帮父母做家图12务的时间,制作成如下的频数分布表和扇形统计图.(1)求的值;(2)根据频数分布表估计该班学生在这次社会活动中帮父母做家务的平均时间;(3)该班的小明同学这一周帮父母做家务2小时,他认为自己帮父母做家务的时间比班级里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计量说明理由.B AE DC 40% (第22题)学生帮父母做家务活动评价等级分布扇形统计图参考答案1、B ;2、D ;3、解:(1)由条形统计图可得,本次调查共抽测学生人数为:10+20+30+40+60=160 (2)视力在4.9及4.9以上的人数为40+20=60(人),所占的比例为:6031608= (3)视力在第1,2,3组的人数在样本中所占的比例为10051608=. ∴该校视力不良学生约有5200012508⨯=(人).4、解:⑴获得20元购物劵的人次:200-(122+37+11)=30(人次). 补齐频数分布直方图,如图所示:⑵摸奖的获奖率:%39%1002078=⨯.⑶675.6200501120305370122=⨯+⨯+⨯+⨯=x .6.675×2000=13350(元)估计商场一天送出的购物券总金额是13350元.5、 解: (1) 总体是某校2000名学生参加环保知识竞赛的成绩.(2)15150.256912151860==++++答:竞赛成绩在79.5~89.5这一小组的频率为0.25.(3)9200030069121518⨯=++++ 答:估计全校约有300人获得奖励.6、解:(1)根据题意,得50(412171)16m n +=-+++=;171006450m+⨯=%%. 则161732m n m +=⎧⎨+=⎩①②购物券人次30解之,得151m n =⎧⎨=⎩(2)7~8分数段的学生最多及格人数412171548=+++=(人),及格率481009650=⨯=%% 答:这次1分钟跳绳测试的及格率为96%. 7. 解:(1)略; (2)略 ;(3)150000.05750⨯=(人) B 的频率为0.20.310.51+=,大于A 、C 、D 的频率,故这名学生评为B 等的可能性最大.8、略9、(1)a=8,b=12,c=0.3.(每对一个给1分) (2)略(3)算出样本中噪声声级小于75dB 的测量点的频率是0.3 0.3×200=60∴在这一时噪声声级小于75dB 的测量点约有60个. 10、略。
相关资料频数直方图同步练习主要内容:掌握频数分布直方图的意义及画法一、课堂练习:1.下面数据是截止2002年费尔兹奖得主获奖时的年龄:29 39 35 33 39 28 33 35 31 31 37 3238 36 31 39 32 38 37 34 29 34 38 3235 36 33 29 32 35 36 37 39 38 40 3837 39 38 34 33 40 36 36 37 40 31 38请根据下面的不同分组方法,你觉得比较哪一种分组能更好地说明费尔兹奖得主获奖的年龄分布,并列出频数分布表,画出频数分布直方图.(1)组距是2,各组是;2830,3032,≤<≤< x x (2)组距是5,各组是;2530,3035,≤<≤< x x (3)组距是10,各组是.2030,3040,≤<≤< x x 解:选(2)组能更好地说明费尔兹奖得主获奖的年龄分布.第(1)组距太小操作麻烦;第(3)组距太大,不能很好说明问题.频数分布表: 频数分布直方图:2.江涛同学统计了他家10月份的长途电话明细清单,按通话时间画出频数分布直方图.(1)他家这个月一共打了 77 次长途电话; (2)通话时间不足10分钟的 43 次; (3)通话时间在 0~5 分钟范围最多, 通话时间在 10~15 分钟范围最少.二、课后作业:3.光明中学为了解本校学生的身体发育情况,对八年级同龄的名女生的身高进行了测量,32结果如下(数据均为整数,单位:): cm 分 组 划记 频数 2530≤<x 4 3035≤<x 15 3540≤<x 26 4045≤≤x 3 合 计48 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一频数()每组中只含最小分钟值,但不含最大分钟值154 157 159 166 169 159 162 158159 155 164 159 160 162 157 162159 165 157 151 146 151 160 157161 158 153 158 164 158 163 149将数据适当分组,绘制频数分布直方图.解:(1)计算最大值与最小值的差: (4)画频数分布直方图=16914623- (2)决定组距与组数:当组距为时, 4=23 5.754 ∴可分为组 6 (3)列频数分布表: 身 高 x 划 记 频 数 146150x <≤ 2 150154x <≤ 3 154158x <≤6 158162x <≤12 162166x <≤7 166170x <≤2合 计32(1)全班有 53 名同学;(2)组距是 20 ,组数是 7 ;(3)跳绳次数在范围的同学有 34 人,占全班同学 64.15 %;(精确到x 100140≤<x 0.01%)(4)画出适当的统计图表示上面的信息; (5)你怎样评价这个班的跳绳成绩?答:(5)该班跳绳成绩中等的(每分钟跳范围的同学)约占x <100140≤64.15%,跳绳成绩差的(每分钟跳范围的同学)很少,跳x <6080≤绳成绩特别好的(每分钟跳范围的同学)只有1x <180200≤个,中间大,两头小,符合正常的分布规律.。
频数直方图姓名 班级 基础自测1. 在绘制频数分布直方图时,各个小长方形的高等于相应各组的………………………( ) A .极差 B .组距 C .组中值 D .频数2. 某个样本的频数分布直方图中一共有4组,从左至右的组中值依次为5,8,11,14,频数依次为5,4,6,5,则频率为0.2的一组为…………………………………………………( ) A .6.5~9.5 B .9.5~12.5 C .8~11 D .5~83. 某校九(1)班50名学生学业考试成绩的频数分布直方图如图所示,•则总分在600分以上的学生人数为……( ) A .20 B .30 C .35 D .454.依据某校九年级一班体育毕业考试中全班所有学生成绩,制成的频数分布直方图如图(学生成绩取整数),则成绩在9.某市教育部门对今年参加中考学生的视力进行了一次抽样调查,得到如图所示的频数分布直方图.(每组数据含最小值,不含最大值)(1) 本次抽查的样本容量是多少?(2) 若视力在4.9以上(含 4.9)均属正常,求视力正常的学生占被统计人数的百分比是多少?(3) 根据图中提供的信息,谈谈你的感想.10.为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测量,所得数据整理后列出了频数分布表,并画了部分频数分布直方图(图、表如下):身高(cm)人数(个)181512 9 6 30 145.5 149.5 153.5 157.5 161.5 165.5 169.5根据以上图表,回答下列问题:(1)M =_______,m =_______,N =_______,n =__________;(2)补全频数分布直方图.能力提升11. 八(1)班若干名学生每分跳绳次数的频数分布直方图如图所示,由直方图可知,这若干名学生平均每分钟跳绳的次数(结果精确到个位)约为……………………………………( )A .87B .100C .104D .112(第11题图) (第12题图)12.某篮球队队员年龄结构直方图如图所示,根据图中信息,可知该队队员年龄的中位数为………………………………………………………………………………………………( ) A .18岁 B . (1)这次共抽调了多少人?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)如果这次测试成绩的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?分组 频数 频率 145.5~149.5 30.05149.5~153.5 90.15153.5~157.5150.25157.5~161.518 n161.5~165.590.15165.5~169.5m 0.10合计M N10020 40 60 80 4.0 4.3 4.6 4.9 5.2 5.5视力人数15.九(3)班学生参加学校组织的“绿色奥运”知识竞赛,老师将学生的成绩按10分的组距分段,统计每个分数段出现的频数,填入频数分布表,并绘制频数分布直方图.九(3)班“绿色奥运”知识竞赛成绩频数分布表(1)频数分布表中a= ,b= ;(2)把频数分布直方图补充完整;(3)学校设定成绩在69.5分以上的学生将获得一等奖或二等奖,一等奖奖励作业本15本及奖金50元,二等奖奖励作业本10本及奖金30元,已知这部分学生共获得作业本335本,请你求出他们共获得的奖金.创新应用16. 数学老师将本班学生的身高数据(精确到l厘米)交给甲、乙两同学,要求他们各自独立地绘制一幅频数分布直方图.甲绘制的如图①所示,乙绘制的如图②所示,经确认,甲绘制的图是正确的,乙在整理数据与绘图过程中均有个别错误.请回答下列问题:(1)该班学生有多少人?(2)甲同学身高为165厘米,他说:“我们班上比我高的人不超过1/4”.他的说法正确吗?说明理由.(3)写出乙同学在整理或绘图过程中的错误(写出一个即可).(4)设该班学生的身高数据的中位数为a,试写出a的值.参考答案基础自测4.依据某校九年级分数段(分)49.5~59.559.5~69.569.5~79.579.5~89.589.5~99.5组中值(分)54.5 64.5 74.5 84.5 94.5 频数 a 9 10 14 5 频率0.050 0.225 0.250 0.350 b九(3)班“绿色奥运”知识竞赛成绩频数分布直方图54.5 64.5 74.5 84.5 94.5频数(人)成绩(分) 026810121491014频数(人)身高(cm)50454035302520151050185180175170165160155150一班体育毕业考试中全班所有学生成绩,制成的频数分布直方图如图(学生成绩取整数),则成绩在21.5-24.5这一分数段的频数和频率分别是……………………………………( ) A. 4,0.1 B.10, 0.1 C.10, 0.2 D.20,0.2 答案:C5. 在对样本数据进行分组统计时,若第一组的组别为57.5~62.5,则这一组的组中值是_________. 答案:606. 已知一个样本的样本容量为40,在频数分布直方图中,各小长方形的高比为2:3:4:1,那么第三组的频数是_______. 答案:167.如图,一次数学测试后,老师将全班学生的成绩整理后绘制成频数分布直方图,若72分及以上成绩为及格,由图得出该班这次测试成绩的及格率是.答案:90%8.抽取某校学生一个容量为150的样本,测得学生身高后,得到身高频数分布直方图如右,已知该校有学生1500人,则可以估计出该校身高位于160cm 至165cm 之间的学生大约有 人. 答案:30010.为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测量,所得数据整理后列出了频数分布表,并画了部分频数分布直方图(图、表如下):身高(cm)人数(个)181512 9 6 30 145.5 149.5 153.5 157.5 161.5 165.5 169.5根据以上图表,回答下列问题:(1)M =_______,m =_______,N =_______,n =__________;(2)补全频数分布直方图.答案:(1) 60 6 1 0.30 (2) 略能力提升12.某篮球队队员年龄结构直方图如图所示,根据图中信息,可知该队队员年龄的中位数为………………………………………………………………………………………………( )A .18岁B .21岁C .23岁D .19.5岁分组 频数 频率 145.5~149.5 30.05149.5~153.5 90.15153.5~157.5150.25157.5~161.518 n161.5~165.590.15165.5~169.5m 0.10合计M N解析:样本容量为1+2+3+2+2=10,因此中位为第5、6个数据21岁的平均数,仍为21岁.答案:B13.红星中学团委为汶川地震灾区组织献爱心捐献活动,小明对本班同学的捐款情况进行了统计,其中捐10元的人数占全班总人数的40%.小明还绘制了频数分布直方图.则小明所在班级同学有人,本次捐款的中位数是____元.答案:50 35解:(1)12÷(0.12+96%-1)=150人.(2) 第三组频率:(0.12+96%-1)÷4×17=0.34;第四组频率:(0.12+96%-1)÷4×15=0.30.优秀率:1-0.12-0.34-0.30=24%. (3) 76-150×(0.12+0.34)=7人.15.九(3)班学生参加学校组织的“绿色奥运”知识竞赛,老师将学生的成绩按10分的组距分段,统计每个分数段出现的频数,填入频数分布表,并绘制频数分布直方图.九(3)班“绿色奥运”知识竞赛成绩频数分布表(1)频数分布表中a= ,b= ;(2)把频数分布直方图补充完整;(3)学校设定成绩在69.5分以上的学生将获得一等奖或二等奖,一等奖奖励作业本15本及奖金50元,二等奖奖励作业本10本及奖金30元,已知这部分学生共获得作业本335本,请你求出他们共获得的奖金.解:(1) 2 0.125 (2)图略(3)由表得,有29名同学获得一等奖或二等奖.设有x名同学获得一等奖, 则有(29-x)名同学获得二等奖,根据题意得151029335x x+-=()解得x=9 ∴ 50x+30(29-x)=1050 答:他们得到的奖金是1050元.创新应用16. 数学老师将本班学生的身高数据(精确到l厘米)交给甲、乙两同学,要求他们各自独立地绘制一幅频数分布直方图.甲绘制的如图①所示,乙绘制的如图②所示,经确认,甲绘制的图是正确的,乙在整理数据与绘图过程中均有个别错误.请回答下列问题:(1)该班学生有多少人?(2)甲同学身高为165厘米,他说:“我们班上比我高的人不超过1/4”.他的说法正确吗?说明理由.(3)写出乙同学在整理或绘图过程中的错误(写出一个即可).(4)设该班学生的身高数据的中位数为a,试写出a的值.分数段(分)49.5~59.559.5~69.569.5~79.579.5~89.589.5~99.5组中值(分)54.5 64.5 74.5 84.5 94.5 频数 a 9 10 14 5 频率0.050 0.225 0.250 0.350 b人数捐款金额2015105九(3)班“绿色奥运”知识竞赛成绩频数分布直方图54.5 64.5 74.5 84.5 94.5频数(人)成绩(分)26810121491014。
7.4 频数分布表和频数分布直方图分层练习考查题型一从频数分布表、频数分布直方图中获取信息解决实际问题1.某面粉厂准备确定面粉包装袋的规格,市场调查员小李随机选择三家超市进行调查,收集三家超市一周的面粉销售情况,并整理数据、做出如图所示的统计图,则该面粉厂应选择面粉包装袋的规格为()A.2kg/包B.3kg/包C.4kg/包D.5kg/包2.“共享单车”为人们提供了一种经济便捷、绿色低碳的共享服务,成为城市交通出行的新方式,小文对他所在小区居民当月使用“共享单车”的次数进行了抽样调查,并绘制成了如图所示的频数分布直方图(每一组含前一个边界值,不含后一个边界值),则下列说法正确的是()A.小文一共抽样调查了20人B.样本中当月使用“共享单车”40~50次的人数最多C.样本中当月使用“共享单车”不足30次的人数有14人D.样本中当月使用次数不足30次的人数多于50~60次的人数3.体育委员统计了全班女生立定跳远的成绩,列出频数分布表如下:已知跳远距离1.8米以上为优秀,则该班女生获得优秀的频率为_ .4.为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中挑选身高相差不多的40名学生参加比赛.根据这63名学生身高x(cm)的频数分布直方图(每组数据含最小值,不含最大值),分析可得参加比赛的学生身高x的合理范围是_ .5.如图是八年级某班50名学生身高(精确到1cm)的频数分布直方图(每组包含最小值,不包含最大值),从左起第一、二、三、四个小长方形的高的比是1:3:5:1,则身高在170cm 及170cm以上的学生的人数为.考查题型二列频数分布表、绘制频数分布直方图1.对频数分布直方图的下列认识,不正确的是()A.每小组条形图的横宽等于这组的组距B.每小组条形图的纵高等于这组的频数C.每小组条形图的面积等于这组的频率D.所有小组条形图的个数等于数据分组整理的组数2.南京某校八年级体育课上,体育老师统计了全班同学60秒跳绳的次数,发现跳绳次数最多的同学是185个,跳绳次数最少的同学是140个,为了分析数据需要列频数分布表,规定组距为6,那么组数是()A.6B.7C.8D.93.为了解某校学生每周课外阅读时间的情况,随机抽取该校a名学生进行调查,获得的数据整理后绘制成统计表如下:表中4≤x<6组的频数b满足25≤b≤35.下面有四个推断:①表中a的值为100;②表中c的值可以为0.31;③这a名学生每周课外阅读时间的中位数一定不在6~8之间;④这a名学生每周课外阅读时间的平均数不会超过6.所有合理推断的序号是______________.4.2022年12月4日是我国第22个“法制宣传日”,我校举行了主题“学法,知法,懂法,守法”的普法知识竞赛.为了了解本次知识竞赛成绩的分布情况,从参赛学生中随机抽取了150名学生的初赛成绩进行统计,得到如下两幅不完整的统计图表.(1)表中a=___________,b=___________;(2)请补全频数分布直方图:(3)若80分以上为优秀,该校现有1200名学生,请你估计我校成绩优秀的学生有多少名?(4)结合以上信息,请你给该校关于普法方面提出一条合理化的建议.考查题型三综合频数分布直方图(频数分布表)与扇形统计图获取需要的信息1.“俭以养德”是中华民族的优秀传统,时代中学为了对全校学生零花钱的使用进行正确引导,随机抽取50名学生,对他们一周的零花钱数额进行了统计,并根据调查结果绘制了不完整的频数分布表和扇形统计图,如图所示:组别零花钱数额x/元频数一x≤10二10<x≤1512三15<x≤2015四20<x≤25a五x>255关于这次调查,下列说法正确的是()A.总体为50名学生一周的零花钱数额B.五组对应扇形的圆心角度数为36°C.在这次调查中,四组的频数为6D.若该校共有学生1500人,则估计该校零花钱数额不超过20元的人数约为1200人2.小周是一位运动达人,他通过佩戴智能手环来记录自己一个月(30天)的每日行走步数(单位:千步),并绘制成右面的统计图.根据统计图提供的信息,下列推断不合理...的是()A.每日行走步数为4~8千步的天数占这个月总天数的10%B.每日行走步数为8~12千步的扇形圆心角是108°C.小周这个月超过一半的天数每日行走步数不低于12000步D.小周这个月行走的总步数不超过324千步3.为了更好地开展全民健身,建设健康中国,某社区随机抽取了若干居民,对其健身情况进行抽样调查.将被调查的居民每天的健身时间t(min)分为5组,绘制如下的不完整的健身时间频数分布表和扇形统计图.根据上述信息,解答下列问题:(1)在扇形统计图中,C组对应的圆心角为直角,频数分布表中a的值是______;(2)在频数分布表中,m的值为______,在扇形统计图中,A组的圆心角为______;(3)在本次统计中,中位数落在______组;(4)若该社区共有3万人,利用本次抽样调查的结果,可估计该社区锻炼时间不少于45分钟的人数为______万人.4.菲尔兹奖是国际上有崇高声誉的一个数学奖项.晓刚统计了连续几年共20位菲尔兹奖得主的年龄,整理并绘制成如下统计图.根据以上图表,解答下列问题:(1)m=_____________,n=_____________,并补全频数分布直方图;(2)在扇形统计图中,获奖年龄在B组的人数约占获奖总人数的_____________%,C组的圆心角度数为_____________°;(3)根据统计图描述这些数学家获得菲尔兹奖时年龄的分布特征.1.唐同学去年暑假随爸爸去成都大熊猫繁殖基地看熊猫,发现整个基地的熊猫都未出熊猫内室,当天的温度有33度,他了解到熊猫的外出活动与室外温度有关,因此通过一年(以365天计算)的观察,对熊猫“花花”外出活动时的温度(以0℃至40℃为监测温度区间)进行了调查,并制作了如下图所示的频数分布表与直方图:请根据图表提供的信息,解答下列问题:(1)在频数分布表中,求出a=______,b=______;并补全频数直方图.(2)熊猫最喜欢外出活动时的温度区间为______;(3)成都的全年每个月的平均温度如下表:你认为哪个月看熊猫最合适,为什么?2.区政府想了解某镇的经济状况,用简单随机抽样的方法,在130户家庭中抽取20户调查过去一年的收入(单位:万元),结果如下:1.3,1.7,2.4,1.1,1.4,1.6,1.6,2.7,2.1,1.5,0.9,3.2,1.3,2.1,2.6,2.1,1.0,1.8,2.2,1.8(1)将上述数据进行分组整理,列出频数分布表,请补充;(2)根据频数分布表绘制频数分布直方图和扇形统计图,请补全;(3)求扇形统计图中百分比最大部分所对应的扇形的圆心角的度数;(4)如果把年收入低于1.3万元的视为“低收入家庭”,试估计该镇“低收入家庭”的户数.。
《直方图》典型例题例1. 某区七年级有3000名学生参加“安全伴我行知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分(得分取正整数,满分为100分)进行统计.分组 频数 频率 49.5~59.5 10 59.5~69.5 16 0.08 69.5~79.5 0.20 79.5~89.5 62 89.5~100.5720.36请你根据不完整的频率分布表,解析下列问题: (1)补全频数分布直方图;(2)若将得分转化为等级,规定得分低于59.5分评为“D ”,59.5~69.5分评为“C ”,69.5~89.5分评为“B ”,89.5~100.5分评为“A ”.这次全区七年级参加竞赛的学生约有多少学生参赛成绩被评为“D ”?如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩被评为“A ”、“B ”、“C ”、“D ”哪一个等级的可能性大?请说明理由. 思路探索:(1)直方图缺第一组和第三组,通过计算可知,第一组的频率为0.05,第三组的频数为20,我们可根据第一、三两组的频数10、20画出两组的直方图.(2)这名学生的成绩被评为“A ”、“B ”、“C ”、“D ”哪一个等级的可能性大?可转化为“被评为“A ”、“B ”、“C ”、“D ”哪一个等级的频率较大”频率大的可能性就大. 解析:(1)图略 (2)由表知:评“D ”的频率是10120020,由此估计全区七年级参加竞赛的学生约120×3000=150(人)被评为“D ”∵P (A )=0.36,P (B )=0.51,P (C )=0.08,P (D )=0.05,∴P (A )>P (B )>P (C )>P (D ),∴随机抽查一名参赛学生的成绩等级“B ”的可能性大.规律总结:运用直方图解题,要综合直方图的特点和频率、频数的知识综合起来解题. 例 2. 某市对当年初中升高中数学考试成绩进行抽样分析,试题满分100分,将所得成绩(均为整数)整理后,绘制了如图所示的统计图,根据图中所提供的信息,回答下列问题: (1)共抽取了多少名学生的数学成绩进行分析?(2)如果80分以上(包括80分)为优生,估计该市的优生率为多少?(3)该年全市共有22000人参加初中升高中数学考试,请你估计及格(60分及60分以上)人数大约为多少?思路探索:(1)计算学生总数的时候,我们可以把各组频数进行相加即可得出:共抽取了300名学生的数学成绩进行分析;(2)在这300名学生中,共有105名学生80分以上(包括80分),20 10 30 40 50 60 70 80 166272频数成绩()49.5 59.5 69.5 79.5 89.5 100.5在样本里面的优生率为35%,根据样本估计总体可知,该市的优生率为大约是35%;(3)在这300个学生中,60分及60分以上人数为210人,频率为0.7, 22000×0.7=15400(人),所以全市60分及60分以上人数估计为15400人.规律总结:利用样本估计总体的时候,只要样本的选取具有代表性和广泛性,根据样本的频率就可以估计总体的频率.。
图3
数学: 频数分布表和频数分布直方图
一、选择题
1、如图1是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形分布图(两图都不完整),则下列结论中错误的是( ) A.该班总人数为50人 B.步行人数为30人
C.骑车人数占总人数的20%
D.
2、体育老师对九年级(1)班学生“你最喜欢的体育项目是什么(只写一项)”的问题进行了调查,把所得数据绘制成频数分布直方图(如图2).由图可知,最喜欢篮球的频率是( )
A .
B .0.24
C .
D .
二、解答题
3、每年的6月6日是全国的爱眼日,让我们行动起来,爱护我们的眼睛!某校为了做好全校2000名学生的眼睛保健工作,对学生的视力情况进行一次抽样调查,下图3是利用所得数据绘制的频数分布直方图(视力精确到).
请你根据此图提供的信息,回答下列问题: (1)本次调查共抽测了 名学生;
(2)视力在及以上的同学约占全校学生比例为多少
5
15 10 20 2
乘车
步行
骑车
步行 30%
乘车50% 骑车 图1
九年级(1)班学生最喜欢体育项目的频数分布直方图
频数(人)
24
20
16 12 8 4
O
4 12 6 20 8
体育项目 羽毛球 乒乓球 跳绳 篮球 其它 图2
(3)如果视力在第1,2,3组范围内(视力在以下)均属视力不良,应给予治疗、矫正.请计算该校视力不良学生约有多少名
4、“五一”期间,新华商场贴出促销海报,内容如图4.在商场活动期间,王莉和同组同学随机调查了部分参与活动的顾客,统计了200人次的摸奖情况,绘制成如图5的频数分布直方图.
人次
“五一”大派送
为了回馈广大顾客,
本商场在4月30日至5
月6日期间举办有奖购
物活动.每购买100元的
商品,就有一次摸奖的机
会,奖品为:
一等奖:50元购物券
图4购物券
图5
(1)补齐频数分布直方图;
(2)求所调查的200人次摸奖的获奖率;
(3)若商场每天约有2000人次摸奖,请估算商场一天送出的购物券总金额是多少元
5、为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图8),请结合图形解答下列问题.
(1) 指出这个问题中的总体.
(2) 求竞赛成绩在79.5~89.5这一小组的频率.
(3) 如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.
6、中考体育测试中,1分钟跳绳为自选项目.某中学九年级共有50名女同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进行统计后分为A B C D ,,,四等,并绘制成下面的频数分布表(注:6~7的意义为大于等于6分且小于7分,其余类似)和扇形统计图(如图9).
频数分布表
等级 分值 跳绳(次/1分钟)
频数 A 9~10 150~170 4 8~9 140~150 12 B 7~8 130~140 17 6~7 120~130 m C 5~6 110~120 0 4~5 90~110 n D
3~4 70~90 1 0~3
0~70
(1)求m n ,的值;
(2)在抽取的这个样本中,请说明哪个分数段的学生最多
请你帮助老师计算这次1分钟跳绳测试的及格率(6分以上含6分为及格).
7、某县七年级有15000名学生参加安全应急预案知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了400名学生的得分(得分取正整数,满分100分)进行统
96图8
图9
计:
请你根据不完整的频率分布表. 解答下列问题: (1)补全频率分布表;
(2)补全频数分布直方图;
(3)若将得分转化为等级,规定得分低于分评为“D ”,~分评为“C ”,
~分评为“B ”,~分评为“A ”,这次15000名学生中约有多少人评为“D ”如果随机抽取一名参赛学生的成绩等级,则这名学生的成绩评为“A ”、“B ”、“C ”、“D ”哪一个等级的可能性大请说明理由.
8、为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测
,并画了部分频数分布直方图(图、表如下):
cm)
图11
成绩(分)
图10
根据以上图表,回答下列问题:
(1)M=_______,m=_______,N=_______,n=__________;
(2)补全频数分布直方图.
9、为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行处理(设所测数据是正
组别噪声声级分组频数频率
1——4
2——a
3——10
4——b c
5——6
合计40
根据表中提供的信息解答下列问题:
(1)频数分布表中的a =________,b=________,c =_________;
(2)补充完整频数分布直方图;
(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个
10、八年级(1)班开展了为期一周的“孝敬父母,帮做家务”社会活动,并根据学生帮家长做家务的时间来评价学生在活动中的表现,把结果划分成A B C D E
,,,,五个等级.老师通过家长调查了全班50名学生在这次活动中帮父母做家务的时间,制作成如下的频数分布表和扇形统计图.
图12
(1)求a b ,的值;
(2)根据频数分布表估计该班学生在这次社会活动中帮父母做家务的平均时间;
(3)该班的小明同学这一周帮父母做家务2小时,他认为自己帮父母做家务的时间比班级里一半以上的同学多,你认为小明的判断符合实际吗请用适当的统计量说明理由.
B A
E D
C 40% (第22题)
学生帮父母做家务活动评价等级分布扇形统计图
参考答案
1、B ;
2、D ;
3、解:(1)由条形统计图可得,本次调查共抽测学生人数为:10+20+30+40+60=160 (2)视力在及以上的人数为40+20=60(人),所占的比例为:
6031608= (3)视力在第1,2,3组的人数在样本中所占的比例为1005
1608
=.
∴该校视力不良学生约有
5
200012508
⨯=(人).
4、解:⑴获得20元购物劵的人次:200-(122+37+11)=30(人次). 补齐频数分布直方图,如图所示:
⑵摸奖的获奖率:%39%10020
78
=⨯.
⑶675.6200
501120305370122=⨯+⨯+⨯+⨯=x .
×2000=13350(元)
估计商场一天送出的购物券总金额是13350元.
5、 解: (1) 总体是某校2000名学生参加环保知识竞赛的成绩.
(2)
1515
0.256912151860
==++++
答:竞赛成绩在79.5~89.5这一小组的频率为0.25.
(3)
9
200030069121518
⨯=++++ 答:估计全校约有300人获得奖励.
6、解:(1)根据题意,得50(412171)16m n +=-+++=;
购物券
人次
30
171006450m
+⨯=%%. 则161732
m n m +=⎧⎨+=⎩①②
解之,得15
1
m n =⎧⎨
=⎩
(2)7~8分数段的学生最多
及格人数412171548=+++=(人),及格率48
1009650
=
⨯=%% 答:这次1分钟跳绳测试的及格率为96%. 7. 解:(1)略; (2)略 ;
(3)150000.05750⨯=(人) B Q 的频率为0.20.310.51+=,大于A 、C 、D 的频率,故这名学生评为B 等的可能性最大.
8、略
9、(1)a=8,b=12,c=.(每对一个给1分) (2)略
(3)算出样本中噪声声级小于75dB 的测量点的频率是 ×200=60
∴在这一时噪声声级小于75dB 的测量点约有60个. 10、略。