光伏逆变器简介
- 格式:doc
- 大小:45.00 KB
- 文档页数:1
光伏逆变器发展史概述及解释说明1. 引言1.1 概述光伏逆变器是将太阳能电池板产生的直流(DC)电能转换为交流(AC)电能的关键设备。
它在太阳能发电系统中扮演着重要角色,起到将直流电能转化为适合送入电网或供给家庭、企业使用的交流电能的作用。
随着太阳能行业的快速发展和技术进步,光伏逆变器也经历了长足的发展和改进。
1.2 文章结构本文通过对光伏逆变器的发展历史进行概述和解释说明其基本原理,全面分析了光伏逆变器所经历的初期发展阶段、技术突破与进步以及应用领域扩大与影响力增强等方面。
同时,本文还从现有技术应用和市场情况分析、未来发展方向及挑战分析以及预测行业未来趋势和发展空间等角度对光伏逆变器的现状和未来进行了详细探讨。
最后,在结论部分对光伏逆变器发展历史进行总结回顾,并评价相关技术以及提出针对读者的启发和建议。
1.3 目的本文的目的是通过对光伏逆变器的发展历程进行概述,解释其基本原理,分析目前行业现状和未来趋势,以期为读者提供一种全面了解光伏逆变器发展史以及行业前景的视角。
同时,本文还将通过对相关技术的评价和未来发展方向的探讨,为读者提供启发和建议,有助于他们更好地理解光伏逆变器以及太阳能行业,并在实践中进行合理应用。
2. 光伏逆变器发展史2.1 初期发展阶段光伏逆变器作为将直流电转换为交流电的装置,在其初期的发展阶段面临着一系列的挑战和限制。
最早的光伏逆变器采用简单的硬开关结构,效率较低,体积庞大且重量沉重。
这些逆变器主要应用于小规模独立光伏系统,如太阳能灯、计算器等。
2.2 技术突破与进步随着科技的进步和对可再生能源需求的增长,光伏逆变器经历了一系列技术突破和进步。
首先是功率晶体管和IGBT(绝缘栅双极晶体管)等新型元件的应用,使得逆变器具备了更高效率和更小尺寸的特点。
此外,控制策略以及PWM(脉宽调制)技术的引入也大大提升了逆变器性能。
2.3 应用领域扩大与影响力增强随着光伏电站规模不断扩大以及分布式发电的快速发展,光伏逆变器不仅在独立光伏系统中得到广泛应用,还被大规模光伏电站采用。
光伏逆变器原理
光伏逆变器是利用太阳光的能量来运行的一种设备,它具有可靠性强、无排放、操作简单、易于控制等特点。
它的工作原理主要是将光转换为电能来发电。
具体来说,光伏逆变器主要具有电路设计、模块阵列、显示控制、变流直流输出、电声装置等功能。
在电路设计中,它采用开关电源方式模块,可以将微弱的输入电压转换为一致的高压电流,从而满足发电需求。
模块阵列依靠其微型光伏电池模组的阵列,将太阳能转换为电力,并且通过整流技术输出电能。
另外,显示控制可以将太阳能直接转换成电压,可以定制特定的输出电压,来满足客户的需求。
而变流直流输出可以控制电压的输出,以达到满足用电设备的需求。
最后,也会装有一个声学装置,在发生故障时及时提醒用户,以保护设备。
从上述可以看出,光伏逆变器工作原理虽然简单,但是能够轻松转化太阳能为
电能,满足现代电力的需求,它是一种当今非常经济实用的新型发电设备。
光伏组件逆变器技术参数光伏(PV)逆变器是将光伏阵列产生的直流(DC)电能转换为交流(AC)电能的装置。
它是光伏发电系统中至关重要的组件之一,直接影响到系统的发电效率和可靠性。
逆变器的技术参数涉及到以下几个方面:1.输入电压范围:逆变器的输入电压范围通常是根据光伏阵列设计的最大输出电压来确定的。
它应能够适应不同光照条件下光伏阵列的电压变化。
常见的输入电压范围为200V~1000V。
2.额定功率:逆变器的额定功率是指它能够处理的最大输入功率。
它应与光伏阵列的设计功率匹配。
逆变器的额定功率通常以瓦特(W)为单位,常见的额定功率有1kW、3kW、5kW等。
3.最大效率:逆变器的最大效率是指在最佳工作条件下,逆变器能够将输入的直流电能转换为输出的交流电能的百分比。
这个参数直接关系到光伏系统的总体发电效率。
常见的逆变器最大效率为96%~99%。
4.MPPT(最大功率点跟踪):MPPT是逆变器的关键技术之一,它可以自动追踪光伏阵列的最大功率点,从而最大化光伏系统的发电能力。
MPPT技术可以根据光照变化自动调整光伏阵列的工作点,以获得最佳的发电效果。
5.数字化设计:逆变器的数字化设计可以实现更高的精度、更快的响应速度和更好的可靠性。
数字化设计还能够提供更多的监测和控制功能,方便运维人员对光伏发电系统进行实时监测和管理。
6.防雷保护:逆变器应具备良好的防雷保护措施,以防止由于雷击或电网故障引起的过电压对逆变器的损坏。
7.相电流平衡:逆变器应能够平衡交流电网络中的三相电流,以提高电网的负载能力和稳定性。
8.温度范围:逆变器的工作温度范围应能够适应不同气候条件下的温度变化,以保证逆变器的正常工作。
总之,光伏逆变器的技术参数主要包括输入电压范围、额定功率、最大效率、MPPT等关键指标。
这些参数直接影响逆变器的性能和发电效率,也是选购逆变器时需要重视的因素。
除了这些参数外,逆变器的数字化设计、防雷保护、相电流平衡和工作温度范围等方面的技术也需要考虑。
三晶光伏逆变器Sununo-TL3KA/4KA简介
来源:三晶新能源
一、简介
此产品的主要优势是实现两路输入
的独立MPPT控制、实时跟踪太阳
能电池板功率,并通过精准高速的
MPPT算法、在无变压器运行时效率
高达97.7%,最大限度地提高了系统
的发电量和能量储集。
特别适用于
双朝向屋顶设备(比如东向和西向)。
宽输入电压范围使其适用于小型组
串低压设备。
完全密封的设计使这
款室外逆变器能够适应恶劣的环境
状况。
这款产品为设备设计提供了最大的灵活性,成为了小规模光伏电站的首选。
二、主要特性
■高转换效率97.3%-98.1%
■宽电压输入范围,适合不同的天气和地形
■MPPT效率高达99.9%
■IP65保护
■RS485通讯接口,易于连接电脑
■高效的拓扑结构和模块化设计
■可靠的孤岛防护技术
■TUV, CE, SAA, G83证书
■多国语言显示
■重量轻,设计紧凑,易于安装
■自然冷却,无风扇设计
三、功能参数表。
大功率光伏逆变器(100kwp~500kwp)一、光伏逆变器简介逆变器又称电源调整器,根据逆变器在光伏发电系统中的用途可分为独立型电源用和并网用二种。
根据波形调制方式又可分为方波逆变器、阶梯波逆变器、正弦波逆变器和组合式三相逆变器。
对于用于并网系统的逆变器,根据有无变压器又可分为变压器型逆变器和无变压器型逆变器。
(1)并网光伏发电系统并网式光伏发电系统由光伏组件、并网逆变器、计量装置及配电系统组成。
光伏组件将太阳光能转换为直流电能,再由逆变器将直流电能转换为高品质的正弦波电流,直接馈入电网或者做为本地用电设备的电力来源。
(2)离网光伏发电系统离网式光伏发电系统由光伏组件、控制器、蓄电池、离网逆变器及配电系统组成,与并网式光伏发电系统的工作原理十分相似,唯一不同的是离网系统输出的电力被直接消耗使用而不输送到电网中。
离网式系统中配备有蓄电池,用于储存电能,可以满足阳光不足状态下的发电需求。
通过控制器可以实现对蓄电池的控制。
对于无法接入公共电网的偏远地区,离网式光伏发电系统是解决用电需求最完。
二、产品型号ESI——————————光伏逆变器5———————————额定输入电压 1.24vdc 2.48vdc 3.450vdc 3———————————输出电压 2.220vac 3.380vacB———————————变压器功能 B可并联 N不可并联100——————————额定输出功率 100kw、 250kw、 500kwX———————————厂商代码 X希望电子有限公司T———————————T有隔离变压器 N无隔离变压器三、执行标准.GB/T 19939光伏系统并网技术要求.GB/T 20046光伏(PV)系统电网接口特性.GB/T 20513光伏系统性能监测测量、数据交换和分析导则. GB/Z 19964光伏发电站接入电力系统的技术规定. GB/T 3859.1半导体变流器基本要求的规定. GB/T 3859.2半导体变流器应用导则. GB 17625.2 电磁兼容限值对额定电流不大于 16A的设备在低压供电系统中产生的电压波动和闪烁的限制. GB/Z 17625.3 电磁兼容限值对额定电流大于 16A的设备在低压供电系统中产生的电压波动和闪烁的限制. GB/T 17626.2电磁兼容试验和测量技术静电放电抗扰度试验. GB/T 17626.3 电磁兼容试验和测量技术射频电磁场辐射抗扰度试验. GB/T 17626.4 电磁兼容试验和测量技术电快速瞬变脉冲群抗扰度试验. GB/T 17626.5电磁兼容试验和测量技术浪涌(冲击)抗扰度试验. GB/T 17626.6 电磁兼容试验和测量技术射频场感应的传导骚扰抗扰度. GB/T 17626.11 电磁兼容试验和测量技术电压暂降、短时中断和电压变化的抗扰度试验. GB 17799.3 电磁兼容通用标准居住、商业和轻工业环境中的发射标准. GB 17799.4电磁兼容通用标准工业环境中的发射标准. GB 4208外壳防护等级(IP代码). GB/T 191包装储运图示标志四、产品结构及工作原理逆变器是一种由半导体器件组成的电力调整装置,主要用于把直流电力转换成交流电力。
光伏逆变器bat光伏逆变器(Photovoltaic Inverter,简称PV逆变器)是将光伏发电系统产生的直流电能转换为交流电能的设备。
它是光伏发电系统中重要的组成部分,起到将太阳能电池板产生的直流电转换为交流电以供给家庭、工业和商业用途的作用。
下面将从工作原理、类型、特点和应用等方面对光伏逆变器进行详细介绍。
一、工作原理:光伏逆变器的工作原理可以简单概括为:将直流输入转换为交流输出。
具体来说,光伏逆变器通过内部的DC/AC转换装置,将太阳能电池板产生的直流电转换为与公共电网相同频率和相位的交流电。
在工作过程中,光伏逆变器首先会对太阳能电池板输出的直流电进行整流处理,即将其转换为稳定的直流信号。
经过滤波和调整后,直流信号会被送入一个高频开关装置(如IGBT),通过高频开关装置对直流信号进行调制,并生成交流信号。
经过滤波和输出级驱动等处理,交流信号被输出到公共电网中。
二、类型:1. 单相光伏逆变器:适用于小型家庭和商业用途,输出功率一般较小,通常在1kW到10kW之间。
单相光伏逆变器的输入端只有一个正负极,输出端是两个交流相位。
2. 三相光伏逆变器:适用于大型商业和工业用途,输出功率较大,通常在10kW以上。
三相光伏逆变器的输入端有三个正负极,输出端有三个交流相位。
3. 微型光伏逆变器:一般用于小型家庭和农村地区的太阳能发电系统。
微型光伏逆变器体积较小,安装方便,但输出功率较低。
4. 集中式光伏逆变器:多个太阳能电池板串联连接到集中式光伏逆变器上,然后再将其转换为交流电输出。
集中式光伏逆变器具有较高的效率和稳定性。
5. 分布式光伏逆变器:每个太阳能电池板都单独连接一个分布式光伏逆变器进行转换,然后将交流电输出到公共电网中。
分布式光伏逆变器具有较高的灵活性和可靠性。
三、特点:1. 高效率:光伏逆变器采用先进的转换技术,具有较高的能量转换效率。
通常能够达到90%以上的转换效率,最高可达到98%。
2. 可靠性:光伏逆变器具有良好的稳定性和可靠性,能够在各种环境条件下正常工作。
光伏逆变器工作原理通俗易懂
光伏逆变器是将太阳能电池板产生的直流电转换为交流电的设备。
它的工作原理可以用下面的简单步骤来解释:
1. 太阳能电池板吸收阳光并将其转化为直流电流。
太阳能电池板是由许多个太阳能电池组成的。
当阳光照射到太阳能电池板上时,太阳能电池会吸收光的能量,将其转化为电能,产生直流电流。
2. 直流电流进入光伏逆变器。
直流电需要经过逆变器进行转换,以便将其变为可以在家庭或工业用电网络中使用的交流电。
光伏逆变器是一个通过电子元件来改变电流类型的设备。
3. 光伏逆变器使用交流转换电路将直流电转换为交流电。
它采用一种称为PWM(脉宽调制)或MPPT(最大功率点跟踪)
的技术,根据太阳能电池板产生的电压和电流状况,调整电流和电压,确保在输出电流和电压的范围内实现最大功率输出。
4. 交流电进入电网供电。
经过逆变器转换后的交流电可以直接连接到家庭或工业用电网络中。
它可以为家庭或工业设备提供电力,用于照明、冷暖空调、电脑和其他用电设备。
总之,光伏逆变器通过将太阳能电池板产生的直流电转换为交流电,实现了可以在家庭和工业用电网络中使用的电力供应。
光伏逆变器emi原理概述说明以及概述1. 引言1.1 概述光伏逆变器作为太阳能发电系统中的核心设备,被广泛应用于各种规模的光伏发电项目中。
它负责将太阳能电池板所产生的直流电转换成交流电,并将其输送到实际用电设备中。
然而,在逆变过程中,会产生一种被称为电磁干扰(EMI)的现象。
这种干扰可能对其他电子设备、通信系统和无线网络造成负面影响,因此需要对光伏逆变器的EMI原理进行深入的了解。
1.2 文章结构本文将围绕光伏逆变器EMI原理展开探讨。
首先,将介绍光伏逆变器的基本概念和作用,以及EMI产生的相关背景知识。
随后,详细阐述EMI原理及其重要性,并分析其对设备和系统性能的潜在影响。
接着,将着重讨论光伏逆变器在EMI方面存在的主要问题,并提出解决这些问题的方法和技术。
最后,在结论部分对全文进行总结,并展望未来在该领域的研究方向。
1.3 目的本文旨在为读者提供一个全面和深入理解光伏逆变器EMI原理的指南。
通过对EMI产生机制、影响因素以及解决方法进行详细阐述,读者将能够更好地理解光伏逆变器在实际应用中所面临的问题,并学习到如何有效减少或抑制EMI的技术手段。
同时,本文也将强调光伏逆变器EMI问题的重要性,并展望未来在该领域的研究方向,以期为相关研究和实践提供有价值的参考和借鉴。
2. 光伏逆变器EMI原理概述2.1 光伏逆变器介绍光伏逆变器是将太阳能电池板产生的直流电转换为交流电的设备。
它在光伏发电系统中起着至关重要的作用,将直流电转换为交流电以供给家庭和商业用途。
然而,光伏逆变器在工作过程中会产生电磁干扰,也称为EMI(Electromagnetic Interference),对其他电子设备和通信设备造成干扰。
因此,了解光伏逆变器的EMI原理对我们提高系统性能、减少干扰至关重要。
2.2 EMI概念和影响EMI指的是在一个系统中出现的电磁辐射或者通过传导方式引入到其他系统中的不希望的信号。
光伏逆变器所产生的EMI会对附近的通信设备、无线网络以及其他敏感设备造成干扰,甚至可能导致其正常运行受阻。
光伏逆变器概述(完整版)光伏逆变器概述⼯作原理及特点⼯作原理:逆变装置的核⼼,是逆变开关电路,简称为逆变电路。
该电路通过电⼒电⼦开关的导通与关断,来完成逆变的功能。
特点:(1)要求具有较⾼的效率。
由于⽬前太阳能电池的价格偏⾼,为了最⼤限度的利⽤太阳能电池,提⾼系统效率,必须设法提⾼逆变器的效率。
(2)要求具有较⾼的可靠性。
⽬前光伏电站系统主要⽤于边远地区,许多电站⽆⼈值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如:输⼊直流极性接反保护、交流输出短路保护、过热、过载保护等。
(3)要求输⼊电压有较宽的适应范围。
由于太阳能电池的端电压随负载和⽇照强度变化⽽变化。
特别是当蓄电池⽼化时其端电压的变化范围很⼤,如12V的蓄电池,其端电压可能在10V~16V之间变化,这就要求逆变器在较⼤的直流输⼊电压范围内保证正常⼯作。
光伏逆变器分类有关逆变器分类的⽅法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使⽤的半导体器件类型不同,⼜可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。
根据逆变器线路原理的不同,还可分为⾃激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。
根据应⽤在并⽹系统还是离⽹系统中⼜可以分为并⽹逆变器和离⽹逆变器。
为了便于光电⽤户选⽤逆变器,这⾥仅以逆变器适⽤场合的不同进⾏分类。
1、集中型逆变器集中逆变技术是若⼲个并⾏的光伏组串被连到同⼀台集中逆变器的直流输⼊端,⼀般功率⼤的使⽤三相的IGB T功率模块,功率较⼩的使⽤场效应晶体管,同时使⽤DSP转换控制器来改善所产出电能的质量,使它⾮常接近于正弦波电流,⼀般⽤于⼤型光伏发电站(>10kW)的系统中。
最⼤特点是系统的功率⾼,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采⽤集中逆变的⽅式会导致逆变过程的效率降低和电户能的下降。
光伏逆变器的原理
光伏逆变器是一种电力电子设备,主要用于将光伏阵列收集到的直流电能转换为交流电能供电使用。
它是太阳能发电系统中至关重要的部分,其核心功能是将太阳能电池板输出的直流电能转换为交流电能,以满足家庭、工业或商业用电需求。
光伏逆变器的工作原理主要包括以下几个步骤:
1. 直流输入:光伏逆变器首先接收直流电能,这些电能来自于太阳能电池板的输出。
太阳能电池板将太阳辐射转化为直流电能,并通过电缆传输到逆变器中。
2. 最大功率点追踪(MPPT):光伏逆变器会使用最大功率点追踪技术,以获得太阳能电池板的最佳工作点。
这可以确保光伏系统能够在各种太阳辐射条件下获得最大的能量转换效率。
3. 直流-交流转换:逆变器内部通过使用功率电子器件(如MOSFET、IGBT等)将直流电能转换为交流电能。
这需要逆变器将直流电流转换为交流电流,输出正弦波形的交流电能。
4. 滤波和变压:逆变器输出的交流电能需要滤波和变压处理,以确保输出电能的纹波度和频率符合电网要求。
5. 并网连接:光伏逆变器的最终目标是将转换后的交流电能与电网连接,以实现电能供应。
逆变器需要与电网同步并且提供所需的相位和频率。
总的来说,光伏逆变器通过将直流电能转换为交流电能,并将其与电网连接,实现了太阳能电池板产生的电能的有效利用。
它在太阳能发电系统中起到了至关重要的作用,为人们提供了清洁、可再生的电力资源。
晶科光伏逆变器-概述说明以及解释1.引言1.1 概述晶科光伏逆变器是一种将太阳能光伏电池板所产生的直流电转换为交流电的关键设备。
在光伏发电系统中,逆变器的作用十分重要,它能够确保光伏系统的高效运行并将所产生的电能送入电网中。
晶科光伏逆变器具有高效率、稳定性强、输出波形质量高等特点,广泛应用于光伏发电领域。
本文将深入探讨晶科光伏逆变器的原理、技术特点、市场前景以及性能分析,旨在为读者提供了解和认识晶科光伏逆变器的全面视野。
1.2 文章结构文章结构部分主要包括以下内容:1. 引言: 在这部分将会概述本文的主题,介绍晶科光伏逆变器的重要性和背景。
2. 正文:- 晶科光伏逆变器的原理和技术特点: 详细介绍晶科光伏逆变器的工作原理和独特技术特点,包括电路结构、工作模式等方面。
- 晶科光伏逆变器的应用领域和市场前景: 探讨晶科光伏逆变器在光伏发电领域的应用情况,以及未来的市场前景和发展趋势。
- 晶科光伏逆变器的性能和可靠性分析: 分析晶科光伏逆变器在实际运行中的性能表现,包括电能转换效率、稳定性、耐用性等方面的评估。
3. 结论:- 总结: 对整篇文章进行总结,概括主要内容和核心观点。
- 展望: 展望晶科光伏逆变器在未来的发展方向和挑战。
- 结论: 提出对晶科光伏逆变器的评价和建议,为读者提供一个对该技术的全面认识和理解。
文章1.3 目的:本文旨在介绍晶科光伏逆变器的原理、技术特点、应用领域和市场前景,以及对其性能和可靠性进行分析。
通过深入了解晶科光伏逆变器的特点和优势,有助于读者更好地了解该技术在光伏发电领域的应用及发展前景。
同时,通过对其性能和可靠性的分析,可以为行业相关从业者提供参考和借鉴,促进光伏逆变器技术的进步和推广应用。
2.正文2.1 晶科光伏逆变器的原理和技术特点晶科光伏逆变器是一种将直流电能转换为交流电能的电气设备,是太阳能发电系统中的关键部件之一。
其工作原理主要包括三个步骤:首先,光伏电池板将太阳能转化为直流电能;然后,晶科光伏逆变器将这些直流电能转换为交流电能;最后,交流电能经由电网输送到电器设备中供给使用。
光伏逆变器的分类光伏逆变器是将直流电能转换为交流电能的关键设备,广泛应用于太阳能发电系统中。
根据其工作原理和应用领域的不同,光伏逆变器可以分为多种类型。
本文将就光伏逆变器的分类进行详细介绍。
一、按照逆变器拓扑结构分类1. 单相逆变器单相逆变器适用于单相光伏发电系统,其输入电流和输出电流均为单相交流电。
单相逆变器具有结构简单、体积小、成本低的特点,广泛应用于家庭光伏发电系统。
2. 三相逆变器三相逆变器适用于三相光伏发电系统,其输入电流和输出电流均为三相交流电。
三相逆变器具有输出电流平稳、功率传输高效的特点,适用于大型商业光伏发电系统和电网并网应用。
3. 多电平逆变器多电平逆变器通过增加逆变桥臂的数目,将输出电压分解成多个电平,从而减小逆变器输出电压的谐波含量,提高输出电压的质量。
多电平逆变器适用于对输出电压质量要求较高的应用场景,如光伏电站并网。
二、按照逆变器控制方式分类1. 基于PWM控制的逆变器脉宽调制(PWM)控制是目前光伏逆变器中最常用的控制方式之一。
通过控制逆变器开关管的导通和截止时间,使得输出电压近似于正弦波,从而实现对输出电压的控制。
2. 基于MPPT控制的逆变器最大功率点跟踪(MPPT)控制是光伏发电系统中常用的控制策略之一。
光伏逆变器通过监测光伏阵列的电压和电流,实时调整输出电压和电流,以最大化光伏阵列的输出功率。
三、按照逆变器输出类型分类1. 单向逆变器单向逆变器将直流电能转换为单向交流电能输出。
这种逆变器适用于一些只需要单向电流供电的应用场景,如光伏发电系统与电池储能系统的结合。
2. 双向逆变器双向逆变器可以实现直流电能与交流电能的双向转换。
在光伏发电系统中,双向逆变器可以将太阳能转换为交流电注入电网,并在电网停电时将电池储能系统的直流电能转换为交流电供给负载。
光伏逆变器根据其拓扑结构、控制方式和输出类型的不同,可以分为多种类型。
不同类型的光伏逆变器适用于不同的应用场景,满足了不同用户的需求。
光伏招聘网中国光伏、太阳能行业权威招聘网站!!!
光伏逆变器简介
如上所述,逆变器有多种类型,因此在选择机种和容量时需特别注意。
尤其在太阳能发电系统中,逆变器效率
的高低是决定太阳电池容量和蓄电池容量大小的重要因素。
目前光伏逆变器行业国际领军者是德国艾斯玛(SMA)公司,技术处在行业的顶点。
国内比较有实力的并网逆
变器企业有:合肥阳光电源、三晶新能源、中达电通、山亿新能源、北京科诺伟业、艾索新能源等;而离网逆变
器的技术发展相对较成熟,国内已拥有一批技术较领先的企业。
逆变器是一种由半导体器件组成的电力调整装置,主要用于把直流电力转换成交流电力。
一般由升压回路和逆变桥式回路构成。
升压回路把太阳电池的直流电压升压到逆变器输出控制所需的直流电压;逆变桥式回路则把升压后的直流电压等价地转换成常用频率的交流电压。
逆变器主要由晶体管等开关元件构成,通过有规则地让开关元件重复开-关(ON-OFF),使直流输入变成交流输出。
当然,这样单纯地由开和关回路产生的逆变器输出波形并不实用。
一般需要采用高频脉宽调制(SPWM),使靠近正弦波两端的电压宽度变狭,正弦波中央的电压宽度变宽,并在半周期内始终让开关元件按一定频率朝一方向动作,这样形成一个脉冲波列(拟正弦波)。
然后让脉冲波通过简单的滤波器形成正弦波
光伏招聘网http:// 1。