封装可靠性与失效分析讲解学习
- 格式:ppt
- 大小:6.81 MB
- 文档页数:91
封装可靠性失效原因及其改善方案阐述长电科技(滁州)有限公司安徽省滁州市 239000 摘要:可靠性是产品质量的一个重要指标,就是产品在规定的条件下和规定的时间内,完成规定的功能的能力。
确切的讲,一个产品的使用寿命越接近设计寿命,代表可靠性越好。
1、产品的可靠性与规定的条件密切相关。
如产品使用的环境条件、负荷大小、使用方法等。
一般,温度越高、额定负载越大,产品的可靠性就越低。
2、产品的可靠性与规定的时间也有关系。
例如,一般大型桥梁、道路的设计寿命为50~100年。
3、产品的可靠性还与规定的功能有密切的关系。
例如,一个普通的晶体管有反向漏电流、放大倍数、反向击穿电压、特征频率等多项功能。
芯片封装质量直接影响整个器件和组件的性能,随着混合集成电路向着高性能、高密度以及小型化、低成本的方向发展,对芯片的封装技术和可靠性提出了更高的要求。
本文主要阐述了几种可靠性项目及其失效的机理以及封装导致的原因,以便封装生产中规避此类异常发生。
关键字可靠性;质量;可靠性项目;失效机理;封装导致的原因。
背景描述:电子器件是一个非常复杂的系统,其封装过程的缺陷和失效也是非常复杂的。
因此,研究封装缺陷和失效需要对封装过程有一个系统性的了解,这样才能从多个角度去分析缺陷产生的原因。
封装的失效机理可以分为两类:过应力和磨损。
过应力失效往往是瞬时的、灾难性的;磨损失效是长期的累积损坏,往往首先表示为性能退化,接着才是器件失效。
失效的负载类型又可以分为机械、热、电气、辐射和化学负载等。
影响封装缺陷和失效的因素是多种多样的,材料成分和属性、封装设计、环境条件和工艺参数等都会有所影响。
封装缺陷主要包括引线变形、底座偏移、翘曲、芯片破裂、分层、空洞、不均匀封装、毛边、外来颗粒和不完全固化等。
随着应用的要求越来越高,对产品封装可靠性要求也越来越高。
我们要识别一些可靠性项目考核目的、失效机理以及可能导致的原因,以便在前期FMEA中定义,从设计、生产角度来提升质量。
系统级封装的可靠性与失效分析技术研究一、概述随着微电子技术的快速发展,系统级封装(SiP,SysteminPackage)技术已经成为当今集成电路产业的重要发展方向。
SiP技术通过将多个具有不同功能或工艺的芯片及无源元件集成在一个封装体内,实现了系统功能的高度集成化和小型化,从而提高了产品的性能和可靠性。
随着封装密度的不断提高和工艺复杂性的增加,SiP技术的可靠性问题也日益凸显,失效分析技术的研究变得尤为重要。
系统级封装的可靠性主要受到封装材料、工艺、结构以及使用环境等多种因素的影响。
在封装材料方面,不同的材料具有不同的热膨胀系数、机械强度以及化学稳定性,这些差异可能导致封装体在温度变化、机械应力或化学腐蚀等条件下出现失效。
在工艺方面,封装过程中的焊接、封装胶填充等工艺环节可能引入缺陷,导致封装体的性能下降或失效。
封装体的结构设计和使用环境也是影响其可靠性的重要因素。
失效分析技术是研究和解决系统级封装可靠性问题的关键手段。
通过对失效封装体进行详细的物理和化学分析,可以确定失效的原因和机理,为改进封装工艺、优化结构设计以及提高产品可靠性提供重要依据。
目前,失效分析技术主要包括非破坏性分析和破坏性分析两大类。
非破坏性分析技术如射线检测、红外热成像等,可以在不破坏封装体的情况下检测其内部结构和性能。
而破坏性分析技术如开封、切片等,则需要通过破坏封装体来观察和分析其内部结构和失效模式。
本文旨在深入研究系统级封装的可靠性与失效分析技术,通过分析封装体的失效原因和机理,提出有效的可靠性提升方案和失效预防措施,为SiP技术的发展和应用提供有力支持。
1. 系统级封装技术的发展背景与现状随着信息技术的快速发展,电子产品正朝着小型化、集成化、高性能化的方向不断演进。
在这一背景下,系统级封装技术应运而生,成为推动电子产品发展的关键性技术之一。
系统级封装技术是指在单一封装结构内部,将多个裸芯片、元件或组件集成于一体,从而实现电子产品完整的系统或子系统功能。
电子封装中的封闭性与可靠性分析关键信息项:1、封装材料的选择与特性名称:____________________________性能参数:____________________________供应商:____________________________2、封装工艺的流程与规范步骤:____________________________控制参数:____________________________检验标准:____________________________3、封闭性测试方法与标准测试项目:____________________________测试设备:____________________________合格指标:____________________________4、可靠性评估指标与体系指标名称:____________________________计算方法:____________________________目标值:____________________________5、故障分析与解决措施常见故障类型:____________________________分析方法:____________________________应对措施:____________________________1、引言11 本协议旨在对电子封装中的封闭性与可靠性进行详细的分析和规范,以确保电子器件在各种应用环境中的性能和稳定性。
2、封装材料的选择与特性21 封装材料应根据电子器件的性能要求、工作环境和成本等因素进行综合选择。
211 常见的封装材料包括塑料、陶瓷、金属等,每种材料具有不同的物理、化学和机械性能。
212 塑料封装材料具有成本低、成型容易等优点,但在高温和恶劣环境下的性能可能较差。
213 陶瓷封装材料具有良好的耐高温、耐腐蚀性和机械强度,但成本相对较高。
214 金属封装材料具有优异的散热性能和电磁屏蔽性能,但加工难度较大。
电子封装中的可靠性问题电子器件是一个非常复杂的系统,其封装过程的缺陷和失效也是非常复杂的。
因此,研究封装缺陷和失效需要对封装过程有一个系统性的了解,这样才能从多个角度去分析缺陷产生的原因。
封装缺陷与失效的研究方法论封装的失效机理可以分为两类:过应力和磨损。
过应力失效往往是瞬时的、灾难性的;磨损失效是长期的累积损坏,往往首先表示为性能退化,接着才是器件失效。
失效的负载类型又可以分为机械、热、电气、辐射和化学负载等。
影响封装缺陷和失效的因素是多种多样的,材料成分和属性、封装设计、环境条件和工艺参数等都会有所影响。
确定影响因素和预防封装缺陷和失效的基本前提。
影响因素可以通过试验或者模拟仿真的方法来确定,一般多采用物理模型法和数值参数法。
对于更复杂的缺陷和失效机理,常常采用试差法确定关键的影响因素,但是这个方法需要较长的试验时间和设备修正,效率低、花费高。
在分析失效机理的过程中,采用鱼骨图(因果图)展示影响因素是行业通用的方法。
鱼骨图可以说明复杂的原因及影响因素和封装缺陷之间的关系,也可以区分多种原因并将其分门别类。
生产应用中,有一类鱼骨图被称为6Ms:从机器、方法、材料、量度、人力和自然力等六个维度分析影响因素。
这一张图所示的是展示塑封芯片分层原因的鱼骨图,从设计、工艺、环境和材料四个方面进行了分析。
通过鱼骨图,清晰地展现了所有的影响因素,为失效分析奠定了良好基础。
引发失效的负载类型如上一节所述,封装的负载类型可以分为机械、热、电气、辐射和化学负载。
失效机理的分类机械载荷:包括物理冲击、振动、填充颗粒在硅芯片上施加的应力(如收缩应力)和惯性力(如宇宙飞船的巨大加速度)等。
材料对这些载荷的响应可能表现为弹性形变、塑性形变、翘曲、脆性或柔性断裂、界面分层、疲劳裂缝产生和扩展、蠕变以及蠕变开裂等等。
热载荷:包括芯片黏结剂固化时的高温、引线键合前的预加热、成型工艺、后固化、邻近元器件的再加工、浸焊、气相焊接和回流焊接等等。
第二单元 集成电路芯片封装可靠性知识—郭小伟(60学时)第一章、可靠性试验1.可靠性试验常用术语试验名称 英文简称 常用试验条件备注温度循环 TCT (T/C ) -65℃~150℃, dwell15min, 100cycles 试验设备采用气冷的方式,此温度设置为设备的极限温度 高压蒸煮 PCT 121℃,100RH., 2ATM,96hrs 此试验也称为高压蒸汽,英文也称为autoclave热冲击 TST (T/S )-65℃~150℃, dwell15min, 50cycles 此试验原理与温度循环相同,但温度转换速率更快,所以比温度循环更严酷。
稳态湿热 THT85℃,85%RH.,168hrs 此试验有时是需要加偏置电压的,一般为Vcb=0.7~0.8BVcbo,此时试验为THBT 。
易焊性 solderability 235℃,2±0.5s此试验为槽焊法,试验后为10~40倍的显微镜下看管脚的上锡面积。
耐焊接热 SHT260℃,10±1s 模拟焊接过程对产品的影响。
电耐久 Burn inVce=0.7Bvceo,Ic=P/Vce,168hrs模拟产品的使用。
(条件主要针对三极管)高温反偏 HTRB 125℃,Vcb=0.7~0.8BVcbo,168hrs主要对产品的PN 结进行考核。
回流焊 IR reflowPeak temp.240℃(225℃)只针对SMD 产品进行考核,且最多只能做三次。
高温贮存 HTSL 150℃,168hrs产品的高温寿命考核。
超声波检测 SAT CSCAN,BSCAN,TSCAN检测产品的内部离层、气泡、裂缝。
但产品表面一定要平整。
2.可靠性试验条件和判断试验流程:F/T SAT1-4 1-5 F/T 1-6 1-72:T/S 3: T/C 4:PCT 5: THT 6:HSTL以客户为代表为例子:客户1:precondition TCT –55/125℃,5cycles for L1,l2,L3 Ac:Re=(0,1)T/S: –55/125℃,5min,100cycles sample size: 45 Ac:Re=(0,1)T/C: –55/125℃,10min,200cycles sample size: 45 Ac:Re=(0,1)PCT: 121℃/100%rh,15Psig,96hr sample size: 45 Ac:Re=(0,1)THT: 85℃/85%,168/500/1000hrs sample size: 45 Ac:Re=(0,1)客户2:precondition T/C –40/60℃,5cycles forL3 Ac:Re=(0,1)T/S: –55/125℃,5min,100cycles sample size: 45 Ac:Re=(0,1)T/C: –65/150℃,10min,500cycles sample size: 77Ac:Re=(0,1)PCT: 121℃/100%rh,15Psig,168hr sample size: 77 Ac:Re=(0,1)THT: 85℃/85%,1000hrs sample size: 77 Ac:Re=(0,1)HTSL: 150℃,1000hrs sample size:77 Ac:Re=(0,1)HAST: 130℃/85%rh,168hr sample size: 77 Ac:Re=(0,1)客户3:precondition T/C –40/60℃,5cycles forL3 Ac:Re=(0,1)T/S: –55/125℃,5min,50cycles sample size: 24 Ac:Re=(0,1)T/C: –65/150℃,15min,50cycles sample size: 24 Ac:Re=(0,1)PCT: 121℃/100%rh,15Psig,168hr sample size: 24 Ac:Re=(0,1)HTSL: 150℃,168hrs sample size:24 Ac:Re=(0,1)客户4:precondition T/C N/A ,L1 Ac:Re=(0,1)T/C: –65/150℃,15min,100/500cycles sample size: 45 Ac:Re=(0,1)PCT: 121℃/100%rh,15Psig,168/336hr sample size: 45 Ac:Re=(0,1)SOLDER DUNK: 245℃10SEC sample size: 45 Ac:Re=(0,1)客户5:QFP 做 precondition,DIP不做preconditionprecondition T/C N/A,L3 sample size:184 Ac:Re=(5,6)T/C: –65/150℃,15min,200/500cycles sample size: 45 Ac:Re=(0,1)PCT: 121℃/100%rh,15Psig,168hr sample size: 45 Ac:Re=(0,1)HTSL: 150℃,168/500/1000hrs sample size:45 Ac:Re=(0,1)SOLDER DUNK: 245℃5SEC sample size: 15 Ac:Re=(0,1)塑料密封等级塑料密封等级:在装配现场拆包后地面存放期标准试验条件LEVEL 1 在小于30C/85%相对湿度无期限 85C/85% 168小时LEVEL 2 在30C/60%条件下1年85C/60% 168小时LEVEL 3 在小于30C/60%条件下1周 30C/60% 192小时加速=60C/60% 40小时SAMPLE:50塑料密封等级试验步骤:1. DC和功能测试2.外观检查(在80倍以上显微镜下检查)3. SAT扫描4. BAKE 125C/24小时5.做LEVEL 相应条件的试验6.在15分钟后和4小时内做3次回流焊—注意温度曲线必须提供和符合JEDEC标准。