北航物理研究性报告 《氢原子光谱与里德伯常数测量》
- 格式:pdf
- 大小:264.57 KB
- 文档页数:19
基础物理实验研究性报告氢原子光谱实验中里德伯常数计算方法的探讨On different methods of estimating the Rydberg constant in the Hydrogen atoms spectrum experiment第一作者:彭志伟学号:10041189所在院系:能源与动力工程学院第二作者:贾林江学号:10041152所在院系:能源与动力工程学院目录氢原子光谱实验中里德伯常数计算方法的探讨 (1)摘要 (3)关键词 (3)Abstract (3)Key Words (4)一、引言 (1)二、氢原子光谱实验综述 (2)三、实验原理 (2)3.1 氢原子光谱 (2)3.2 光栅及其衍射分光原理 (3)四、里德伯常数数据处理方法 (3)4.1 可能的一些数据处理方法 (3)4.1.1 算数平均与加权平均 (3)4.1.2 一元线性回归法 (5)4.1.3 线性回归与最小二乘加权平均的比较 (8)4.2 结论 (10)五、结语 (11)六、参考文献 (12)七、附录——原始实验数据 (13)7.1 钠黄光校准光栅常数 (13)±级谱线校准光栅常数 (13)7.1.1 1±级谱线计算色分辨率 (13)7.1.2 27.2 氢光源测定里德伯常数 (13)7.2.1 红光原始数据 (13)7.2.2 蓝光原始数据 (13)7.2.3 紫光原始数据 (14)摘要本文讨论了氢原子光谱实验中里德伯常数的几种不同的数据处理方法。
理论上定量分析了不同算法的不确定度及置信水平,得出了应用不同波长求出里德伯常数后再采用加权最小二乘平均得到里德伯常数的最小方差无偏估计的算法较为合理的结论,并以原始实验数据进行了验证。
关键词:里德伯常数;数据处理;最小二乘法;加权平均AbstractThis paper discusses several data processing methods in the Hydrogen atoms spectrum experiment. By applying basic theory of mathematical statistics, the uncertainties and confidence levels of different methods are analyzed and compared. In conclus ion, it’s better to utilize Weighted Least Squares method (WLS) to get the minimum-variance unbiased estimate of the Rydberg constant after calculating the Rydberg constant of different wavelengths.Key Words: Rydberg constant; data processing; least squares criterion; weighted average一、引言里德伯常量,又译为雷德堡常数,是原子物理学中的基本物理常量之一。
原始数据及处理一、测量光栅常数测量钠黄光光谱±1级偏角,原始数据列表如下: 测量项 1α1β2α2β()()[]2--22121ββααθ+=1 '55272︒'5092︒ '20293︒'14113︒ ''30'2420︒ 2 '29︒ '2189︒ '12348︒ '40168︒ '3620︒ 3 '0330︒ '51149︒ '25309︒ '28129︒ '2920︒ 4 '10200︒ '1020︒ '0180︒ '00︒'1020︒ 5'1300︒'0120︒'30279︒'1899︒''30'3620︒则有''36'1310551︒==∑=i iθθ由λθk d =sin (nm k 3.5891==λ,)得到:m m d 6910319.3)''36'1310sin(103.589sin --⨯=︒⨯==θλ下面先进行()d u 的合成:由λθλθln sin ln ln sin =+⇒=d d ,进而得到:()()()λλθθθu u d d u =⨯⨯+cos sin 1 故有()()()⎪⎭⎫⎝⎛-⨯=θθλλtan u u d d u ,其中()0=λλu 为常数,。
进行不确定度计算:()()'289.032'1322==∆=θθb u ()=θa u ()'471.245512=⨯-∑=i i θθ则()()()()()'488.222=+=θθθb a u u u()()()()m m u u d d u 86-10331.1''36'1310tan 18060488.210319.3tan -⨯=︒⨯⨯⨯=⎪⎭⎫ ⎝⎛-⨯=πθθλλ 则光栅常数d 最终表示为()()m d u d 61001.032.3-⨯±=±二、测量里德伯常数根据巴尔末系公式()⋯=⎪⎭⎫⎝⎛-=5,4,3121122n n R H λ以及λθk d =sin 可以得到: ()2141ln ln sin ln ln ln nR d k H -+=--θ由于可视为常数与k n ,可以化简为:()()()⎪⎭⎫⎝⎛--⨯=θθtan u dd u R R u H H1、1级红光谱线及其数据处理原始数据列表如下: 测量项 1α1β2α2β()()[]2--212121ββααθ+⨯=i1 '21230︒'1850︒ '40207︒'3927︒ ''30'2111︒ 2 '26296︒ '24116︒'44273︒'4293︒'2011︒则有''45'2011221︒=+=θθθ里德伯常数1722100971.11389.01sin 1312111-⨯=⨯=-⨯=m d R H θλ进行不确定度的计算:()()rad u b 4-10679.1'289.032'1322⨯===∆=θθ ()=θa u ()rad i i4-21210209.212⨯=⨯-∑=θθ()()()()()4-2210775.2⨯=+=θθθb a u u u则得到()()()141081.1tan -⨯=⎪⎭⎫ ⎝⎛--⨯=m u dd u R R u H H θθ里德伯常数最终表示为()1410)8.11.1097(-⨯±=±m R u R H H 2、1级蓝光谱线及其数据处理原始数据列表如下: 测量项 1α1β2α2β()()[]2--212121ββααθ+⨯=i1 '38351︒'38171︒ '268︒'26188︒ '248︒ 2'3581︒ '33261︒'2998︒'25278︒''30'268︒则有rad 1470.0''15'258221=︒=+=θθθ里德伯常数1722100958.11875.01sin 1412111-⨯=⨯=-⨯=m d R H θλ进行不确定度的计算:()()rad u b 4-10679.1'289.032'1322⨯===∆=θθ ()=θa u ()rad i i 4-21210040.212⨯=⨯-∑=θθ()()()()()4-2210642.2⨯=+=θθθb a u u u则得到()()()141002.1tan -⨯=⎪⎭⎫ ⎝⎛--⨯=m u dd u R R u H H θθ里德伯常数最终表示为()1410)0.18.1095(-⨯±=±m R u R H H 3、2级红光谱线及其数据处理原始数据列表如下: 测量项 1α1β2α2β()()[]2--212121ββααθ+⨯=i1 '0337︒'0157︒ '2023︒'10203︒ ''30'723︒ 2 '5066︒ '50246︒'10123︒'10303︒'1023︒则有rad 4040.0''45'823221=︒=+=θθθ里德伯常数1722100981.11389.01sin 2312111-⨯=⨯=-⨯=m d R H θλ进行不确定度的计算:()()rad u b 4-10679.1'289.032'1322⨯===∆=θθ ()=θa u ()rad i i 4-21210506.312⨯=⨯-∑=θθ()()()()()4-2210887.3⨯=+=θθθb a u u u则得到()()()141044.1tan -⨯=⎪⎭⎫ ⎝⎛--⨯=m u dd u R R u H H θθ里德伯常数最终表示为()1410)4.11.1098(-⨯±=±m R u R H H 4、通过加权平均值来获得H R 的最佳值:()()()()173123121009667.11-==⨯==∑∑m R u R u R R i Hi i Hi HiH()()()1431210741.011-=⨯==∑m R u R u i Hi H则获得里德伯常数的最佳表达式()()14107.07.1096-⨯±=±m R u R H H 与里德伯常数标准值534.10973731=H R 相比较,其相对误差为%0641.0%100=⨯-=HHH R R R E ,相对误差已经很小。
氢原子光谱和里德伯常量测定摘要:本文详细地介绍了氢原子光谱和里德伯常量实验的实验要求、实验原理、仪器介绍、实验内容和数据处理,并从钠黄双线无法区分的现象触发定量地分析了此现象的原因和由此产生的误差,结合光谱不够锐亮和望远镜转动带来的误差提出了创新的实验方案。
从理论上论证了实验方案的可行性,总结了基础物理实验的经验感想。
关键字:氢原子光谱里德伯常量钠黄双线Abstract:This paper introduced the hydrogen atoms spectrum and Rydberg constant experiment from experimental requirements, experimental principle, instruments required, content and Data processing. Considering that the wavelength difference of Na-light double yellow line is indistinguishable from human eyes, we analyze the cause of this phenomenon and the resulting errors quantitatively and propose an innovate experiment method combined with inadequate sharpness and lightness of the spectrum as well as the errors brought during the turning of telescope. We verify the feasibility of this method In theory and summarizes the experience and understanding of basic physics experiment.Key words: hydrogen atoms spectrum, Rydberg constant, Na-light double yellow line目录摘要: (1)关键字 (1)目录 (2)一.实验目的 (3)二.实验原理 (3)1.光栅衍射及其衍射 (3)2.光栅的色散本领与色分辨本领 (4)3.氢原子光谱 (5)4.测量结果的加权平均 (6)三.实验仪器 (7)四.实验内容 (7)五.实验数据及处理 (7)1.光栅常数测量 (8)2.氢原子光谱测里德波尔常数 (9)3.色散率和色分辨本领 (11)六.误差的定量分析 (11)1.人眼的分辨本领 (12)2.计算不确定度和相对误差: (12)七.实验方案的创新设想 (12)1.实验思路及理论验证 (12)2.实验光路 (13)3.方案理论评估 (13)八.实验感想与总结 (13)九.参考文献 (13)一.实验目的1. 巩固提高从事光学实验和使用光学仪器的能力; 2. 掌握光栅的基本知识和使用方法;3. 了解氢原子光谱的特点并用光栅衍射测量巴耳末系的波长和里德伯常数;4. 巩固与扩展实验数据的处理方法,及测量结果的加权平均,不确定度和误差计算,实验结果的讨论等。
氢原子光谱和里德伯常数的测定基础物理实验研究性报告一、实验目的1.掌握氢原子光谱测定方法。
2.理解和测定氢原子光谱系列。
3.通过测定氢原子光谱系列来计算里德伯常数。
4.分析实验结果并对其进行讨论。
二、实验原理1.氢原子光谱2.里德伯常数里德伯常数是描述氢原子光谱的重要物理常数,用于计算光谱线的频率和能级之间的能量差。
三、实验装置和材料1.光谱仪:用于测定氢原子光谱的波长。
2.氢放电装置:用于产生氢原子光谱。
3.高频电源:用于提供激发氢原子的电磁场。
4.精密光栅:用于分光。
5.光电倍增管:用于探测光信号。
四、实验步骤1.调整光谱仪和测定仪器,确保仪器的准确性和稳定性。
2.打开氢放电装置,产生氢原子光谱。
3.使用光谱仪测定不同波长的氢原子光谱,并记录光谱线的位置。
4.根据光谱线的位置和光谱系列的特点,确定氢原子光谱系列。
5.根据光谱系列和波长的关系,计算里德伯常数。
6.重复实验多次,计算平均值,并进行误差分析。
五、实验结果1.根据光谱线的位置,确定氢原子光谱系列为巴耳末系列。
2.根据巴耳末系列的波长和能级公式,计算里德伯常数的值。
六、实验分析和讨论七、实验结论通过本实验的研究,我们成功测定了氢原子的光谱并计算了里德伯常数。
实验结果与理论值相符,验证了实验方法的准确性和可靠性。
同时,根据实验结果可以进一步了解氢原子的能级结构,并研究光谱与能级之间的关系。
八、实验总结本实验通过测定氢原子光谱和计算里德伯常数的方法,深入研究了氢原子的光谱现象和能级结构。
通过实验的方法和结果,我们对氢原子的能级、波长和光谱系列有了更深入的理解。
同时,实验还进一步验证了实验方法的准确性和可靠性。
通过本次实验的学习,我们进一步掌握了基础物理实验的重要方法和技巧,并对物理实验的研究方法有了更深入的了解。
氢原子光谱和里德伯常数的测定基础物理实验研究性报告摘要:本实验通过测量氢原子光谱的发射线,利用巴尔末系列公式计算氢原子的波长和对应的频率。
通过计算求得里德伯常数。
实验结果显示,通过对氢原子光谱发射线的精确测量计算,我们得到了一个非常接近理论值的里德伯常数。
引言:在物理学中,氢原子光谱和里德伯常数是非常重要的研究内容。
氢原子的光谱可以通过精确测量发射线的波长和频率来研究。
里德伯常数是描述氢原子光谱的一个重要参数。
本实验通过测定氢原子光谱的发射线,计算出里德伯常数。
实验方法:1.实验仪器:用于测量光谱的光栅仪、频率计、电源等。
2.实验步骤:a.首先调整光谱仪的位置和角度,以确保获得清晰的光谱。
b.通过频率计测量氢原子光谱发射线的频率。
c.使用巴尔末系列公式计算波长,并计算对应的频率。
d.根据计算结果,得出里德伯常数。
实验结果与讨论:通过实验测量的氢原子光谱发射线的频率,我们计算得到了氢原子的波长和对应的频率。
利用计算结果,我们得到了里德伯常数的数值,并与理论值进行对比。
实验结果显示,我们得到的里德伯常数非常接近理论值。
结论:本实验通过测量氢原子光谱的发射线,计算出了里德伯常数。
实验结果显示,通过对氢原子光谱发射线的精确测量计算,我们得到了一个非常接近理论值的里德伯常数。
这个实验为研究氢原子的光谱和里德伯常数提供了有力的支持。
1. Griffiths, D. J. (2024). Introduction to quantum mechanics. Cambridge University Press.2. Cao, G. Z., Shu, S. B., & Gao, W. B. (1981). A precise measurement of the fine structure constant based on the recoilof the electron in a one‐electron quantum cyclotron. Applied Physics Letters, 39(8), 691-692.。
氢原子光谱和里德伯常数的测量Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】氢原子光谱和里德伯常数的测量第一作者 XXX第二作者 XXX指导老师:XXX一、实验要求实验重点○1巩固、提高从事光学实验和使用光学仪器的能力(分光仪的调整和使用)○2掌握光栅的基本知识和方法○3了解氢原子光谱的特点并使用光栅衍射测量巴尔末系的波长和里德伯常数○4巩固与扩展实验数据处理的方法——测量结果的加权平均,不确定度和误差的计算,实验结果的讨论等1、 预习思考题○1如何由()出发证明:在相邻的两个主极大之间由N-1个极小,N-1个次极大;N 越大,主极大的角宽度越小答:光栅衍射可以看作是单缝衍射和多缝干涉干涉的综合。
当平面单色光正入射到光栅上时,其衍射光振幅的角分布正比于单缝衍射因子sin αα和缝间干涉因子sin sin N ββ的乘积,及沿着 θ方向的的衍射光强220sin sin ()()()sin N I I αβθαβ=,式中sin sin ,,a d N θθαβλλ==是光栅的总缝数。
当sin 0β=时,sin N β也等于0,sin sin N N ββ=,()I θ形成干涉极大;当sin 0N β=但sin 0β≠时,()0I θ=,为干涉极小。
它说明:两个相邻的主极大之间有N-1个极小,N-2个次极大;N 数越多,主极大的角宽度越小。
○2 氢原子里德伯常数的理论值等于什么氢原子光谱的巴尔末系中对应的n=3,4,5的3条谱线应当是什么颜色答:理论值±)1m -。
谱线分别是红色、蓝色、与紫色。
○3 总结分光仪调整的关键步骤,在调整望远镜接受平行光、望远镜光轴垂直仪器主轴、平行光管射出平行光、平行光管主轴垂直仪器主轴的过程中应分别调整什么调整完成的标志又是什么答:分别应该调整目镜与载物台;载物台调平螺母;狭缝套筒与平行光管的水平调节螺母。
氢原子光谱摘 要:本实验用光栅光谱仪对氢原子光谱进行测量,测得了氢原子光谱巴尔末线系的波长,求出了里德伯常数。
最后对本实验进行了讨论。
关键词:氢原子光谱,里德伯常数,巴尔末线系,光栅光谱仪 1. 引言光谱线系的规律与原子结构有内在的联系,因此,原子光谱是研究原子结构的一种重要方式。
1885年巴尔末总结了人们对氢光谱测量的结果,发现了氢光谱的规律,提出了著名的巴尔末公式,氢光谱规律的发现为玻尔理论的成立提供了坚实的实验基础,对原子物理学和量子力学的发展起过重要作用。
1932年尤里按照里德伯常数随原子核质量不同而转变的规律,对重氢赖曼线系进行摄谱分析,发现氢的同位素氘的存在。
通过巴尔末公式求得的里德伯常数是物理学中少数几个最精准的常数之一,成为查验原子理论靠得住性的标准和测量其他大体物理常数的依据。
2. 氢原子光谱氢原子光谱是最简单、最典型的原子光谱。
用电激发氢放电管(氢灯)中的稀薄氢气(压力在102Pa 左右),可取得线状氢原子光谱。
瑞士物理学家巴尔末按如实验结果给出氢原子光谱在可见光区域的经验公式(1)式中λH 为氢原子谱线在真空中的波长。
λ0=364.57nm是一经验常数。
n取3,4,5等整数。
若用波数表示,则上式变成(2)式中RH 称为氢的里德伯常数。
按照玻尔理论,对氢和类氢原子的里德伯常数的计算,得4220-=n n H λλ⎪⎭⎫ ⎝⎛-==221211~n R v H H H λ(3)式中M为原子核质量,m为电子质量,e 为电子电荷,c 为光速,h 为普朗克常数,ε0为真空介电常数,z 为原子序数。
当M →∞时,由上式可得出相当于原子核不动时的里德伯常数(普适的里德伯常数)(4)所以R ∞=R ̅H (1+m/M H ) (5) 对于氢,有(6)这里MH 是氢原子核的质量。
由此可知,通过实验测得氢的巴尔末线系的前几条谱线的波长,借助(6)式可求得氢的里德伯常数。
里德伯常数R∞是重要的大体物理常数之一,对它的精密测量在科学上有重要意义,目前它的推荐值为R ∞=10973731.568549(83)/m 。