600MW机组蒸汽系统解析
- 格式:ppt
- 大小:1.89 MB
- 文档页数:29
600MW凝汽式机组全厂原则性热力系统计算凝汽式机组是一种常见的发电机组,其热力系统是整个机组运行的核心。
本文将对600MW凝汽式机组全厂原则性热力系统进行计算,以探讨其热力性能。
首先,我们需要了解凝汽式机组的基本原理。
在凝汽式机组中,燃煤或燃气的燃料在锅炉中燃烧,产生高温的燃烧气体。
燃烧气体通过锅炉中的热交换器传热给水,将水蒸汽产生。
蒸汽经过扩张机进行膨胀,驱动发电机运转,然后蒸汽进入凝汽器,冷却成水并凝结,然后被泵送回锅炉中进行再次加热。
根据以上原理,我们可以计算600MW凝汽式机组的热力系统。
首先,我们需要确定机组的热效率。
热效率是指机组产生的电能与供给机组的燃料能量之间的比值。
我们可以根据燃煤或燃气的热值和机组的实际发电量来计算机组的热效率。
其次,我们需要计算机组的热损失。
热损失是指机组在能量传递和转换过程中未能被充分利用而流失掉的热量。
机组的热损失可以从锅炉、发电机、凝汽器以及其他相关设备中产生。
我们可以通过测量这些设备的热损失来估计整个机组的热损失。
然后,我们需要计算机组的热功率。
热功率是指机组所能够产生的热量。
热功率可以从锅炉中的蒸汽量以及蒸汽的压力来计算。
我们可以根据锅炉的设计参数以及实际运行数据来计算热功率。
最后,我们需要计算机组的热耗率。
热耗率是指机组所需要的热量与发电机输出的电量之间的比值。
我们可以根据热耗率来评估机组的热利用效率。
综上所述,600MW凝汽式机组全厂原则性热力系统计算涉及到热效率、热损失、热功率和热耗率的计算。
通过对这些参数的计算,可以评估机组的热力性能,并找出可能存在的问题和改进空间,提高机组的热利用效率。
600MW机组供热系统简介及运行分析摘要:本文介绍了上安电厂600MW机组供热系统简介,分析了供热期间存在的系统问题,并根据经验提出系统优化运行方法,对电厂供热安全运行具有借鉴意义。
关键词:供热改造;汽机安全;电厂转型0 引言近年来,电力生产企业效益越来越低,各电厂都寻求新的经营模式,加之环保要求越来越严,集中供暖成为一种趋势。
电厂供热的改造是电厂转型求发展的一种手段。
燃煤机组供热系统由热网首站、供热抽汽系统、疏水系统、热网循环水系统、热网补水及定压系统等组成。
下面以上安电厂5号机组为例。
1 系统改造及热网概述1.1机组改造供热改造为在中低压缸连通管打孔抽汽,中、低压缸连通管上设调节蝶阀。
额定抽汽量600t/h,蒸汽参数1.0MPa、355.1℃,供热抽汽管道上先后设置安全阀、气动止回阀、抽汽快关调节阀、电动隔离阀,在止回阀前布置安全阀排气管道。
图1 上安电厂#5机供热系统画面1.2 供热热网1.2.1 供热区域计划近期(2020年)供热面积为2000万平方米,平均热负荷680.5MW,供热量为705.54万GJ;远期(2030年)供热面积为3000万平方米,平均热负荷998. 6MW,供热量为961万GJ。
1.2.2 热网首站及长输网热网首站设在厂区内。
为两层建筑分0米和9 米两层布置。
0米层布置4台汽动长输网循环水泵、1台备用电动循环水泵、10台疏水泵及相关管道等;9米层主要布置4台卧式长输网加热器、2台小汽机排汽加热器、电子设备间及相关管道等。
热网首站供出的热水经长输网至隔压站换热后,再由一级网小区换热站换热供至二级网热用户。
2 供热抽汽及其疏水系统2.1 供热抽汽5号机供热抽汽自汽机中、低压连通管引出,通过供热抽汽管架进入热网首站,正常带C/D加热器并带C/D两台汽动循环泵小汽机,按600 t/h常规抽汽运行。
2.2 疏水系统5号机疏水系统有3台热网加热器疏水泵,正常两运一备,疏水泵流量300t/h;2台小汽机排汽加热器疏水泵,正常一运一备,流量140t/h。
辅助蒸汽系统单元制机组均设置辅助蒸汽系统。
辅助蒸汽系统的作用是保证机组安全可靠地启动和停机,及在低负荷和异常工况下提供必要的、参数和数量都符合要求的汽源,同时向有关设备提供生产加热用汽。
辅助蒸汽系统主要包括:辅助蒸汽联箱、供汽汽源、用汽支管、减温减压装置、疏水装置及其连接管道和阀门等。
辅助蒸汽联箱是辅助蒸汽系统的核心部件。
本期工程600MW超临界机组设置的辅助蒸汽联箱,其设计压力为0.8~1.3 MPa,设计温度为300~350℃。
典型的600MW超临界机组的辅助蒸汽系统见图3-9。
一、系统的供汽汽源辅助蒸汽系统一般有三路汽源,分别考虑到机组启动、低负荷、正常运行及厂区的用汽情况。
这三路汽源是老厂供汽或启动锅炉、再热蒸汽冷段(即二段抽汽)和四段抽汽。
设置三路启动汽源的目的是减少启动供汽损失,减少启动工况的经济性。
1.启动蒸汽本期第一台机组投产时所需启动辅助蒸汽将由老厂辅助蒸汽汽源站提供,无须增设启动锅炉。
老厂辅助蒸汽汽源站参数为:4.0Mpa 、350℃,加减压阀减压至: 0.8MPa~1.3Mpa、350℃。
第二台机组投产后,两台机组可相互供给启动用汽。
供汽管道沿汽流方向安装气动薄膜调节阀和逆止阀。
为便于检修调节阀,在其前后均安装一个电动截止阀,在检修时切断来汽。
第一个电动截止阀前有疏水点,将暖管疏水排至无压放水母管。
2.再热蒸汽冷段在机组低负荷期间,随着负荷增加,当再热蒸汽冷段压力符合要求时,辅助蒸汽由启动锅炉切换至再热冷段供汽。
供汽管道沿汽流方向安装的阀门包括:流量测量装置、电动截止阀、逆止阀、气动薄膜调节阀和闸阀。
逆止阀的作用是防止辅助蒸汽倒流入汽轮机。
调节阀后设置两个疏水点,排水至辅汽疏水扩容器和无压放水母管。
3.汽轮机四段抽汽当机组负荷上升到70~85%MCR时,四段抽汽参数符合要求,可将辅助汽源切换至四段抽汽。
机组正常运行时,辅助蒸汽系统也由四段抽汽供汽。
采用四段抽汽为辅助蒸汽系统供汽的原因是:在正常运行工况下,其压力变动范围与辅助蒸汽联箱的压力变化范围基本接近。
600MW火电机组汽轮机热力系统分析发布时间:2022-05-07T06:07:55.960Z 来源:《当代电力文化》2022年2期作者:陈望奎[导读] 随着国家和社会对节能减排越来越重视,作为煤炭消费的大户,陈望奎大唐蒲城发电有限责任公司陕西省渭南市 715501摘要:随着国家和社会对节能减排越来越重视,作为煤炭消费的大户,热力发电厂对热效率的要求也越来越高。
本文将从各个系统中机组结构入手对对影响热力系统热效率的因素进行分析研究,并且本文以某600MW亚临界发电机组为算例,采用分析法对其各个系统进行定量计算得到其机组的效率,分析其损失产生的原因并提出减小其损失的方案,从而对其热力系统进行优化。
研究发现锅炉中效率与其热效率有较大差别,汽轮机中低压缸效率远小于其他两缸,而回热系统中末级加热器效率比前几级效率低。
本文分析了热力参数变化以及机组结构对机组热经济性的影响,蒸汽冷却器、回热加热器等机组都为提高机组的热效率做出了贡献。
关键词:效率;热力系统;热效率;能量1.引言对于热电厂中热力系统的分析和优化一直是国内外关注的,用来评价火电机组的能效的评价方法基本可以分为两类,即基于热力学第一定律的热量法和基于热力学第二定律的研究方法。
热力系统的优化的一个最主要的目的是提高热力系统的热经济性,钱磊介绍了包括热平衡法、等效焓降法以及不同计算方式衍生出的循环函数法和矩阵分析法在内的许多热经济型计算方法[1]。
其主要思想为热力学第一定律对大型火电机组建立计算模型后,对典型工况下的各项热经济指标进行了定量计算并对其进行了综合评价及优化[1]。
武国磊分析并借鉴了等效焓降法以及热平衡分析法两种论证技术经济性的方法,得出了分析法,结合了热力学第一及第二定律,既考虑能的多少,同时兼顾了能的质量和品质,从而诊断并分析了600MW火电机组损的主要原因并提出了改进方案[2]。
宋之平教授提出的单耗分析理论主要基于热力学第二定律,展示了燃烧单耗的构成分布及变化的图景。
600MW机组主蒸汽、再热汽及旁路系统施晶舒庆元一、概述1、水蒸汽的特性物质由液态变为汽态的现象称为汽化,通常汽化有二种方式:蒸发和沸腾。
蒸发是液体表面缓慢的汽化现象,它在任意温度下都会发生。
沸腾是液体表面和内部同时发生的剧烈汽化现象,它相对于一定的压力,只能在一定的温度下发生,该沸腾温度称为沸点。
一般同样条件下,不同的液体沸点是不同的,同种液体,压力越高沸点越高,沸腾时气体与液体共存,两者温度相同,沸腾过程中,温度始终保持沸点。
将装有水的容器密闭起来,保持一定温度,显然,水会汽化,随着水的汽化,水面上部空间的水蒸汽在增多,即蒸汽压力要升高,蒸汽压力升高使蒸汽液化速度加快,而使水汽化速度减慢,到某一时刻,当水汽化速度与水蒸汽液化速度相同时,容器内水量和空间水蒸汽量不再变化。
我们把这时汽、液两相达到平衡时的状态称为饱和状态。
这种平衡状态不是静态的平衡,而是一种动态平衡,即汽化、液化过程仍在进行,只是汽化速度与液化速度相同而已。
处于饱和状态下的水和水蒸汽分别称为饱和水和饱和蒸汽。
此时饱和水和饱和蒸汽的压力和温度是一样的,称为饱和压力和饱和温度。
这种蒸汽和水共存的状态称为湿饱和蒸汽。
如果对容器进行加热,那么水的汽化会加快,水逐渐减少,水蒸汽逐渐增多,直至水全部变为蒸汽,这时的蒸汽称为干饱和蒸汽。
当水温低于饱和温度时,称为过冷水,或未饱和水。
如果对干饱和蒸汽继续进行加热,使蒸汽温度进一步升高,这时的蒸汽称为过热蒸汽,其温度超过饱和温度之值,称为过热度。
临界点(相变点):一个大气压下的水饱和温度为100℃。
随着压力增加,水的饱和温度也随之增加,汽化潜热(从饱和水加热到干饱和蒸汽所需热量)减小,水和汽的密度差也随之减小。
当压力提高到221.2bar时,汽化潜热为零,汽和水的密度差也为零,该压力称之为临界压力。
水在该压力下加到374.15℃时,即全部汽化,此时的饱和水和饱和蒸汽已不再有区别,该温度称之为临界温度。