一些知识点(基本函数,对称,周期)
- 格式:pdf
- 大小:382.66 KB
- 文档页数:3
函数的对称性与周期性(归纳总结)一、函数对称性:1.2.3.4.5.6.7.8.f(a+x)=f(a-x)==>f(x)关于x=a对称f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。
【解析】求两个不同函数的对称轴,用设点和对称原理作解。
证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)] ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。
证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b] ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.二、函数的周期性令a,b均不为零,若:1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|这里只对第2~5点进行解析。
函数的知识点函数的学问点第一篇定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax’2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0时,抛物线向上开口;当a0),对称轴在y轴左;当a与b异号时(即ab0时,抛物线与x轴有2个交点。
Δ=b’2-4ac=0时,抛物线与x轴有1个交点。
Δ=b’2-4ac0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;函数的学问点第三篇1. 函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x) ;(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)推断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为冗杂,应先化简,再推断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);讨论函数的问题肯定要留意定义域优先的原则。
九年级所有函数知识点归纳在初中数学课程中,函数是一个非常重要的概念。
它作为数学中的基础概念之一,在解决实际问题时起着重要的作用。
接下来,我们将对九年级的所有函数知识点进行归纳和总结。
一、函数的定义函数是一种数学关系,它将一个集合的元素(称为自变量)映射到另一个集合的元素(称为因变量)。
用数学符号表示为f(x) = y。
在函数的定义中,要求每一个自变量只对应唯一的因变量。
二、函数的表示方式函数可以通过多种方式来表示。
最常见的方式是函数的显式表达式,如y = 2x + 1。
还有函数的隐式表达式,如x² + y² = 1。
另外,函数还可以通过函数图像、函数表和函数关系式等方式来表示。
三、函数的性质1. 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
2. 单调性:函数的单调性可以分为增函数和减函数。
增函数是指在定义域内,随着自变量的增大,函数值也增大;减函数则相反。
3. 奇偶性:奇函数和偶函数是函数的一种特殊性质。
奇函数满足f(-x) = -f(x),偶函数满足f(-x) = f(x)。
4. 周期性:周期函数是指在一定范围内具有重复的规律性。
例如正弦函数和余弦函数就是周期函数,它们的周期是2π。
5. 对称性:函数的对称性包括轴对称和中心对称两种。
轴对称是指以某一条直线为对称轴,对称图像重合;中心对称则是指以某一点为中心,对称图像重合。
四、函数的基本类型1. 一次函数:一次函数是函数的一种特殊类型,其表达式为y= kx + b,其中k和b为常数。
2. 二次函数:二次函数是函数的另一种特殊类型,其表达式为y = ax² + bx + c,其中a、b和c为常数。
3. 绝对值函数:绝对值函数的表达式为y = |x|,其中x为实数。
4. 幂函数:幂函数是指函数的自变量为底数,指数为常数的函数。
例如y = x²、y = √x等。
5. 指数函数:指数函数是函数的自变量为指数,底数为常数的函数。
高三函数周期性和对称性知识点在高三数学中,函数的周期性和对称性是一个重要的知识点。
了解和掌握函数的周期性和对称性可以帮助我们更加深入地理解和应用函数的性质。
本文将从周期函数、对称函数以及函数的应用等方面来介绍高三函数周期性和对称性的知识点。
一、周期函数周期函数是指在一定的区间内,函数的图像在某一特定规律下重复出现。
周期函数的特点是在一定的区间内有着相同的函数值。
常见的周期函数有正弦函数、余弦函数和正切函数等。
首先,我们来了解正弦函数和余弦函数。
正弦函数的图像是一条上下震荡的曲线,它的周期为2π。
也就是说,当自变量增加2π时,函数值会重新回到原来的值。
而余弦函数的图像也是一条上下震荡的曲线,它的周期也是2π。
正弦函数和余弦函数是非常常见的周期函数,在物理学、工程学等领域中有广泛的应用。
接下来,我们再来介绍一下正切函数。
正切函数的图像是一条摆动不定的曲线,它的周期为π。
也就是说,当自变量增加π时,函数值会重新回到原来的值。
正切函数相比于正弦函数和余弦函数而言,其周期要小一些。
二、对称函数对称函数是指函数的图像具有某种对称性质。
常见的对称函数有偶函数和奇函数。
偶函数是指函数的图像关于y轴对称。
也就是说,如果函数f(x)是一个偶函数,那么对于任意的x值,有f(-x) = f(x)成立。
一个简单的例子就是二次函数y = x^2,它的图像关于y轴对称。
奇函数是指函数的图像关于原点对称。
也就是说,如果函数f(x)是一个奇函数,那么对于任意的x值,有f(-x) = -f(x)成立。
一个简单的例子就是一次函数y = x,它的图像关于原点对称。
三、函数的应用周期性和对称性的函数在实际问题中有很广泛的应用。
例如,振动现象的描述常常使用正弦函数、余弦函数或正切函数。
另外,对称函数的特点也为问题的求解提供了方便。
以周期函数为例,我们来看一个具体的应用。
假设有一个正弦函数表示一个物体的振动情况,我们希望求出物体完成一次振动的时间。
专题09 函数的基本性质(单调性、奇偶性、对称性、周期性等)【重温课标】1.借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义.2.结合具体函数,了解奇偶性的概念和几何意义.3.结合三角函数,了解周期性的概念和几何意义.【解读考情】1.函数的单调性与最值在高考中常以选择、填空题形式出现,但近几年高考常以导数为工具,研究函数的单调性,因此本部分内容在高考中占有十分重要的地位.2.函数的奇偶性常与函数的单调性、对称性、最值等结合考查,综合考查知识的灵活应用能力,是高考考查的热点.3.函数的奇偶性,以选择、填空题居多,且是高考考查的热点.【知识点归纳】一、增函数、减函数一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则都有:(1) f (x )在区间D 上是增函数⇔ f (x 1)<f (x 2);(2) f (x )在区间D 上是减函数⇔ f (x 1)>f (x 2).【温馨提示】(1) 单调区间是定义域的子集,故求单调区间应树立“定义域优先”的原则.(2) 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.即使在两个区间上的单调性相同,也不能用并集表示.(3) 两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但f (x )·g (x ),g (x )f (x )等的单调性与其正负有关,切不可盲目类比. 二、单调性、单调区间的定义若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间.三、函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足:条件 (1) 对于任意x ∈I ,都有f (x )≤M ; (2) 存在x 0∈I ,使得f (x 0)=M(1) 对于任意x ∈I ,都有f (x )≥M ;(2) 存在x 0∈I ,使得 f (x 0)=M 结论 M 为最大值M 为最小值四、判断或证明函数单调性的方法(1) (图象法)根据图象判断:函数的单调性在几何上表现为在某区间上函数图象从左到右是一致上升还是一致下降,因此可以根据图象的特点来判断.如:根据右图,指出函数y =f (x )的单调增区间与减区间.从图上可以看出函数y =f (x )在区间(-∞,-5]和(12,+∞)内递增,在区间(-5,12]内递减. (2) (定义法)根据定义来判断或证明:这是最基本的方法,其步骤如下:第一步:取值,即设x 1,x 2是该区间内的任意两点,且x 1<x 2.第二步:变形,变形有两种途径.一般采用作差法,即f (x 1)-f (x 2),并通过因式分解、配方、有理化等方法向有利于判断差的符号的方向变形;如果是指数型一般采用作商比较法.第三步:定号,确定差f (x 1)-f (x 2)的符号,当符号不确定时,可以进行分区间讨论.如果是作商比较,则需比较变形结果与1的大小关系.第四步:判断,根据定义作出结论.(3) (导数法)用导函数方法去判断函数单调性.这种方法我们将在(高二)学习.(4) (结论法)判断函数单调性的常用结论① 在两个函数的公共定义域内,两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数;② 奇函数在对称的两个区间上有相同的单调性;偶函数在对称的两个区间上有相反的单调性;③ 互为反函数的两个函数有相同的单调性;④ 如果f (x )在区间D 上是增(减)函数,那么f (x )在D 的任一子区间上也是增(减)函数; ⑤ 如果y =f (u )和u =g (x )单调性相同,那么y =f [g (x )]是增函数;如果y =f (u )和u =g (x )单调性相反,那么y =f [g (x )]是减函数.简称为:同增异减.注:在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知的单调性,因此掌握并熟记一次函数、二次函数、幂函数、指数函数、对数函数的单调性,将大大简化我们的判断过程.五、函数单调性的应用单调性是函数的重要性质,它在研究函数时具有很重要的作用,具体体现在:(1) 利用单调性比较大小利用函数的增减性,可以把比较函数值的大小问题转化为自变量的大小比较问题. 如:已知函数y =0.8x 在R 上是减函数,因为-3.2<-0.2,则0.8-3.2>0.8-0.2.(2) 确定函数的值域或求函数的最值.如:函数f (x )在区间[a ,b ]上单调递增.则可以判定它的值域为[f (a ),f (b )],若在[a ,b ]上递减,则函数值域为[f (b ),f (a )]且当f (x )在[a ,b ]上递增时,f (a )与f (b )分别为[a ,b ]上的最小值与最大值,当f (x )在[a ,b ]上递减时,f (a )与f (b )分别为[a ,b ]上的最大值与最小值.函数最值存在的两条定论:(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时,最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.*常用结论:设任意x 1,x 2∈[a ,b ]且x 1<x 2,那么:(1)f (x 1)-f (x 2)x 1-x 2>0 ⇔ f (x 1)-f (x 2)(x 1-x 2)>0 ⇔ f (x )在[a ,b ]上是增函数; (2) f (x 1)-f (x 2)x 1-x 20 ⇔ f (x 1)-f (x 2)(x 1-x 2)<0 ⇔ f (x )在[a ,b ]上是减函数. 【例题示范】例1.(2017·全国Ⅱ卷)函数f (x )=ln(x 2-2x -8)的单调递增区间是( )A .(-∞,-2)B .(-∞,1)C .(1,+∞)D .(4,+∞)【解析】由x 2-2x -8>0,得x >4或x <-2.设t =x 2-2x -8,则y =ln t 为增函数.要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8的单调递增区间.因为函数t =x 2-2x -8的单调递增区间为(4,+∞),所以函数f (x )的单调递增区间为(4,+∞).故选D .例2.(2020·海南卷)已知函数f (x )=log 2(x 2-4x -5)在(a ,+∞)单调递增,则a 的取值范围是( )A .(-∞,-1]B .(-∞,2]C .[2,+∞)D .[5,+∞)【解析】令t =x 2-4x -5,由t >0,得x <-1或x >5,又f (x )=log 2t 在定义域内单调递增,且t =x 2-4x -5在(5,+∞)也单调递增,由复合函数的性质得a ≥5,故选D .例3.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f (a )+f (b )a +b>0成立. (1) 判断f (x )在[-1,1]上的单调性,并证明它;(2) 若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围.【解析】(1) 任取x 1,x 2∈[-1,1],且x 1<x 2,则-x 2∈[-1,1],因为f (x )为奇函数,所以f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1)+f (-x 2)x 1+(-x 2)·(x 1-x 2), 由已知得f (x 1)+f (-x 2)x 1+(-x 2)>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). 所以f (x )在[-1,1]上单调递增.(2) 因为f (1)=1,f (x )在[-1,1]上单调递增.所以在[-1,1]上,f (x )≤1.问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]成立.下面来求m 的取值范围.设g (a )=-2ma +m 2≥0.①若m =0,则g (a )=0≥0,自然对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为a 的一次函数,若g (a )≥0,对a ∈[-1,1]恒成立,必须g (-1)≥0,且g (1) ≥0,所以m ≤-2,或m ≥2.所以m 的取值范围是m =0或|m |≥2.【分段函数的单调性问题的解决策略】(1) 抓住对变量所在区间的讨论;(2) 保证各段上同增(减)时,要注意上、下段端点值间的大小关系;(3) 弄清最终结果取并集还是交集.例4.若f (x )=⎩⎪⎨⎪⎧a x (x >1)(4-a 2)x +2(x ≤1)是R 上的单调递增函数,则实数a 的取值范围为( )A .(1,+∞)B .[4,8)C .(4,8)D .(1,8)【解析】函数f (x )在(-∞,1]和(1,+∞)上都为增函数,且f (x )在(-∞,1]上的最高点不高于其在(1,+∞)上的最低点,即⎩⎪⎨⎪⎧a >14-a 2>0a ≥4-a 2+2,解得a ∈[4,8).选B .例5.已知函数f (x )=⎩⎪⎨⎪⎧ (a -2)x ,x ≥2,⎝⎛⎭⎫12x -1,x <2满足对任意的实数x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( )A .(-∞,2)B .⎝⎛⎦⎤-∞,138C .(-∞,2]D .⎣⎡⎭⎫138,2 【解析】由题意可知,函数f (x )是R 上的减函数,于是有⎩⎪⎨⎪⎧ a -2<0,(a -2)×2≤⎝⎛⎭⎫122-1,由此解得a ≤138,即实数a 的取值范围是⎝⎛⎦⎤-∞,138.选B . 六、奇(偶)函数的定义及图象特征奇偶性定义 图象特点 偶函数 如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )是偶函数关于y 轴对称 奇函数 如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )是奇函数 关于原点对称【温馨提示】(1) 所给函数的定义域若不关于原点对称,则这个函数一定不具有奇偶性.函数的定义域关于原点对称是函数成为奇(偶)函数的必要条件.例如,y =x 2当定义域为区间(-∞,+∞)时是偶函数,但当定义域为区间[-1,2]时却不具有奇偶性.(2) f (0)=0是f (x )为奇函数的既不充分也不必要条件.例如,f (x )=1xf (0)无意义;又如f (x )=2x -1满足f (0)=0,但不是奇函数.但奇函数f (x )在x =0处有意义,必有f (0)=0.(3) 奇函数在关于原点对称的两个区间上有相同的单调性;偶函数在关于原点对称的两个区间上有相反的单调性.(4) 定义在关于原点对称区间上的任意一个函数,都可表示成“一个奇函数与一个偶函数的和(或差)”.例如:y =f (x )的定义域关于原点对称,则g (x )=()()2f x f x +-为偶函数,h (x )=()()2f x f x --为奇函数,且f (x )=g (x )+h (x ). (5) 复合函数的奇偶性特点是:“内偶则偶,内奇同外”.(6) 既奇又偶的函数有无穷多个(如f (x )=0,定义域是关于原点对称的任意一个数集).(7) 奇函数在定义域内满足()()f x f x =--,该式常用来求函数解析;偶函数在定义域内满足()()f x f x =-,该式也常用来求函数解析.【常用结论】①函数奇偶性满足下列性质:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.②奇函数与奇函数复合还是奇函数,奇函数与偶函数复合是偶函数,偶函数与偶函数复合还是偶函数.【温馨提示】(这点非常注重要)f (x )为偶函数,则f (-x )=f (x )=f (|x|),该式把偶函数的负变量转化为正变量研究.【例题示范】例.y =f (x )是定义在R 上的偶函数且在[0,+∞)上递增,不等式f (x x +1)<f (-12)的解集为________.【解析】因为y =f (x )是定义在R 上的偶函数且在[0,+∞)上递增,所以f (x x +1)<f (-12)等价为f (|x x +1|)<f (|-12|)=f (12),所以|x x +1|<12,即2|x |<|x +1|,平方得4x 2<x 2+2x +1,所以3x 2-2x -1<0,解得-13<x <1,即不等式的解集为(-13,1). 七、函数奇偶性的判断与证明(1) 根据图象的对称性判断:奇函数的图象关于原点成中心对称图形,偶函数图象关于y 轴成轴对称图形.反之,逆命题也都为真.(2) 根据定义判断或证明:其步骤为:第一步:考查定义域是否关于原点对称.若定义域不关于原点对称,则可断言函数y =f (x )不具有奇偶性,若定义域关于原点对称,则进行下面步骤.第二步:判断f (-x )=f (x )或f (-x )=-f (x )是否成立.既可采用定义直接推理,也可以利用转化的方法,先判断f (x )+f (-x )=0或f (x )-f (-x )=0,究竟采用何种途径要具体问题具体分析.第三步:作出结论.若f (-x )=f (x )则f (x )为偶函数,若f (-x )=-f (x )则为奇函数,若f (-x )=f (x )且f (-x )=-f (x ),则f (x )既是奇函数又是偶函数;若f (-x )≠f (x ),且f (-x )≠-f (x ),则f (x )为非奇非偶函数.(3) 根据规律判断(详见前面的常用结论):判断一个函数既不是奇函数也不是偶函数,取特殊值举反例即可!!..............................(4) 函数奇偶性的变形应用:对于高考中出现的要求证明函数奇偶性的试题,一般应该运用定义去证明,要注意灵活运用定义:当直接推证f (-x )=f (x ),或f (-x )=-f (x )遇到困难时,可以考虑证明等式f (-x )-f (x )=0,或f (-x )+f (x )=0恒成立,或者证明f (-x )f (x )=±1(f (x )≠0)恒成立,前一个技巧常用于含对数运算的函数,后一技巧常用于含指数运算的函数.【温馨提示】判断函数的奇偶性,首先看函数的定义域是否关于原点对称;在定义域关于原点对称的条件下,再化简解析式,根据f (-x )与f (x )的关系作出判断,对于分段函数,应分情况判断.【常见的奇偶函数】(1) 奇函数:()ny x n =为奇数, y kx =,k y x =,tan y x =,sin y x =,x x y a a -=-,11x x a y a -=+,11x x a y a +=-, x xx x a a y a a ---=+,x xx x a a y a a --+=-,log )a y mx =,log )a y x =,log x nx n a y +-=,log x n x n a y -+=.(2) 偶函数:()y a a =为常数,n y ax =(n 为偶数),||y k x =,cos y x =,+x x y a a -=,(||)y f x =;如果()y f x =为奇函数,那么()y f x =一定为偶函数.七、周期性与对称性1.周期函数:T 为函数f (x )的一个周期,则需满足的条件:(1) T ≠0;(2) f (x +T )=f (x )对定义域内的任意x 都成立.2.最小正周期:如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小的正数就叫做它的最小正周期.【温馨提示(1) 定义应对定义域中的每一个x 值来说,若个别的x 值满足f (x +T )=f (x )不能说T 是f (x )的周期.(2) 在等式f (x +T )=f (x )中,应强调加在自变量x 本身的常数才是周期,如f (x 2T )=f (x 2,T 不是周期,而应写成f (x 2+T )=f [12(x +2T )]=f (x 2),2T 才是f (x )的周期. (3) 若T 是函数的周期,则kT (k ∈Z 且k ≠0)也是函数的周期.【必记结论】周期性常用的结论:对f (x )定义域内任一自变量的值x :(1) 设a 为非零常数,若对于f (x )定义域内的任意x ,恒有下列条件之一成立:则函数y=f (x )是周期函数,T =2|a |是它的一个周期.①f (x +a )=-f (x );②f (x +a )=1f (x );③f (x +a )=-1f (x );④f (x +a )=k f (x )(k ≠0); ⑤f (x +a )=f (x -a );⑥(x +a )=f (x )+1f (x )-1,⑦f (x +a )=1-f (x )1+f (x ). (2) 若f (x +a )=f (x +b )(a ≠b ),那么函数f (x )是周期函数,其中一个周期为T =|a -b |.(3) 若对于R 上的任意x 都有f (2a -x )=f (x ),且f (2b -x )=f (x )(其中a <b ),则y =f (x )是以2(b -a )为周期的周期函数;(4) f (x )的图象既关于直线x =a 对称(即函数f (x )满足f (2a -x )=f (x ))又关于直线x =b 对称(即函数f (x )满足f (2b -x )=f (x )),则函数f (x )的周期T =2|a -b |(a ≠b ).(规律:和定对称 ,差定周期)(5) 设a 为非零常数,若对于f (x )定义域内的任意x ,① f (x )为奇函数且其图象关于直线x =a 对称,则T =4|a |;② f (x )为奇函数且其图象对称中心为(a ,0),则T =2|a |;③ f (x )为偶函数且关于直线x =a 对称,则T =2|a |;④ f (x )为偶函数其图象对称中心为(a ,0)则T =4|a |.【识记规律】① 奇偶函数如果另外具有中心对称性或者轴对称性,则一定具有周期性,且周期是相邻对称中心之间距离的2倍,是相邻对称轴之间距离的2倍,是相邻对称轴与对称中心之间距离的4倍.② 如果一个函数图象既有中心对称性,又有轴对称性,则该函数一定具有周期性,且周期是相邻对称轴与对称中心之间距离的4倍.③ 如果一个函数图象有多个中心对称或对称轴,则一定具有周期性,且周期是相邻对称中心(对称轴)之间距离的2倍.轴对称性常用的结论(6) 若f (a -x )=f (b +x ),那么函数f (x )图象的对称轴为x =a+b 2; (7) y =f (x )符合f (2a -x )=f (x )等价于其图象的对称轴为x =a ,等价于f (a -x )=f (a +x );中心对称性常用的结论(8) 设a ,b ,c 为常数,若对于f (x )定义域内的任意x ,① 当f (a +x )+f (b -x )=2c ,则y =f (x )的图象的对称中心为(a+b 2,c ); ② 当f (2a -x )+f (x )=2c ,则y =f (x )的图象的对称中心为(a ,c ).其他结论若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称;若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b ,0)中心对称;若函数f (x )既是周期函数,则其导函数y =f ′(x )是周期函数;若函数f (x )是奇函数,则其导函数y =f ′(x )是偶函数;若函数f (x )是偶函数,则其导函数y =f ′(x )是奇函数;若函数g (x )是奇函数,f (x )=g (x )+k ,则f (a )+ f (-a )=2k ﹒【例题示范】例1.已知y =f (x )是定义在R 上的偶函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的解析式为________.【解析】设x <0,则-x >0,所以f (-x )=(-x )2-2(-x )=x 2+2x .又y =f (x )是定义在R 上的偶函数,所以f (-x )=f (x ),所以f (x )=x 2+2x (x <0).所以f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,x 2+2x ,x <0. 例2.已知定义在R 上的奇函数满足f (x )=x 2+2x (x ≥0),若f (3-a 2)>f (2a ),则实数a 的取值范围是_______.【解析】当x ≥0时,f (x )=x 2+2x =(x +1)2-1所以函数f (x )在[0,+∞)上为增函数.又函数f (x )是定义在R 上的奇函数,所以函数f (x )在R 上是增函数.由f (3-a 2)>f (2a )得3-a 2>2a .解得-3<a <1.例3.(2018·全国卷Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( )A .-50B .0C .2D .50【解析】因为f (x +2)=f [1+(1+x )]=f [1-(1+x )]=f (-x )=-f (x ),所以f (x +4)=-f (x +2)=f (x ),即f (x )是周期为4的周期函数.又f (x )为奇函数,且x ∈R ,所以f (0)=0,f (1)=2,f (2)=f (1+1)=f (0)=0,f (3)=f (1+2)=f (1-2)=f (-1)=-f (1)=-2,f (4)=f (0)=0,所以f (1)+f (2)+f (3)+f (4)=0,而50=4×12+2,所以f (1)+f (2)+f (3)+…+f (50)=f (1)+f (2)=2.例4.(多选)已知f (x )是定义域为R 的奇函数,且函数f (x +2)为偶函数,则下列结论正确的是( )A .函数y =f (x )的图象关于直线x =1对称B .f (4)=0C .f (x +8)=f (x )D .若f (-5)=-1,则f (2019)=-1【解析】根据题意,f (x )是定义域为R 的奇函数,则f (-x )=-f (x ),又由函数f (x +2)为偶函数,则函数f (x )的图象关于直线x =2对称,则有f (-x )=f (4+x ),则有f (x +4)=-f (x ),即f (x +8)=-f (x +4)=f (x ),则函数f (x )是周期为8的周期函数;据此分析选项:对于A ,函数f (x )的图象关于直线x =2对称,A 错误;对于B ,f (x )是定义域为R 的奇函数,则f (0)=0,又由函数f (x )的图象关于直线x =2对称则f (4)=0,B 正确;对于C ,函数f (x )是周期为8的周期函数,即f (x +8)=f (x ),C 正确;对于D ,若f (-5)=-1,则f (2019)=f (-5+2024)=f (-5)=-1,D 正确.故选BCD .例5.(多选)已知y =f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( )A .y =f (|x |)B .y =f (-x )C .y =xf (x )D .y =f (x )+x【解析】由奇函数的定义f (-x )=-f (x )验证,对于A ,f (|-x |)=f (|x |),为偶函数;对于B ,f [-(-x )]=f (x )=-f (-x ),为奇函数;对于C ,-xf (-x )=-x ·[-f (x )]=xf (x ),为偶函数;对于D ,f (-x )+(-x )=-[f (x )+x ],为奇函数.可知BD 正确,故选BD.例6.(2019·新课标Ⅱ卷)已知()f x 是奇函数,且当0x <时,()e ax f x =-.若(ln 2)8f =,则a =__________.【解析】因为()f x 是奇函数,且当0x <时,()e ax f x -=-.又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 2e 8a --=-,两边取以e 为底的对数得ln 23ln 2a -=,所以3a -=,即 3a =-.。
函数奇偶性对称性周期性知识点总结文档函数的奇偶性、对称性和周期性是函数图像特征的重要方面。
在数学中,研究函数的这些特性可以帮助我们更好地理解函数的行为和性质。
本文将对函数的奇偶性、对称性和周期性进行总结。
一、函数的奇偶性奇偶性是指函数关于坐标原点或者其中一点的对称性。
如果函数f(x)满足f(x)=f(-x),则称函数为偶函数;如果函数f(x)满足f(x)=-f(-x),则称函数为奇函数。
1.偶函数的特点:(1)关于y轴对称,即函数的图像关于y轴对称;(2)具有对称性质,即对于任意x,有f(x)=f(-x);(3)如果函数f(x)在定义域内可导,则偶函数的导函数也是偶函数。
2.奇函数的特点:(1)关于原点对称,即函数的图像关于原点对称;(2)具有对称性质,即对于任意x,有f(x)=-f(-x);(3)如果函数f(x)在定义域内可导,则奇函数的导函数也是奇函数。
二、函数的对称性对称性是指函数图像关于其中一直线、其中一点或者其中一中心进行对称的性质。
1.关于y轴对称:如果函数f(x)满足f(x)=f(-x),则函数关于y轴对称。
这意味着函数的图像在y轴左右对称。
2.关于x轴对称:如果函数f(x)满足f(-x)=-f(x),则函数关于x轴对称。
这意味着函数的图像在x轴上下对称。
3.关于原点对称:如果函数f(x)满足f(-x)=-f(-x),则函数关于原点对称。
这意味着函数的图像在原点对称。
三、函数的周期性周期性是指函数在一定区间内以一些特定的周期重复出现的性质。
1.周期函数:如果函数f(x)在定义域的一些区间内满足f(x+T)=f(x),其中T为正数,则称函数为周期函数,T为函数的周期。
周期函数的图像在段区间内重复出现。
2.周期函数的性质:(1)在一个周期内,函数具有相同的性质和特点;(2)相邻两个周期之间的函数值关系相同;(3)周期函数的图像在一个周期内是相似的。
四、函数的判断在实际问题中,我们根据函数的表达式或者图像来判断函数的奇偶性、对称性和周期性。
函数的基本性质知识点总结一、函数的定义和表示方式1.定义:函数是一种特殊关系,它将一个集合中的每个元素与另一个集合中的唯一元素相对应。
2.表示方式:函数可以用图表、解析式、关系式等方式表示。
二、函数的定义域、值域和对应关系1.定义域:函数的定义域是指能使函数有意义的输入值的集合。
2.值域:函数的值域是指函数的所有可能的输出值的集合。
3.对应关系:对于函数中的每个输入值,都有一个唯一的输出值与之对应。
三、函数的图象和图像1.图象:函数的图象是函数在平面直角坐标系中的表示,其所有的点坐标满足函数的对应关系。
2.图像:函数的图像是函数的图象在控制显示器或打印机上的可视化表现。
四、函数的性质1.单调性:函数可以是递增的(单调递增)或递减的(单调递减)。
2.奇偶性:函数可以是奇函数(关于原点对称)或偶函数(关于y轴对称)。
3.周期性:函数可以是周期函数,即函数在一定区间内具有重复的规律。
4.奇点和间断点:函数的奇点是指函数在定义域内的特定点,其函数值不存在或趋于无穷;间断点是指函数在特定点不连续。
五、函数的极限与连续性1.极限:函数的极限是指当自变量趋于一些值时,函数值的趋向或趋近的特性。
2.连续性:函数在定义域内的所有点都连续,当且仅当函数在这些点的极限存在且等于这些点的函数值。
六、函数的导数与微分1.导数:函数的导数描述了函数在其中一点处的变化率。
导数表示为函数的斜率或函数的变化速率。
2.微分:函数的微分可以理解为函数在其中一点处的无穷小增量。
七、函数的极值与最值1.极值:函数在极值点处的函数值称为极大值或极小值。
极大值是函数在该点附近所有函数值中最大的值,极小值是函数在该点附近所有函数值中最小的值。
2.最值:函数的最大值和最小值称为函数的最值。
八、函数的反函数1.反函数:如果函数f的定义域与值域互换,且对于f的每一个输出值,存在唯一的输入值与之对应,则这个函数称为f的反函数。
以上是函数的基本性质的总结,函数理论是数学中的基础内容,也是其他学科中的重要概念。
高一三角函数知识点归纳总结公式以下是高一三角函数的一些知识点和公式:1. 三角函数的基本性质:周期性:sin(x) 和 cos(x) 的周期都是2π。
奇偶性:sin(x) 是奇函数,cos(x) 是偶函数。
有界性:sin(x) 和 cos(x) 的取值范围都是 [-1, 1]。
2. 三角函数的定义域和值域:定义域:对于所有实数 x,sin(x) 和 cos(x) 的定义域都是 R。
值域:sin(x) 和 cos(x) 的值域都是 [-1, 1]。
3. 三角函数的周期性和对称性:周期性:sin(x) 和 cos(x) 的周期都是2π。
对称性:sin(x) 在(0, π) 上是增函数,在(π, 2π) 上是减函数;cos(x) 在(0, π/2) 和(π, 3π/2) 上是减函数,在(π/2, π) 和(3π/2, 2π) 上是增函数。
4. 三角函数的和差公式:sin(x+y) = sinxcosy + cosxsinycos(x+y) = cosxcosy - sinxsiny5. 三角函数的倍角公式:sin2x = 2sinxcosxcos2x = cos²x - sin²xtan2x = 2tanx / (1 - tan²x)6. 三角函数的半角公式:sin(x/2) = ±√[(1 - cosx) / 2]cos(x/2) = ±√[(1 + cosx) / 2]tan(x/2) = ±√[(1 - cosx) / (1 + cosx)]7. 三角函数的和差化积公式:sin(x+y)-siny=2sin((x-y)/2)cos((x+3y)/2)cos(x+y)-coxy=-2sin((x-y)/2)cos((x+3y)/2)8. 其他常用公式:sin²θ + cos²θ = 1(勾股定理)tanθ = sinθ / cosθ(正切的定义)arcsin(x)、arccos(x)、arctan(x) 等反三角函数。
备战高考数学“棘手”问题培优专题讲座---函数的基本性质(函数的奇偶性、对称性、周期性)灵活应用一.函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)函数周期性的判定与应用(1)判定:判断函数的周期性只需证明f(x+T)=f(x)(T≠0)即可.(2)应用:根据函数的周期性,可以由函数的局部性质得到函数的整体性质,在解决具体问题时,要注意结论:若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期.函数y=f(x)满足:(1)若f(x+a)=f(x-a),则函数的周期为2a;(2)若f(x+a)=-f(x),则函数的周期为2a;(3)若f(x+a)=-1f(x),则函数的周期为2a;(4)若f(x+a)=1f(x),则函数的周期为2a;(5)若函数f(x)关于直线x=a与x=b对称,那么函数f(x)的周期为2|b-a|;(6)若函数f(x)关于点(a,0)对称,又关于点(b,0)对称,则函数f(x)的周期是2|b-a|;(7)若函数f(x)关于直线x=a对称,又关于点(b,0)对称,则函数f(x)的周期是4|b-a|;(8)若函数f(x)是偶函数,其图象关于直线x=a对称,则其周期为2a;(9)若函数f(x)是奇函数,其图象关于直线x=a对称,则其周期为4a.【方法点拨】1.函数奇偶性、对称性间关系:(1)若函数y=f(x+a)是偶函数,即f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a对称;一般的,若对于R上的任意x都有f(a-x)=f(a+x),则y=f(x)的图象关于直线x=a+b2对称.(2)若函数y=f(x+a)是奇函数,即f(-x+a)+f(x+a)=0,则函数y =f (x )关于点(a ,0)中心对称;一般的,若对于R 上的任意x 都有f (-x +a )+f (x +a )=2b , 则y =f (x )的图象关于点(a ,b )中心对称.2. 函数对称性、周期性间关系:若函数有多重对称性,则该函数具有周期性且最小正周期为相邻对称轴距离的2倍, 为相邻对称中心距离的2倍,为对称轴与其相邻对称中心距离的4倍. (注:如果遇到抽象函数给出类似性质,可以联想y =sin x ,y =cos x 的对称轴、对称中心和周期之间的关系)3. 善于发现函数的对称性(中心对称、轴对称),有时需将对称性与函数的奇偶性相互转化. 【典型题示例】例1.已知函数f (x )对任意的x ∈R ,都有f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x ,函数f (x +1)是奇函数,当-12≤x ≤12时,f (x )=2x ,则方程f (x )=-12在区间[-3,5]内的所有根之和为________.【分析】由f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x 对任意的x ∈R 恒成立,得f (x )关于直线x =12对称,由函数f (x +1)是奇函数,f (x )关于点(1,0)中心对称,根据函数对称性、周期性间关系,知函数f (x )的周期为2,作出函数f (x )的图象即可.【解析】因为函数f (x +1)是奇函数,所以f (-x +1)=-f (x +1),又因为f ⎝ ⎛⎭⎪⎫12+x = f ⎝ ⎛⎭⎪⎫12-x ,所以f (1-x )=f (x ),所以f (x +1)=-f (x ),即f (x +2)=-f (x +1)=f (x ), 所以 函数f (x )的周期为2,且图象关于直线x =12对称.作出函数f (x )的图象如图所示,由图象可得f (x )=-12在区间[-3,5]内有8个零点,且所有根之和为12×2×4=4.【答案】4 二、典型例题1.奇偶性与周期性的综合问题1.已知偶函数y =f (x )(x ∈R)在区间[-1,0]上单调递增,且满足f (1-x )+f (1+x )=0,给出下列判断:①f (5)=0; ②f (x )在[1,2]上是减函数; ③函数f (x )没有最小值; ④函数f (x )在x =0处取得最大值; ⑤f (x )的图象关于直线x =1对称. 其中正确的序号是________.解:因为f (1-x )+f (1+x )=0,所以f (1+x )=-f (1-x )=-f (x -1),所以f (2+x )=-f (x ),所以f (x +4)=f (x ),即函数f (x )是周期为4的周期函数.由题意知,函数y =f (x )(x ∈R)关于点(1,0)对称,画出满足条件的图象如图所示,结合图象可知①②④正确.答案:①②④2. 已知定义在R 上的偶函数()f x 满足:当(]1,0x ∈-时,()2x f x =,且()1f x +的图像关于原点对称,则20192f ⎛⎫= ⎪⎝⎭( )A .2B C .2-D .【解题思路】根据偶函数及()1f x +的图像关于原点对称可知,函数的周期;根据周期性及()1f x +为奇函数,可得20192f ⎛⎫⎪⎝⎭的值.解:由题可知函数()f x 的图像关于直线0x =和点()1,0对称,所以函数()f x 的周期为4,则12201933114252222222f f f ff ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+==-=--=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 答案:C3.已知定义在R 上的函数f (x )满足f (x -1)=f (x +1),且当x ∈[-1,1]时,f (x )=x ⎝⎛⎭⎫1-2e x +1,则( )A .f (-3)<f (2)<f ⎝⎛⎭⎫52B .f ⎝⎛⎭⎫52<f (-3)<f (2)C .f (2)<f (-3)<f ⎝⎛⎭⎫52D .f (2)<f ⎝⎛⎭⎫52<f (-3) 解: ∵f (x -1)=f (x +1),则函数f (x )的周期T =2.当x ∈[-1,1]时,f (x )=x ⎝⎛⎭⎫1-2e x +1=x ·e x-1e x +1,则f (-x )=-x ·e -x -1e -x +1=-x ·1-e x 1+e x =x ·e x -1e x +1=f (x ),则函数f (x )为偶函数,因此f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12,f (-3)=f (-1)=f (1),f (2)=f (0). 当0 ≤x ≤1时,函数y =x 与y =1-2e x +1均为增函数且都不小于0, 所以f (x )=x ⎝⎛⎭⎫1-2e x +1在区间[0,1]上是增函数,∴f (1)>f ⎝⎛⎭⎫12>f (0),即f (-3)>f ⎝⎛⎭⎫52>f (2). 答案:D4.(2018年全国2卷)已知是定义域为的奇函数,满足.若,则A.B. 0C. 2D. 50分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.【答案】C点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.5. 已知f (x )是定义在R 上的周期为2的奇函数,当x ∈(0,1)时,f (x )=3x -1,则f ⎝⎛⎭⎫2 0192=( )A.3+1B.3-1 C .-3-1D .-3+1解:由题可知f (x +2)=f (x )=-f (-x ),所以f ⎝⎛⎭⎫2 0192=f ⎝⎛⎭⎫1 008+32=f ⎝⎛⎭⎫32=-f ⎝⎛⎭⎫-32=-f ⎝⎛⎭⎫12. 又当x ∈(0,1)时,f (x )=3x -1,所以f ⎝⎛⎭⎫12=3-1,则f ⎝⎛⎭⎫2 0192=-f ⎝⎛⎭⎫12=-3+1. 答案:D奇偶性与周期性综合问题的解题策略函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.6. 已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为______ 解:∵f (x )是定义在R 上的周期为3的偶函数,∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1, ∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4. 答案:(-1,4)7. 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=________. 解:∵f (x )的周期为2,∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12, 又∵当-1≤x <0时,f (x )=-4x 2+2, ∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. 答案:18. 若函数f (x )(x ∈R)是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________. 解:由于函数f (x )是周期为4的奇函数,所以f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫2×4-34+f ⎝⎛⎭⎫2×4-76=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76 =-316+sin π6=516.答案:5169.已知f (x )是定义在R 上的偶函数,且f (x +2)=-f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=________.解:由f (x +2)=-f (x ),得f (x +4)=f [(x +2)+2]=-f (x +2)=-[-f (x )]=f (x ),所以函数f (x )的周期为4,∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5)=2.5. 答案:2.510.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=________. 解:由f (x )是R 上周期为5的奇函数知f (3)=f (-2)=-f (2)=-2,f (4)=f (-1)=-f (1)=-1, ∴f (3)-f (4)=-1.答案:-111.已知定义在R 上的函数f (x )满足f (2)=15,且对任意的x 都有f (x +3)=-1f (x ),则f (8)=________;f (2 015)=________. 解:由f (x +3)=-1f (x ),得f (x +6)=-1f (x +3)=f (x ), 故函数f (x )是周期为6的周期函数.故f (8)=f (2)=15,f (2 015)=f (6×335+5)=f (5)=-1f (2)=-115=-5.答案:15;-513.奇函数f (x )的周期为4,且x ∈[0,2],f (x )=2x -x 2,则f (2 018)+f (2 019)+f (2 020)的值为________.解:函数f (x )是奇函数,则f (0)=0,由f (x )=2x -x 2,x ∈[0,2]知f (1)=1,f (2)=0,又f (x )的周期为4,所以f (2 018)+f (2 019)+f (2 020)=f (2)+f (3)+f (0)=f (3)=f (-1)=-f (1)=-1. 答案:-114.已知函数f (x )是周期为2的奇函数,当x ∈[0,1)时,f (x )=lg(x +1),则f ⎝⎛⎭⎫2 0165+lg 18=________.解:由函数f (x )是周期为2的奇函数得f ⎝⎛⎭⎫2 0165=f ⎝⎛⎭⎫65=f ⎝⎛⎭⎫-45=-f ⎝⎛⎭⎫45, 又当x ∈[0,1)时,f (x )=lg(x +1), 所以f ⎝⎛⎭⎫2 0165=-f ⎝⎛⎭⎫45=-lg 95=lg 59, 故f ⎝⎛⎭⎫2 0165+lg 18=lg 59+lg 18=lg 10=1. 答案:115.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1.则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 解析:依题意知:函数f (x )为奇函数且周期为2,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12+f (1)+f (0)=212-1+21-1+20-1= 2. 答案: 216.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R.若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.解:因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1, 即3a +2b =-2.① 由f (-1)=f (1),得-a +1=b +22, 即b =-2a .② 由①②得a =2,b =-4,从而a +3b =-10. 答案:-1017.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图像在区间[0,6]上与x 轴的交点个数为________.解:因为当0≤x <2时,f (x )=x 3-x ,又f (x )是R 上最小正周期为2的周期函数,且f (0)=0,所以f (6)=f (4)=f (2)=f (0)=0.又f (1)=0,所以f (3)=f (5)=0.故函数y =f (x )的图像在区间[0,6]上与x 轴的交点个数为7. 答案:718.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=2x ,则有 ①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数; ③函数f (x )的最大值是1,最小值是0.其中所有正确命题的序号是________.解:在f (x +1)=f (x -1)中,令x -1=t ,则有f (t +2)=f (t ),因此2是函数f (x )的周期,故①正确;当x ∈[0,1]时,f (x )=2x 是增函数,根据函数的奇偶性知,f (x )在[-1,0]上是减函数,根据函数的周期性知, 函数f (x )在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知f (x )在[0,2]上的最大值f (x )max =f (1)=2,f (x )的最小值f (x )min =f (0)=f (2)=20=1, 且f (x )是周期为2的周期函数.∴f (x )的最大值是2,最小值是1,故③错误. 答案:①②1. 已知定义在R 上的奇函数f (x )满足f (x +1)=-f (x ),且在[0,1)上单调递增,记a =f ⎝⎛⎭⎫12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A.a >b =c B.b >a =c C.b >c >a D.a >c >b解:依题意得,f (x +2)=-f (x +1)=f (x ),即函数f (x )是以2为周期的函数,f (2)=f (0)=0,又f (3)=-f (2)=0,且f (x )在[0,1)上是增函数, 于是有f ⎝⎛⎭⎫12>f (0)=f (2)=f (3),即a >b =c . 答案:A2.奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为( )A .2B .1C .-1D .-2解:设g (x )=f (x +1),∵f (x +1)为偶函数,则g (-x )=g (x ),即f (-x +1)=f (x +1),∵f (x )是奇函数,∴f (-x +1)=f (x +1)=-f (x -1), 即f (x +2)=-f (x ),f (x +4)=f (x +2+2)=-f (x +2)=f (x ), 则f (4)=f (0)=0,f (5)=f (1)=2,∴f (4)+f (5)=0+2=2,故选A.3. 已知函数f (x )是定义域为R 的偶函数,且f (x +1)=1f (x ),若f (x )在[-1,0]上是减函数, 那么f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数 解:由题意知f (x +2)=1f (x +1)=f (x ),所以f (x )的周期为2, 又函数f (x )是定义域为R 的偶函数,且f (x )在[-1,0]上是减函数, 则f (x )在[0,1]上是增函数,所以f (x )在[2,3]上是增函数.选A7.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( )A.12B.32 C .0 D .-12解:∵f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),∴f (x )的周期T =2π,又∵当0≤x <π时,f (x )=0, ∴f ⎝⎛⎭⎫5π6=0,∴f ⎝⎛⎭⎫-π6+π=f ⎝⎛⎭⎫-π6+sin ⎝⎛⎭⎫-π6=0, ∴f ⎝⎛⎭⎫-π6=12,∴f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫4π-π6=f ⎝⎛⎭⎫-π6=12. 故选A. 8.已知函数f (x )对任意x ∈R ,都有f (x +6)+f (x )=0,y =f (x -1)的图象关于点(1,0)对称,且f (2)=4,则f (2 014)=( )A .0B .-4C .-8D .-16解:由题可知,函数f (x )对任意x ∈R ,都有f (x +6)=-f (x ),∴f(x+12)=f[(x+6)+6]=-f(x+6)=f(x),∴函数f(x)的周期T=12.把y=f(x-1)的图象向左平移1个单位得y=f(x-1+1)=f(x)的图象,关于点(0,0)对称,因此函数f(x)为奇函数,∴f(2 014)=f(167×12+10)=f(10)=f(10-12)=f(-2)=-f(2)=-4,故选B.9.已知f(x)是定义在R上的偶函数,且对任意x∈R,都有f(x+4)=f(x)+f(2),则f(2 014)等于( )A.0B.3C.4D.6解:依题意,得f(-2+4)=f(-2)+f(2)=f(2),即2f(2)=f(2),f(2)=0,f(x+4)=f(x),f(x)是以4为周期的周期函数,又2014=4×503+2,所以f(2014)=f(2)=0.故选A.答案:A11.奇函数f(x)的定义域为R. 若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.-2 B.-1 C.0 D.1解:因为f(x)为R上的奇函数,所以f(-x)=-f(x),f(0)=0.因为f(x+2)为偶函数,所以f(x+2)=f(-x+2),所以f(x+4)=f(-x)=-f(x),所以f(x+8)=f(x),即函数f(x)的周期为8,故f(8)+f(9)=f(0)+f(1)=1. 故选D12.f(x)是R上的偶函数,f(x+2)=f(x),当0≤x≤1时,f(x)=x2,则函数y=f(x)-|log5x|的零点个数为( )A.4 B.5 C.8 D.10解:由零点的定义可得f(x)=|log5x|,两个函数图象如图,总共有5个交点,所以共有5个零点。
高中数学函数周期知识点总结最新知识的确是天空中伟大的太阳,它那万道光芒投下了生命,投下了力量。
下面小编给大家分享一些高中数学函数周期知识点总结最新,希望能够帮助大家,欢迎阅读!高中数学函数周期知识点总结一、重要结论1、f(x+a)=f(x),则y=f(x)是以T=a为周期的周期函数;2、若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。
3、若函数f(x+a)=f(x-a),则是以T=2a为周期的周期函数4、y=f(x)满足f(x+a)=1/f(x) (a>0),则f(x)为周期函数且2a是它的一个周期。
5、若函数y=f(x)满足f(x+a)= -1/f(x)(a>0),则f(x)为周期函数且2a是它的一个周期。
6、f(x+a)={1-f(x)}/{1+f(x)},则是以T=2a为周期的周期函数。
7、f(x+a)={1-f(x)}/{1+f(x)},则是以T=4a为周期的周期函数。
8、若函数y=f(x)满足f(x+a)={1-f(x)}/{1+f(x)}(x∈R,a>0),则f(x)为周期函数且4a是它的一个周期。
9、若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2(b-a)是它的一个周期。
10、函数y=f(x)x∈R的图象关于两点A(a,y)、B(b,y),a<b都对称,则函数是以2(b-a)为周期的周期函数;< p="">11、函数y=f(x)(x∈R)的图象关于A(a,y)和直线x=b(a<b)都对称,则函数f(x) p="" 是以4(b-a)为周期的周期函数;12、若偶函数y=f(x)的图像关于直线x=a对称,则f(x)为周期函数且2a的绝对值是它的一个周期。
13、若奇函数y=f(x)的图像关于直线x=a对称,则f(x)为周期函数且4a的绝对值是它的一个周期。
函数对称的知识点总结函数对称是数学中的一个重要概念,它在代数、几何和分析等各个领域都有着重要的应用。
函数对称可以由函数的图像、函数表达式和函数的性质来描述。
在本文中,我们将探讨函数对称的各种类型和性质,并且将介绍函数对称在各种数学问题中的应用。
一、基本概念1.1 函数的对称性在数学中,函数的对称性是指函数图像相对于某个直线或者点的对称性质。
常见的对称性包括关于x轴的对称、关于y轴的对称、关于原点的对称以及关于直线y=x的对称等。
1.2 函数的图像和对称性根据函数的图像可以很直观地判断函数的对称性。
例如,当函数的图像关于y轴对称时,函数的表达式一般可以表示为f(x)=f(-x);当函数的图像关于x轴对称时,函数的表达式一般可以表示为f(x)=-f(-x);当函数的图像关于原点对称时,函数的表达式一般可以表示为f(-x)=-f(x)。
1.3 函数的性质和对称性函数的对称性也可以由函数的性质来判断。
例如,奇函数具有关于原点对称的性质,即f(-x)=-f(x);偶函数具有关于y轴对称的性质,即f(-x)=f(x)。
二、函数的对称类型2.1 奇函数奇函数是指满足f(-x)=-f(x)的函数。
奇函数的图像关于原点对称。
常见的奇函数包括正弦函数、余弦函数、和函数等。
2.2 偶函数偶函数是指满足f(-x)=f(x)的函数。
偶函数的图像关于y轴对称。
常见的偶函数包括幂函数、指数函数、对数函数等。
2.3 周期函数周期函数是指函数f(x)满足f(x+T)=f(x),其中T为正常数。
周期函数的图像在某个区间上有重复的规律。
常见的周期函数包括正弦函数、余弦函数、正切函数、三角函数等。
2.4 对称关于y轴的函数函数关于y轴对称的性质是指f(x)=f(-x)。
常见的对称关于y轴的函数包括二次函数、幂函数、指数函数等。
2.5 对称关于x轴的函数函数关于x轴对称的性质是指f(x)=-f(-x)。
常见的对称关于x轴的函数包括一次函数、双曲函数、指数函数等。
函数的基本性质(奇偶性、单调性、周期性、对称性)函数的性质(奇偶性、单调性、周期性、对称性)“定义域优先”的思想是研究函数的前提,在求值域、奇偶性、单调性、周期性、换元时易忽略定义域,所以必须先考虑函数的定义域,离开函数的定义域去研究函数的性质没有任何意义。
1. 奇偶性f(-x)与f(x)之间的关系:①f(-x)=f(x)为偶函数;f(-x)=-f(x)为奇函数;②f(-x)-f(x)=0为偶;f(x)+f(-x)=0为奇;③f(-x)÷f(x)=1是偶;f(x)÷f(-x)=-1为奇函数. (1)若定义域关于原点对称(2)若定义域不关于原点对称⾮奇⾮偶例如:3x y =在)1,1[-上不是奇函数常⽤性质:1.0)(=x f 是既奇⼜偶函数;2.奇函数若在0=x 处有定义,则必有0)0(=f ; 3.偶函数满⾜)()()(x f x f x f =-=;4.奇函数图象关于原点对称,偶函数图象关于y 轴对称;5.0)(=x f 除外的所有函数的奇偶性满⾜:(1)奇函数±奇函数=奇函数偶函数±偶函数=偶函数奇函数±偶函数=⾮奇⾮偶(2)奇函数×奇函数=偶函数偶函数×偶函数=偶函数奇函数×偶函数=奇函数 6.任何函数)(x f 可以写成⼀个奇函数2)()()(x f x f x --=和⼀个偶函数2)()()(x f x f x -+=ψ的和。
2. 单调性定义:函数定义域为A ,区间,若对任意且①总有则称在区间M 上单调递增②总有则称在区间M 上单调递减应⽤:(⼀)常⽤定义法来证明⼀个函数的单调性⼀般步骤:(1)设值(2)作差(3)变形(4)定号(5)结论(⼆)求函数的单调区间定义法、图象法、复合函数法、导数法(以后学) 注:常⽤结论(1)奇函数在对称区间上的单调性相同(2)偶函数在对称区间上的单调性相反(3)复合函数单调性-------同增异减3. 周期性(1)⼀般地对于函数内⼀切值时总有,那么叫做周期函数,T 叫做周期,kT (T 的整数倍)也是它的周期(2)如果周期函数在所有周期中存在⼀个最⼩正数,就把这个最⼩正数叫最⼩正周期。
初中基本函数知识总结归纳初中数学是学习数学的基础阶段,基本函数是数学中的重要内容之一。
掌握基本函数的知识对于学生在数学学习中起到了关键作用。
下面将对初中基本函数的知识进行总结归纳,帮助同学们更好地掌握该知识点。
一、函数的概念及表示方法函数是数学中的一种关系。
在数学中,一个集合中的每个元素,都与另一个集合中的某一个元素相对应,这种对应关系就是函数。
函数通常用符号表示,常见的表示方法有用图像表示、数据表表示和解析式表示。
1. 图像表示法函数的图像表示法是通过画出函数在坐标系中的图像来表示函数的。
在坐标系中,自变量通常在横轴上表示,因变量在纵轴上表示,函数的图像是一条曲线,对于每个自变量,都有唯一的因变量与之对应。
2. 数据表表示法函数的数据表表示法是通过列举出函数在某一段自变量取值范围内的各个自变量和因变量的对应关系,以表格的形式呈现。
3. 解析式表示法函数的解析式表示法是通过使用代数式或方程式来表示函数。
常见的函数表示法有一元一次函数的表示式y = kx + b,二次函数的表示式y = ax^2 + bx + c等。
二、一元一次函数一元一次函数也称为线性函数,是最简单的一种函数类型。
一元一次函数的解析式表示为y = kx + b,其中k和b为常数,k表示斜率,b表示纵截距。
1. 斜率斜率是函数图像上每一个点与横轴的夹角的正切值,表示函数的变化速率。
斜率的计算公式为k = (y2 - y1) / (x2 - x1),其中(x1,y1)和(x2,y2)为直线上的两个点。
2. 纵截距和横截距纵截距表示函数图像与纵轴的交点的坐标值,横截距表示函数图像与横轴的交点的坐标值。
三、二次函数二次函数是一种常见的非线性函数,二次函数的解析式表示为y = ax^2 + bx + c,其中a、b和c均为常数,a ≠ 0。
1. 抛物线的开口方向二次函数的图像是一个抛物线,其开口方向与a的正负有关。
当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。
三角函数的周期性与对称性三角函数是数学中重要的基本函数之一,包括正弦函数、余弦函数和正切函数等。
这些函数具有明显的周期性和对称性,是解决许多问题的重要工具。
本文将对三角函数的周期性与对称性进行深入探讨。
一、正弦函数的周期性与对称性正弦函数是最基础的三角函数之一,用符号sin(x)表示。
它的图像是一条连续的波浪线,具有明显的周期性。
正弦函数的周期是2π,即sin(x+2π) = sin(x)。
这意味着在每过2π的区间内,正弦函数的值会重复出现。
正弦函数还具有奇偶对称性。
奇偶对称性是指函数关于y轴对称或x轴对称。
对于正弦函数,sin(-x) = -sin(x),也就是说,当自变量取相反数时,对应的函数值也取相反数。
这种对称性使得我们能够研究正弦函数在一个区间内的性质,然后利用对称性推广到整个定义域。
二、余弦函数的周期性与对称性余弦函数是另一个常见的三角函数,用符号cos(x)表示。
与正弦函数不同,余弦函数的图像是一条连续的波浪线,但相对于正弦函数向左平移π/2个单位。
余弦函数的周期也是2π,即cos(x+2π) = cos(x)。
余弦函数同样具有奇偶对称性。
cos(-x) = cos(x),也就是说,余弦函数是关于y轴对称的。
这种对称性使得余弦函数在数学和物理等领域中得到广泛应用,如振动、波动等问题中的描述。
三、正切函数的周期性与对称性正切函数是三角函数中的又一重要函数,用符号tan(x)表示。
正切函数的图像是一条光滑的曲线,在定义域内有无数个周期。
正切函数并没有固定的最小正周期,但我们可以观察到一些规律。
tan(x+π) = tan(x),也就是说,正切函数是关于π的周期函数。
这是因为tan(x) = sin(x)/cos(x),而sin(x)和cos(x)都是以2π为周期的函数。
正切函数也具有奇偶对称性。
tan(-x) = -tan(x),也就是说,当自变量取相反数时,对应的函数值取相反数。
这种对称性在解决一些几何和三角方程时非常有用。
函数的奇偶性与周期性知识点总结函数是数学中一个重要的概念,它描述了两个变量之间的关系。
在学习函数的过程中,我们会遇到一些特殊的函数类型,包括奇函数、偶函数和周期函数。
本文将对这些函数类型的特点进行总结,并介绍函数的奇偶性和周期性的相关知识点。
一、奇函数和偶函数1. 奇函数:奇函数是指满足以下性质的函数:对于任意实数x,若f(-x) = -f(x),则函数f(x)为奇函数。
奇函数以原点对称,图像在坐标系的左右两侧关于原点对称。
例如,f(x) = x^3 和 f(x) = sin(x) 都是奇函数。
2. 偶函数:偶函数是指满足以下性质的函数:对于任意实数x,若f(-x) = f(x),则函数f(x)为偶函数。
偶函数以y轴对称,图像在坐标系的左右两侧关于y轴对称。
例如,f(x) = x^2 和 f(x) = cos(x) 都是偶函数。
二、奇偶性的性质1. 奇函数的性质:(1)奇函数的图像关于原点对称,即若点(x, y)在图像上,则点(-x, -y)也在图像上。
(2)奇函数的定义域可以是全体实数,也可以是一部分实数。
(3)奇函数的一个性质是:奇函数与偶函数的乘积仍为奇函数。
2. 偶函数的性质:(1)偶函数的图像关于y轴对称,即若点(x, y)在图像上,则点(-x, y)也在图像上。
(2)偶函数的定义域可以是全体实数,也可以是一部分实数。
(3)偶函数的一个性质是:奇函数与偶函数的乘积仍为偶函数。
三、周期函数周期函数是指在一定范围内,函数值呈现重复的规律性变化。
具体来说,对于函数f(x),存在一个正数T,使得对于任意实数x,有f(x+T) = f(x)。
T称为函数的周期,一个周期内的函数值是相同的。
例如,f(x) = sin(x) 和 f(x) = cos(x) 都是周期函数。
周期函数的性质:1. 周期函数的图像以某个区间为一个完整的重复单位。
2. 周期函数的定义域可以是全体实数,也可以是一部分实数。
3. 周期函数的一个重要性质是:周期函数与周期函数的乘积仍为周期函数。
函数的基本性质Ⅱ-奇偶性、周期性和对称性题型目录一览①函数的奇偶性②函数奇偶性的应用③函数的周期性④函数的对称性⑤函数性质的综合应用一、知识点梳理1.函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数关于y轴对称奇函数如果对于函数f(x)的定义域内任意一个x,都有f(-x)= -f(x),那么函数f(x)就叫做奇函数关于原点对称注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x,-x也在定义域内(即定义域关于原点对称).2.函数的对称性(1)若函数y=f(x+a)为偶函数,则函数y=f(x)关于x=a对称.(2)若函数y=f(x+a)为奇函数,则函数y=f(x)关于点(a,0)对称.(3)若f(x)=f(2a-x),则函数f(x)关于x=a对称.(4)若f(x)+f(2a-x)=2b,则函数f(x)关于点(a,b)对称.3.函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么称这个最小整数叫做f(x)的最小正周期.1【常用结论】1.奇偶性技巧(1)若奇函数y=f(x)在x=0处有意义,则有f(0)=0;(2)对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇×(÷)奇=偶;奇×(÷)偶=奇;偶×(÷)偶=偶.(3)常见奇偶性函数模型奇函数:①函数f(x)=ma x+1a x-1(x≠0)或函数f(x)=m a x-1a x+1.②函数f(x)=±(a x-a-x).③函数f(x)=log a x+mx-m=log a1+2mx-m或函数f(x)=log a x-mx+m=log a1-2mx+m④函数f(x)=log a(x2+1+x)或函数f(x)=log a(x2+1-x).注意:关于①式,可以写成函数f(x)=m+2ma x-1(x≠0)或函数f(x)=m-2ma x+1(m∈R).偶函数:①函数f(x)=±(a x+a-x).②函数f(x)=log a(a mx+1)-mx2.③函数f(|x|)类型的一切函数.2.周期性技巧3.函数的的对称性与周期性的关系(1)若函数y=f(x)有两条对称轴x=a,x=b(a<b),则函数f(x)是周期函数,且T=2(b-a);(2)若函数y=f(x)的图象有两个对称中心(a,c),(b,c)(a<b),则函数y=f(x)是周期函数,且T=2(b-a);(3)若函数y=f(x)有一条对称轴x=a和一个对称中心(b,0)(a<b),则函数y=f(x)是周期函数,且T=4(b-a).4.对称性技巧(1)若函数y=f(x)关于直线x=a对称,则f(a+x)=f(a-x).(2)若函数y=f(x)关于点(a,b)对称,则f(a+x)+f(a-x)=2b.(3)函数y=f(a+x)与y=f(a-x)关于y轴对称,函数y=f(a+x)与y=-f(a-x)关于原点对称.二、题型分类精讲真题刷刷刷一、单选题1(2021·全国·高考真题)下列函数中是增函数的为()A.f x =-xB.f x =23x C.f x =x2 D.f x =3x 【答案】D【分析】根据基本初等函数的性质逐项判断后可得正确的选项.【详解】对于A,f x =-x为R上的减函数,不合题意,舍.对于B,f x =23x为R上的减函数,不合题意,舍.对于C,f x =x2在-∞,0为减函数,不合题意,舍.对于D,f x =3x为R上的增函数,符合题意,故选:D.2(2021·全国·统考高考真题)设函数f(x)=1-x1+x,则下列函数中为奇函数的是()A.f x-1-1 B.f x-1+1 C.f x+1-1 D.f x+1+1【答案】B【分析】分别求出选项的函数解析式,再利用奇函数的定义即可.【详解】由题意可得f(x)=1-x1+x=-1+21+x,对于A,f x-1-1=2x-2不是奇函数;对于B,f x-1+1=2x是奇函数;对于C,f x+1-1=2x+2-2,定义域不关于原点对称,不是奇函数;对于D,f x+1+1=2x+2,定义域不关于原点对称,不是奇函数.故选:B【点睛】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.3(2021·全国·高考真题)设f x 是定义域为R的奇函数,且f1+x=f-x.若f-1 3=13,则f53=()A.-53B.-13C.13D.53【答案】C【分析】由题意利用函数的奇偶性和函数的递推关系即可求得f53的值.【详解】由题意可得:f53=f1+23=f-23=-f23 ,而f23=f1-13=f13 =-f-13=-13,故f53=13.故选:C.【点睛】关键点点睛:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.4(2021·浙江·统考高考真题)已知函数f(x)=x2+14,g(x)=sin x,则图象为如图的函数可能是()A.y=f(x)+g(x)-14B.y=f(x)-g(x)-14C.y =f (x )g (x )D.y =g (x )f (x )【答案】D【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解.【详解】对于A ,y =f x +g x -14=x 2+sin x ,该函数为非奇非偶函数,与函数图象不符,排除A ;对于B ,y =f x -g x -14=x 2-sin x ,该函数为非奇非偶函数,与函数图象不符,排除B ;对于C ,y =f x g x =x 2+14sin x ,则y =2x sin x +x 2+14 cos x ,当x =π4时,y =π2×22+π216+14 ×22>0,与图象不符,排除C .故选:D .5(2022·全国·统考高考真题)如图是下列四个函数中的某个函数在区间[-3,3]的大致图像,则该函数是()A.y =-x 3+3xx 2+1 B.y =x 3-xx 2+1C.y =2x cos x x 2+1D.y =2sin x x 2+1【答案】A【分析】由函数图像的特征结合函数的性质逐项排除即可得解.【详解】设f x =x 3-x x 2+1,则f 1 =0,故排除B ;设h x =2x cos x x 2+1,当x ∈0,π2 时,0<cos x <1,所以h x =2x cos x x 2+1<2xx 2+1≤1,故排除C ;设g x =2sin x x 2+1,则g 3 =2sin310>0,故排除D .故选:A.6(2021·全国·统考高考真题)已知函数f x 的定义域为R,f x+2为偶函数,f2x+1为奇函数,则()A.f-12=0 B.f-1 =0 C.f2 =0 D.f4 =0【答案】B【分析】推导出函数f x 是以4为周期的周期函数,由已知条件得出f1 =0,结合已知条件可得出结论.【详解】因为函数f x+2为偶函数,则f2+x=f2-x,可得f x+3=f1-x,因为函数f2x+1为奇函数,则f1-2x=-f2x+1,所以,f1-x=-f x+1,所以,f x+3=-f x+1=f x-1,即f x =f x+4,故函数f x 是以4为周期的周期函数,因为函数F x =f2x+1为奇函数,则F0 =f1 =0,故f-1=-f1 =0,其它三个选项未知.故选:B.7(2022·全国·统考高考真题)已知函数f(x)的定义域为R,且f(x+y)+f(x-y)=f(x)f(y),f(1)=1,则22k=1f(k)=()A.-3B.-2C.0D.1【答案】A【分析】法一:根据题意赋值即可知函数f x 的一个周期为6,求出函数一个周期中的f1 , f2 ,⋯,f6 的值,即可解出.【详解】[方法一]:赋值加性质因为f x+y+f x-y=f x f y ,令x=1,y=0可得,2f1 =f1 f0 ,所以f0 =2,令x=0可得,f y +f-y=2f y ,即f y =f-y,所以函数f x 为偶函数,令y=1得,f x+1+f x-1=f x f1 =f x ,即有f x+2+f x =f x+1,从而可知f x+2=-f x-1,f x-1=-f x-4,故f x+2=f x-4,即f x =f x+6,所以函数f x 的一个周期为6.因为f2 =f1 -f0 =1-2=-1,f3 =f2 -f1 =-1 -1=-2,f4 =f-2=f2 =-1,f5 =f-1=f1 =1,f6 =f0 =2,所以一个周期内的f1 +f2 +⋯+f6 =0.由于22除以6余4,所以22k=1f k=f1 +f2 +f3 +f4 =1-1-2-1=-3.故选:A.[方法二]:【最优解】构造特殊函数由f x+y+f x-y=f x f y ,联想到余弦函数和差化积公式cos x+y+cos x-y=2cos x cos y,可设f x =a cosωx,则由方法一中f0 =2,f1 =1知a=2,a cosω=1,解得cosω=12,取ω=π3,所以f x =2cos π3x,则f x+y+f x-y=2cosπ3x+π3y+2cosπ3x-π3y=4cosπ3x cosπ3y=f x f y ,所以f x =2cos π3x符合条件,因此f(x)的周期T=2ππ3=6,f0 =2,f1 =1,且f2 =-1,f3 =-2,f4 =-1,f5 =1,f6 =2,所以f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=0,由于22除以6余4,所以22k=1f k=f1 +f2 +f3 +f4 =1-1-2-1=-3.故选:A.【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.8(2022·全国·统考高考真题)已知函数f(x),g(x)的定义域均为R,且f(x)+g(2-x)=5,g(x)-f(x-4)=7.若y=g(x)的图像关于直线x=2对称,g(2)=4,则22k=1f k =()A.-21B.-22C.-23D.-24【答案】D【分析】根据对称性和已知条件得到f(x)+f(x-2)=-2,从而得到f3 +f5 +⋯+f21=-10,f4 +f6 +⋯+f22=-10,然后根据条件得到f(2)的值,再由题意得到g3 =6从而得到f1 的值即可求解.【详解】因为y=g(x)的图像关于直线x=2对称,所以g2-x=g x+2,因为g(x)-f(x-4)=7,所以g(x+2)-f(x-2)=7,即g(x+2)=7+f(x-2),因为f(x)+g(2-x)=5,所以f(x)+g(x+2)=5,代入得f(x)+7+f(x-2)=5,即f(x)+f(x-2)=-2,所以f 3 +f 5 +⋯+f 21 =-2 ×5=-10,f 4 +f 6 +⋯+f 22 =-2 ×5=-10.因为f (x )+g (2-x )=5,所以f (0)+g (2)=5,即f 0 =1,所以f (2)=-2-f 0 =-3.因为g (x )-f (x -4)=7,所以g (x +4)-f (x )=7,又因为f (x )+g (2-x )=5,联立得,g 2-x +g x +4 =12,所以y =g (x )的图像关于点3,6 中心对称,因为函数g (x )的定义域为R ,所以g 3 =6因为f (x )+g (x +2)=5,所以f 1 =5-g 3 =-1.所以∑22k =1f (k )=f 1 +f 2 +f 3 +f 5 +⋯+f 21 +f 4 +f 6 +⋯+f 22 =-1-3-10-10=-24.故选:D【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.9(2021·全国·统考高考真题)设函数f x 的定义域为R ,f x +1 为奇函数,f x +2 为偶函数,当x ∈1,2 时,f (x )=ax 2+b .若f 0 +f 3 =6,则f 92=()A.-94B.-32C.74D.52【答案】D【分析】通过f x +1 是奇函数和f x +2 是偶函数条件,可以确定出函数解析式f x =-2x 2+2,进而利用定义或周期性结论,即可得到答案.【详解】[方法一]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路一:从定义入手.f 92=f 52+2 =f -52+2 =f -12 f -12=f -32+1 =-f 32+1 =-f 52-f 52=-f 12+2 =-f -12+2 =-f 32所以f 92=-f 32 =52.[方法二]:因为f x +1 是奇函数,所以f -x +1 =-f x +1 ①;因为f x +2 是偶函数,所以f x +2 =f -x +2 ②.令x =1,由①得:f 0 =-f 2 =-4a +b ,由②得:f 3 =f 1 =a +b ,因为f 0 +f 3 =6,所以-4a +b +a +b =6⇒a =-2,令x =0,由①得:f 1 =-f 1 ⇒f 1 =0⇒b =2,所以f x =-2x 2+2.思路二:从周期性入手由两个对称性可知,函数f x 的周期T =4.所以f 92=f 12 =-f 32 =52.故选:D .【点睛】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.二、多选题10(2022·全国·统考高考真题)已知函数f (x )及其导函数f (x )的定义域均为R ,记g (x )=f (x ),若f 32-2x,g (2+x )均为偶函数,则()A.f (0)=0B.g -12=0 C.f (-1)=f (4)D.g (-1)=g (2)【答案】BC【分析】方法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【详解】[方法一]:对称性和周期性的关系研究对于f (x ),因为f 32-2x 为偶函数,所以f 32-2x =f 32+2x 即f 32-x =f 32+x①,所以f 3-x =f x ,所以f (x )关于x =32对称,则f (-1)=f (4),故C 正确;对于g (x ),因为g (2+x )为偶函数,g (2+x )=g (2-x ),g (4-x )=g (x ),所以g (x )关于x =2对称,由①求导,和g (x )=f (x ),得f 32-x =f 32+x ⇔-f 32-x =f 32+x ⇔-g 32-x=g 32+x ,所以g 3-x +g x =0,所以g (x )关于32,0 对称,因为其定义域为R,所以g32=0,结合g(x)关于x=2对称,从而周期T=4×2-32=2,所以g-12=g32 =0,g-1 =g1 =-g2 ,故B正确,D错误;若函数f(x)满足题设条件,则函数f(x)+C(C为常数)也满足题设条件,所以无法确定f(x)的函数值,故A错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知g(x)周期为2,关于x=2对称,故可设g x =cosπx,则f x =1πsinπx+c,显然A,D错误,选BC.故选:BC.[方法三]:因为f32-2x,g(2+x)均为偶函数,所以f32-2x=f32+2x即f32-x=f32+x,g(2+x)=g(2-x),所以f3-x=f x ,g(4-x)=g(x),则f(-1)=f(4),故C正确;函数f(x),g(x)的图象分别关于直线x=32,x=2对称,又g(x)=f (x),且函数f(x)可导,所以g32=0,g3-x=-g x ,所以g(4-x)=g(x)=-g3-x,所以g(x+2)=-g(x+1)=g x ,所以g-1 2=g32 =0,g-1 =g1 =-g2 ,故B正确,D错误;若函数f(x)满足题设条件,则函数f(x)+C(C为常数)也满足题设条件,所以无法确定f(x)的函数值,故A错误.故选:BC.【点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.三、填空题11(2021·全国·统考高考真题)写出一个同时具有下列性质①②③的函数f x :.①f x1x2=f x1f x2;②当x∈(0,+∞)时,f (x)>0;③f (x)是奇函数.【答案】f x =x 4(答案不唯一,f x =x 2n n ∈N * 均满足)【分析】根据幂函数的性质可得所求的f x .【详解】取f x =x 4,则f x 1x 2 =x 1x 2 4=x 41x 42=f x 1 f x 2 ,满足①,f x =4x 3,x >0时有f x >0,满足②,f x =4x 3的定义域为R ,又f -x =-4x 3=-f x ,故f x 是奇函数,满足③.故答案为:f x =x 4(答案不唯一,f x =x 2n n ∈N * 均满足)四、双空题12(2022·全国·统考高考真题)若f x =ln a +11-x+b 是奇函数,则a =,b =.【答案】-12;ln2.【分析】根据奇函数的定义即可求出.【详解】[方法一]:奇函数定义域的对称性若a =0,则f (x )的定义域为{x |x ≠1},不关于原点对称∴a ≠0若奇函数的f (x )=ln a +11-x +b 有意义,则x ≠1且a +11-x≠0∴x ≠1且x ≠1+1a,∵函数f (x )为奇函数,定义域关于原点对称,∴1+1a =-1,解得a =-12,由f (0)=0得,ln 12+b =0,∴b =ln2,故答案为:-12;ln2.[方法二]:函数的奇偶性求参f (x )=ln a +11-x +b =ln a -ax +11-x +b =lnax -a -11-x+b f (-x )=ln ax +a +11+x+b∵函数f (x )为奇函数∴f(x)+f(-x)=ln ax-a-11-x +lnax+a+11+x+2b=0∴lna2x2-(a+1)2x2-1+2b=0∴a21=(a+1)21⇒2a+1=0⇒a=-12-2b=ln14=-2ln2⇒b=ln2∴a=-12,b=ln2 [方法三]:因为函数f x =ln a+1 1-x+b为奇函数,所以其定义域关于原点对称.由a+11-x≠0可得,1-xa+1-ax≠0,所以x=a+1a=-1,解得:a=-12,即函数的定义域为-∞,-1∪-1,1∪1,+∞,再由f0 =0可得,b=ln2.即f x =ln-12+1 1-x+ln2=ln1+x1-x,在定义域内满足f-x =-f x ,符合题意.故答案为:-12;ln2.题型一:函数的奇偶性策略方法判断函数奇偶性的方法(1)定义法:(2)图象法:(3)性质法:在公共定义域内有:奇±奇=奇,偶±偶=偶,奇×奇=偶,偶×偶=偶,奇×偶=奇.1判断下列函数的奇偶性:(1)f x =x4-2x2;(2)f x =x5-x;(3)f x =3x1-x2;(4)f x =x +x.【答案】(1)偶函数(2)奇函数(3)奇函数(4)非奇非偶函数【分析】(1)利用偶函数的定义可判断函数的奇偶性;(2)利用奇函数的定义可判断函数的奇偶性;(3)利用奇函数的定义可判断函数的奇偶性;(4)利用反例可判断该函数为非奇非偶函数.【详解】(1)f x 的定义域为R,它关于原点对称.f-x=-x4-2-x2=x4-2x2=f x ,故f x 为偶函数.(2)f x 的定义域为R,它关于原点对称.f-x=-x5--x=-x5+x=-f x ,故f x 为奇函数.(3)f x 的定义域为-∞,-1∪-1,1∪1,+∞,它关于原点对称.f-x=-3x1--x2=-f x ,故f x 为奇函数.(4)f1 =1 +1=2,f-1=0,故f1 ≠f-1,f-1≠-f1 ,故f x 为非奇非偶函数.【题型训练】一、单选题1函数f x =2x-12x+1的奇偶性是()A.是奇函数,不是偶函数B.是偶函数,不是奇函数C.既是奇函数,也是偶函数D.非奇非偶函数【答案】A【分析】由奇偶性定义直接判断即可.【详解】∵f x 的定义域为R,f-x=2-x-12-x+1=12x-112x+1=1-2x1+2x=-f x ,∴f x 是奇函数,不是偶函数.故选:A.2已知奇函数f x ,当x>0时,f x =x2+x,则当x<0时,f x =() A.-x2+x B.-x2-x C.x2+x D.x2-x 【答案】A【分析】由x<0得-x>0,代入得f-x,根据奇函数即可求解.【详解】当x<0,则-x>0,则f-x=(-x)2+-x=x2-x,又f x 为奇函数,所以当x<0时,f x =-f-x=-x2+x.故选:A.3若函数f x =log2-x,x<0g x ,x>0为奇函数,则f g2=()A.2B.1C.0D.-1【答案】C【分析】由f x 为奇函数求得g x ,即可由分段函数求值.【详解】函数f x =log2-x,x<0g x ,x>0为奇函数,设x>0,则-x<0,∴f x =g x =-f-x=-log2x,∴g2 =-1,f g2=f-1=0.故选:C.4函数f x =4cos x2x-2-x的部分图象大致为()A. B.C. D.【答案】C【分析】根据函数的奇偶性排除AB,再由特殊值排除D即可得解.【详解】因为f x =4cos x2x-2-x的定义域为{x|x≠0},关于原点对称,所以f(-x)=4cos(-x)2-x-2x=4cos x2-x-2x=-f(x),即函数为奇函数,排除AB,当x=2时,f(2)=4cos222-2-2<0,排除D.故选:C二、填空题5函数y=f x 为偶函数,当x>0时,f x =ln x+x-1,则x<0时,f x =.【答案】ln-x-x-1【分析】由偶函数的定义求解.【详解】x<0时,-x>0,f(x)是偶函数,∴f(x)=f(-x)=ln(-x)-x-1,故答案为:ln(-x)-x-1.6f x =x5+100x3+x+1,若f m=-2,则f-m=.【答案】4【分析】令f x =g(x)+1,可得g(x)为奇函数,再根据奇函数的性质求解.【详解】令f x =g x +1,g x =x5+100x3+x,x∈R,则g(-x)=-g(x),g(x)为奇函数,由f(m)=g(m)+1=-2,解得g(m)=-3,所以g(-m)=3.所以f-m=g(-m)+1=3+1=4.故答案为:4.7已知函数f x 是定义在R上的奇函数,当x>0时,f x =log2x,则f x ≥-2的解集是.【答案】-4,0∪14,+∞【分析】利用奇偶性求出函数f(x)的解析式f(x)=-log2-x,x<00,x=0log2x,x>0,分类讨论即可求解.【详解】当x<0时,-x>0,所以f(-x)=log2-x,因为函数f(x)是定义在R上的奇函数,所以f(x)=-f(-x)=-log2-x,所以当x<0时,f(x)=-log2-x,所以f (x )=-log 2-x ,x <00,x =0log 2x ,x >0,要解不等式f (x )≥-2,只需x >0log 2x ≥-2 或x <0-log 2-x ≥-2 或x =00≥-2,解得x ≥14或-4≤x <0或x =0,综上,不等式的解集为-4,0∪ 14,+∞.故答案为:-4,0∪ 14,+∞.三、解答题8已知函数f x -1 =lgx 2-x(1)求函数f x 解析式;(2)判断函数f x 的奇偶性并加以证明【答案】(1)f (x )=lgx +11-x(2)奇函数,证明见解析【分析】(1)利用换元法,令t =x -1,得f (t ),从而可得f (x );(2)先求函数定义域,利用奇偶性的定义进行证明.【详解】(1)令t =x -1,则x =t +1,则f (t )=lg t +12-t -1=lg t +11-t,所以f (x )=lg x +11-x.(2)奇函数;证明:定义域为-1,1 ,因为f (-x )=lg 1-x 1+x =-lg x +11-x=-f (x ),所以f (x )为奇函数.9已知函数f x =2x -22x +2.(1)求f -1 +f 3 的值;(2)令g x =f x +1 ,求证:g x 为奇函数;(3)若锐角α满足g 1-sin α +g cos α-1 >0,求α的取值范围.【答案】(1)0(2)证明见解析(3)0,π4【分析】(1)将x =-1和x =3分别代入解析式求解即可;(2)根据奇偶性的定义证明即可;(3)根据奇偶性将不等式化为g 1-sin α >g 1-cos α ,利用单调性定义可证得g x 为R 上的增函数,由此可得sin α<cos α,结合三角函数知识可求得结果.【详解】(1)∵f -1 =12-212+2=-35,f 3 =8-28+2=35,∴f -1 +f 3 =0.(2)g x =f x +1 =2x +1-22x +1+2=2x -12x +1,则g x 的定义域为R ;∵g -x =12x -112x+1=1-2x 1+2x=-g x ,∴g x 为奇函数.(3)由g 1-sin α +g cos α-1 >0得:g 1-sin α >-g cos α-1 =g 1-cos α ;g x =2x -12x +1=2x +1-22x +1=1-22x+1,设x 1<x 2,则g x 2 -g x 1 =1-22x 2+1-1+22x 1+1=22x 2-2x 12x 1+1 2x2+1>0,∴g x 为R 上的增函数,∴1-sin α>1-cos α,即sin α<cos α,又α∈0,π2,∴α∈0,π4 .题型二:函数奇偶性的应用策略方法已知函数奇偶性可以解决的三个问题1若函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-6x ,则f (-1)=()A.-7B.-5C.5D.7【答案】C【分析】求出x <0时的解析式后,代入x =-1可求出结果.【详解】因为f (x )为奇函数,且当x >0时,f (x )=x 2-6x ,所以当x <0时,f (x )=-f (-x )=--x 2-6-x =-x 2-6x ,所以f (-1)=-1+6=5.故选:C2若函数f x =ax 2+bx +3a +b a -1≤x ≤2a 是偶函数,则a 、b 的值是()A.a =0,b =0B.a 不能确定,b =0C.a =0,b 不能确定D.a =13,b =0【答案】D【分析】根据定义域关于原点对称,求得a =13,再根据f -x =f x ,求得b 的值,即可求解.【详解】因为函数f x =ax 2+bx +3a +b a -1≤x ≤2a 是偶函数,可得a -1+2a =0,解得a =13,即f x =13x 2+bx +1+b ,又由f -x =13x 2-bx +1+b ,因为函数f x 为偶函数,则f -x =f x ,即13x 2+bx +1+b =13x 2-bx +1+b ,解得b =0.故选:D .3偶函数f x x ∈R 满足:f -4 =f 1 =0,且在区间0,3 与3,+∞ 上分别递减和递增,使f x <0的取值范围是()A.-∞,-4 ∪4,+∞B.-4,-1 ∪1,4C.-∞,-4 ∪-1,0D.-∞,-4 ∪-1,0 ∪1,4【答案】B【分析】根据题中所给条件,可画出符合全部条件的函数图象辅助做题.【详解】根据题目条件,想象函数图象如下:因为f-4=f1 =0,f x 为偶函数,所以f4 =f-1=0,所以当-4<x<-1和1<x<4时,f x <0,故选:B.【题型训练】一、单选题1(2023·全国·高三专题练习)若函数f x =2x+a2x-a为奇函数,则实数a的值为()A.1B.2C.-1D.±1【答案】D【分析】根据题意可得f-x+f(x)=0,计算可得a=±1,经检验均符合题意,即可得解.【详解】由f(x)为奇函数,所以f-x+f(x)=2-x+a2-x-a+2x+a2x-a=1+a⋅2x1-a⋅2x+2x+a2x-a=0,所以2⋅2x-2a2⋅2x=0,可得a2=1,解得a=±1,当a=-1时,f(x)的定义域为R,符合题意,当a=1时,f(x)的定义域为-∞,0∪0,+∞符合题意,故选:D2(2023·全国·高三专题练习)已知函数f x =x3+1,x>0ax3+b,x<0为偶函数,则2a+b=()A.3B.32C.-12D.-32【答案】B【分析】利用偶函数的性质直接求解即可.【详解】由已知得,当x>0时,则-x<0,即f x =x3+1,f-x=-ax3+b,∵f x 为偶函数,∴f-x=f x ,即x3+1=-ax3+b,∴a=-1,b=1,∴2a+b=2-1+1=32,故选:B.3(2023·安徽·校联考模拟预测)已知函数f(x)为R上的奇函数,当x≥0时,f(x)=e x+x+m,则f(-1)=()A.eB.-eC.e+1D.-e-1【答案】B【分析】由定义在R上的奇函数有f0 =0,求出m的值,再由f(-1)=-f(1)可得出答案.【详解】函数f(x)为R上的奇函数,则f0 =e0+0+m=0,解得m=-1f(-1)=-f(1)=-e+1-1=-e故选:B4(2023·全国·高三专题练习)定义在R上的偶函数f x 在区间0,+∞上单调递增,若f1 < f ln x,则x的取值范围是()A.e,+∞B.1,+∞C.-∞,-e∪e,+∞D.0,1 e∪e,+∞【答案】D【分析】根据偶函数及单调性解不等式即可.【详解】由题意,ln x>1,则x>e或x∈0,1 e.故选:D.5(2023春·贵州黔东南·高三校考阶段练习)已知偶函数f x 在-∞,0上单调递增,则f3-2x>f1 的解集是()A.-1,1B.1,+∞C.-∞,2D.1,2【答案】D【分析】利用偶函数的对称性可得|3-2x|<1,即可求解集.【详解】由偶函数的对称性知:f x 在-∞,0上递增,则在(0,+∞)上递减,所以|3-2x|<1,故-1<3-2x<1,可得1<x<2,所以不等式解集为1,2.故选:D6(2023·湖南长沙·湖南师大附中校考模拟预测)已知函数f(x)是定义在R上的偶函数,f(x)在[0,+∞)上单调递减,且f(3)=0,则不等式(2x-5)f(x-1)<0的解集为()A.(-∞,-2)∪52,4B.(4,+∞)C.-2,52∪(4,+∞) D.(-∞,-2)【答案】C【分析】依题意作函数图像,根据单调性和奇偶性求解.【详解】依题意,函数的大致图像如下图:因为f (x )是定义在R 上的偶函数,在[0,+∞)上单调递减,且f (3)=0,所以f (x )在(-∞,0]上单调递增,且f (-3)=0,则当x >3或x <-3时,f (x )<0;当-3<x <3时,f (x )>0,不等式(2x -5)f (x -1)<0化为2x -5>0f (x -1)<0 或2x -5<0f (x -1)>0 ,所以2x -5>0x -1>3或2x -5>0x -1<-3 或2x -5<0-3<x -1<3 ,解得x >4或x ∈∅或-2<x <52,即-2<x <52或x >4,即原不等式的解集为-2,52∪(4,+∞);故选:C .二、多选题7(2023·全国·高三专题练习)已知函数f x 在区间-5,5 上是偶函数,在区间0,5 上是单调函数,且f 3 <f 1 ,则()A.f (-1)<f (-3)B.f 0 >f (-1)C.f (-1)<f 1D.f (-3)>f 5【答案】BD【分析】根据函数的单调性和奇偶性直接求解.【详解】函数f x 在区间0,5 上是单调函数,又3>1,且f 3 <f 1 ,故此函数在区间0,5 上是减函数.由已知条件及偶函数性质,知函数f x 在区间-5,0 上是增函数.对于A ,-3<-1,故f (-3)<f (-1),故A 错误;对于B ,0>-1,故f 0 >f -1 ,故B 正确;对于C ,f -1 =f 1 ,故C 错误;对于D ,f -3 =f 3 >f 5 ,故D 正确.故选:BD .8(2023·山东菏泽·山东省东明县第一中学校联考模拟预测)已知函数f x 的定义域为R ,f x +1 为奇函数,且对∀x ∈R ,f x +4 =f -x 恒成立,则()A.f x 为奇函数B.f 3 =0C.f 12=-f 52D.f 2023 =0【答案】BCD【分析】根据函数定义换算可得f x 为偶函数,根据偶函数和奇函数性质可知f x 为周期函数,再根据函数周期性和函数特殊值即可得出选项.【详解】因为f x +1 为奇函数,所以f 1-x =-f 1+x ,故f x +2 =-f -x ,f 2-x =-f x ,又f x +4 =f -x ,所以f 2+x =f 2-x ,故f x +2 =-f -x =-f x ,所以f -x =f x ,f x 为偶函数,A 错误;f x +1 为奇函数,所以f 1 =0,f 2+x =f 2-x ,所以f 3 =f 1 =0,B 正确;f 52=f 32 ,又f x 的图象关于点1,0 对称,所以f 32 =-f 12 ,所以f 12=-f 52 ,C 正确;又f x +4 =f -x =f x ,所以f x 是以4为周期的函数,f (2023)=f (505×4+3)=f (3)=0,D 正确.故选:BCD .三、填空题9(2023·广东潮州·统考二模)已知函数f x =lnx +1x -1+m +1(其中e 是自然对数的底数,e ≈2.718⋯)是奇函数,则实数m 的值为.【答案】-1【分析】利用奇函数的性质可得出f -x +f x =0,结合对数运算可得出实数m 的值.【详解】对于函数f x =lnx +1x -1+m +1,x +1x -1>0,解得x <-1或x >1,所以,函数f x 的定义域为-∞,-1 ∪1,+∞ ,因为函数f x 为奇函数,则f -x =-f x ,即f -x +f x =0,即ln -x+1-x-1+ln x+1x-1+2m+2=ln x-1x+1+ln x+1x-1+2m+2=2m+2=0,解得m=-1.故答案为:-1.10(2023·河南周口·统考模拟预测)已知函数f x 是定义在R上的偶函数,f x 在0,+∞上单调递减,且f3 =0,则不等式f x-2x<0的解集为.【答案】-1,0∪5,+∞【分析】由题意和偶函数的性质可知函数f(x)在[0,+∞)上为减函数,在(-∞,0]上为增函数,结合f(3)=f(-3)=0,分类讨论当x<0、x>0时,利用函数的单调性解不等式即可.【详解】因为函数f(x)是定义在R上的偶函数,且在[0,+∞)上单调递减所以f(x)在(-∞,0]上为增函数,由f(3)=0,得f(-3)=0,f(x-2)x<0,当x<0时,f(x-2)>0=f(-3),有x-2<0x-2>-3,解得-1<x<0;当x>0时,f(x-2)<0=f(3),有x-2>0x-2>3,解得x>5,综上,不等式f(x-2)x<0的解集为(-1,0)∪(5,+∞).故答案为:(-1,0)∪(5,+∞).11(2023春·江苏南通·高三海安高级中学校考阶段练习)定义在R上的函数f x ,g x ,满足f2x+3为偶函数,g x+5-1为奇函数,若f1 +g1 =3,则f5 -g9 =.【答案】1【分析】根据f2x+3为偶函数、g x+5-1为奇函数的性质,利用赋值法可得答案.【详解】若f2x+3为偶函数,g x+5-1为奇函数,则f-2x+3=f2x+3,g-x+5-1=-g x+5+1,令x=1,则f-2×1+3=f2×1+3,即f1 =f5 ,令x=4,则g-4+5-1=-g4+5+1,即g1 -1=-g9 +1,又因为f1 +g1 =3,所以f5 -g9 =f1 +g1 -2=1.故答案为:1.12(2023春·福建厦门·高三厦门一中校考期中)已知函数f x 的定义域为R ,若f x +1 -2为奇函数,且f 1-x =f 3+x ,则f 2023 =.【答案】2【分析】推导出函数f x 为周期函数,确定该函数的周期,计算出f 1 的值,结合f 1 +f 3 =4以及周期性可求得f 2023 的值.【详解】因为f x +1 -2为奇函数,则f -x +1 -2=-f x +1 -2 ,所以,f 1+x +f 1-x =4,在等式f 1+x +f 1-x =4中,令x =0,可得2f 1 =4,解得f 1 =2,又因为f 1-x =f 3+x ,则f 1+x +f 3+x =4,①所以,f x +3 +f x +5 =4,②由①②可得f x +5 =f x +1 ,即f x +4 =f x ,所以,函数f x 为周期函数,且该函数的周期为4,所以,f 2023 =f 4×505+3 =f 3 =4-f 1 =2.故答案为:2.题型三:函数的周期性策略方法函数周期性的判断与应用1若函数f (x )满足f (x +2)=f (x ),则f (x )可以是()A.f (x )=(x -1)2B.f (x )=|x -2|C.f (x )=sin π2xD.f (x )=tan π2x【答案】D【分析】根据周期函数的定义,结合特例法进行判断求解即可.【详解】因为f (x +2)=f (x ),所以函数的周期为2.A :因为f (1)=0,f (3)=4,所以f (1)≠f (3),因此函数的周期不可能2,本选项不符合题意;B :因为f (2)=0,f (4)=2,所以f (2)≠f (4),因此函数的周期不可能2,本选项不符合题意;C :该函数的最小正周期为:2ππ2=4,因此函数的周期不可能2,本选项不符合题意;D :该函数的最小正周期为:ππ2=2,因此本选项符合题意,故选:D2若定义域为R 的奇函数f (x )满足f (2-x )=f (x ),且f (3)=2,则f (4)+f (1)=()A.2B.1C.0D.-2【答案】D【分析】根据函数f x 为R 的奇函数和f x 满足f (2-x )=f (x ),得到函数T =4,再结合f 3 =2求解.【详解】因为函数f x 为R 的奇函数,所以f -x =-f x ,又f x 满足f (2-x )=f (x ),所以f 2-x =-f -x ,即f 2+x =-f x ,所以f 4+x =f x ,即T =4,因为f (3)=2,f (0)=0,所以f (4)=0,f 3 =-f 1 =2,所以f (4)+f (1)=-2故选:D3已知定义在R 上的奇函数,f x 满足f (x +2)=-f (x ),当0≤x ≤1时,f x =x 2,则f 2023 =()A.2019B.1C.0D.-1【答案】D【分析】根已知条件求出f x 的周期,根据周期性以及奇函数,结合已知条件即可求解.【详解】因为f x 满足f(x+2)=-f(x),所以f(x+4)=-f(x+2)=f(x),所以f x 是周期为4的函数,当0≤x≤1时,f x =x2,所以f1 =1,又因为f x 是奇函数,f2023=-f1 =-1,=f3 =f-1=f4×505+3故选:D.【题型训练】一、单选题1(2023·内蒙古赤峰·统考模拟预测)函数y=f(x)是定义在R上奇函数,且f(4-x)=f(x),f( -3)=-1,则f(15)=()A.0B.-1C.2D.1【答案】B【分析】通过已知计算得出函数是周期为8的周期函数,则f15=f7 ,根据已知得出f(7) =f(-3)=-1,即可得出答案.【详解】∵函数y=f(x)是定义在R上奇函数,且f(4-x)=f(x),∴f4+x=-f x ,=f-x∴f4+4+x=f x ,=f8+x=-f4+x则函数y=f(x)是周期为8的周期函数,则f15=f7 ,=f15-8令x=-3,则f(4+3)=f(-3)=-1,∴f(15)=-1,故选:B.2(2023·江西南昌·校联考模拟预测)已知定义在R上的函数f x 满足f x+3=-f x ,g x =f x -2为奇函数,则f198=()A.0B.1C.2D.3【答案】C【分析】由题意推出函数f x 的周期以及满足等式f x +f-x=4,赋值求得f0 =2,利用函数的周期性即可求得答案.【详解】因为f x+3=-f x ,所以f x+6=-f x+3=f x ,所以f x 的周期为6,又g x =f x -2为奇函数,所以f x -2+f-x-2=0,所以f x +f-x=4,令x=0,得2f0 =4,所以f0 =2,所以f198=f0+6×33=f0 =2,故选:C.3(2023·全国·高三专题练习)已知定义在R上的函数f(x)的图像关于y轴对称,且周期为3,又f(-1)=1,f(0)=-2,则f(1)+f(2)+f(3)+⋯+f(2023)的值是()A.2023B.2022C.-1D.1【答案】D【分析】利用f x 的周期,根据函数的奇偶性和已知函数值,结合题意,求解即可.【详解】因为f x 的周期为3;又f-1=1,则f2 =f-1+3=f-1=1;f0 =-2,则f3 =f0+3=f0 =-2;因为函数f(x)在R上的图像关于y轴对称所以f x 为偶函数,故f1 =f-1=1,则f1 +f2 +f3 =0;故f(1)+f(2)+f(3)+⋯+f(2023)=674×0+f1 =1.故选:D.4(2023春·贵州·高三校联考期中)已知函数f x 满足f1-x=f5+x,且f x+1是偶函数,当1≤x≤3时,f x =2x+34,则f log236=()A.32B.3 C.398D.394【答案】B【分析】由函数的奇偶性和对称性,得到函数的周期,利用周期和指数式的运算规则求函数值.【详解】由f x+1是偶函数,得f x+1=f-x+1,令x+1=-t,则f-t=f t+2.由f1-x=f5+x,令1-x=-t,则f-t=f t+6,则有f t+2=f t+6,即f x =f x+4,所以函数f x 周期为4.因为5=log232<log236<log264=6,则有1<log236-4<2,所以f log236=f log236-4=f log29 4=2log294+34=94+34=3.故选:B二、多选题5(2023·全国·高三专题练习)已知函数f x 的定义域为R,∀x1,x2∈R,x2-x1=2,都有f x1+f x2=0,且f1 =1,则下列结论正确的是()A.f23=1=1 B.f-23C.f1 +f2 +f3 +f4 +f5 =1D.f x +f x+1+f x+3=0+f x+2【答案】BCD【分析】由∀x1,x2∈R,x2-x1=2,都有f x1=0,得出函数f x 是周期为4的周期函+f x2数,再利用周期性逐一选项分析即可.【详解】由x2-x1=2得x2=x1+2,则f x1=0,+f x1+2故f x1+2+f x1+4=0,所以f x1+4,=f x1所以函数f x 是周期为4的周期函数.对于A,f23=f3 =-f1 =-1,A错误;=f5×4+3对于B,f-23=f1 =1,B正确;=f-6×4+1对于C,f1 +f3 =0,f2 +f4 =0,f5 =f1 =1,所以f1 +f2 +f3 +f4 +f5 =1,C正确;对于D,f x +f x+2+f x+3=0,=0,f x+1所以f x +f x+1=0,D正确.+f x+2+f x+3故选:BCD.6(2023·全国·高三专题练习)已知偶函数f x 满足f x +f2-x=0,下列说法正确的是()A.函数f x 是以2为周期的周期函数B.函数f x 是以4为周期的周期函数C.函数f x+2为偶函数为偶函数 D.函数f x-3【答案】BC【分析】根据函数的奇偶性和周期性确定正确选项.【详解】依题意f x 是偶函数,且f x +f2-x=0,f x =-f2-x,所以A错误.=-f x-2f x =-f x-2=--f x-2-2,所以B正确.=f x-4f x+2,所以函数f x+2为偶函=f-x+2=f-x-2=f x-2+4=f x-2若f x-3是偶函数,则f x-3=f-x-3=f x+3,则函数f x 是周期为6的周期函数,这与上述分析矛盾,所以f x-3不是偶函数.D错误.故选:BC三、填空题7(2023·江西南昌·统考二模)f(x)是以2为周期的函数,若x∈[0,1]时,f(x)=2x,则f(3)=.【答案】2【分析】直接根据函数的周期性求解即可.【详解】因为f(x)是以2为周期的函数,若x∈[0,1]时,f(x)=2x,所以f3 =f1 =2.故答案为:2.8(2023·安徽合肥·二模)若定义域为R的奇函数f(x)满足f(x)=f(x+1)+f(x-1),且f(1)= 2,则f(2024)=.【答案】2【分析】利用赋值法及奇函数的定义,结合函数的周期性即可求解.【详解】由f(x)=f(x+1)+f(x-1),得f(x+1)=f(x+2)+f(x),所以f(x)-f(x-1)=f(x+2)+f(x),即-f(x-1)=f(x+2),于是有-f(x)=f(x+3),所以-f(x+3)=f(x+6),即f x =f(x+6).所以函数f(x)的周期为6.因为f(x)是定义域为R的奇函数,所以f(-0)=-f(0),即f(0)=0.令x=1,则f(1)=f(2)+f(0),解得f(2)=f(1)-f(0)=2,所以f(2024)=f(337×6+2)=f(2)=2.故答案为:2.9(2023秋·江西南昌·高三校联考阶段练习)已知定义在实数集R上的函数f x 满足f6-x=f-x,且当0<x<3时,f x =2a x+b(a>0,b>0),若f2023=3,则1a+2b的最小值为.【答案】8 3【分析】根据题意求出函数f(x)的周期为6,再利用周期得到2a+b=3,最后利用基本不等【详解】因为函数f x 满足f 6-x =f -x ,所以函数f (x )的周期为6,又因为f 2023 =3,所以f (6×337+1)=f (1)=3,因为当0<x <3时,f x =2a x +b (a >0,b >0),则有2a +b =3,所以1a +2b =131a +2b (2a +b )=134+b a +4a b≥134+2b a ⋅4a b =83当且仅当b a =4a b,即a =34,b =32时,取等号.故答案为:83.四、解答题10(2023·全国·高三专题练习)设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1,x 2∈0,12,都有f (x 1+x 2)=f (x 1)⋅f (x 2),且f (1)=a >0.(1)求f 12,f 14;(2)证明f (x )是周期函数;(3)记a n =f 2n +12n,求a n .【答案】(1)f 12 =a 12,f 14=a14(2)证明见解析(3)a n =a12n【分析】(1)根据题意可得f (1)=f 122、f 12 =f 14 2,结合f (1)=a >0即可求解;(2)根据抽象函数的对称性和奇偶性可得f (x )=f (x +2),x ∈R ,即可得出结果;(3)由(1)可得f 12 =f n ⋅12n =f 12n f 12n ⋅⋯⋅f 12n =f 12n n ,结合f 12=a 12和周期为2,即可求解.【详解】(1)因为对任意的x 1,x 2∈0,12,都有f (x 1+x 2)=f (x 1)f (x 2),所以f (x )=f x 2+x 2 =f x 2 f x2≥0,x ∈[0,1],又f (1)=f 12+12=f 12 f 12=f 12 2,f 12 =f 14+14 =f 14 f 14=f 14 2,f (1)=a >0,∴f 12 =a 12,f 14=a 14.(2)设y =f (x )关于直线x =1对称,故f (x )=f (1+1-x ),即f (x )=f (2-x ),x ∈R ,又f (x )是偶函数,所以f (-x )=f (x ),x ∈R ,∴f (-x )=f (2-x ),x ∈R ,将上式中-x 以x 代换,得f (x )=f (x +2),x ∈R ,则f (x )是R 上的周期函数,且2是它的一个周期.(3)由(1)知f (x )≥0,x ∈[0,1],∵f 12=f n ⋅12n =f 12n +(n -1)⋅12n =f 12n f (n -1)⋅12n=⋯=f 12n f 12n ⋅⋯⋅f 12n =f 12nn ,又f 12 =a 12,∴f 12n=a 12n.∵f (x )的一个周期是2,∴f 2n +12n =f 12n,因此a n =a 12n.题型四:函数的对称性策略方法函数图象的对称性的判断与应用1已知二次函数f x 满足f x +2 =f 2-x ,且f a <f 0 <f 1 ,则实数a 的取值范围是()A.0,2B.-∞,0C.-∞,0 ∪4,+∞D.2,+∞【答案】C【分析】由题意可知,f x 对称轴为x =2,又f x 为二次函数以及已知条件可得f x 的单调性,根据单调性即可求得实数a 的取值范围.【详解】由已知,二次函数f x 对称轴为x=2,所以有f0 =f4 .又f0 <f1 ,所以f x 在-∞,2上单调递增,在2,+∞上单调递减.当a<2时,由f a <f0 ,以及f x 在-∞,2上单调递增,可得a<0;当a≥2时,由f a <f0 =f4 ,可得f a <f4 ,又f x 在2,+∞上单调递减,所以a>4.所以,实数a的取值范围是-∞,0∪4,+∞.故选:C.2函数y=f x 在0,2上是增函数,函数y=f x+2是偶函数,则下列结论正确的是()A.f1 <f52<f72 B.f72 <f1 <f52C.f1 <f72<f52 D.f52 <f1 <f72【答案】B【分析】分析可知函数f x 的图象关于直线x=2对称,可得出f52=f32 ,f72 =f12,利用函数f x 在0,2 上的单调性可得出f12 、f1 、f32 的大小关系,即可得出结果.【详解】因为函数y=f x+2是偶函数,则f2-x=f2+x,所以,函数f x 的图象关于直线x=2对称,因为f52=f32 ,f72 =f12 ,且0<12<1<32<2,因为函数f x 在0,2上为增函数,所以,f12<f1 <f32 ,即f72 <f1 <f52 .故选:B.【题型训练】一、单选题1(2023·全国·高三专题练习)下列函数的图象中,既是轴对称图形又是中心对称的是()A.y=1xB.y=lg xC.y=tan xD.y=x3【答案】A【分析】根据反比例函数、对数函数、正切函数和幂函数图象可得结论.【详解】对于A ,y =1x图象关于y =x 、坐标原点0,0 分别成轴对称和中心对称,A 正确;对于B ,y =lg x 为偶函数,其图象关于y 轴对称,但无对称中心,B 错误;对于C ,y =tan x 关于点k π2,0k ∈Z 成中心对称,但无对称轴,C 错误;对于D ,y =x 3为奇函数,其图象关于坐标原点0,0 成中心对称,但无对称轴,D 错误.故选:A .2(2023·全国·高三专题练习)若f x 的偶函数,其定义域为-∞,+∞ ,且在0,+∞ 上是减函数,则f -2 与f 3 得大小关系是A.f -2 >f 3B.f -2 <f 3C.f -2 =f 3D.不能确定【答案】A【分析】由题意可得f -2 =f 2 ,且f 2 >f 3 ,即可得到所求大小关系.【详解】f (x )是偶函数,其定义域为(-∞,+∞),且在[0,+∞)上是减函数,则f -2 =f 2 ,且f 2 >f 3 ,则f -2 >f 3 ,故选A .【点睛】本题考查函数的奇偶性和单调性的运用:比较大小,考查运算能力,属于基础题.3(2023·四川南充·四川省南部中学校考模拟预测)定义在R 上的函数f x 满足f 2-x =f x ,且f x +2 -1为奇函数,则∑2023k =1f k =()A.-2023 B.-2022C.2022D.2023【答案】D【分析】利用抽象函数的轴对称与中心对称性的性质,得出函数f x 的对称轴和中心对称点及周期,利用相关性质得出具体函数值,即可得出结果.【详解】∵f 2-x =f x ,∴f x 关于x =1对称,∵f x +2 -1为奇函数,∴由平移可得f x 关于2,1 对称,且f 2 =1,∴f (x +2)-1=-f (-x +2)+1,即f (x +2)+f (2-x )=2∵f 2-x =f x ∴f (x +2)+f (x )=2 ∴f (x +4)+f (x +2)=2 上两式比较可得f (x )=f (x +4)。
高三数学暑假班(教师版)教师日期学生课程编号10 课型复习课题对称性与周期性、函数的图像教学目标1.掌握函数的对称性、周期性等性质,熟悉常考题型2.掌握函数的图象变换的基本模型,能应用基本模型解决实际问题教学重点1.函数的周期、对称问题的综合2.函数图像变换的基本模型的分析教学安排版块时长1例题解析80 2巩固训练30 3师生总结10 4课后练习30一、对称性(一)一个函数)(x f y =图象本身的对称性(自对称性) 1、轴对称()()()f a x f b x f x +=-⇔ 的图象关于直线()()22a xb x a bx ++-+==对称 推论1、()()()f a x f a x f x +=-⇔的图象关于直线x a =对称 推论2、()(2)()f x f a x f x =-⇔的图象关于直线x a =对称 推论3、()(2)()f x f a x f x -=+⇔的图象关于直线x a =对称2、中心对称()()2()f a x f b x c f x ++-=⇔的图象关于点(,)2a bc +对称 推论1、()()2()f a x f a x b f x ++-=⇔的图象关于点(,)a b 对称 推论2、()(2)2()f x f a x b f x +-=⇔的图象关于点(,)a b 对称 推论3、()(2)2()f x f a x b f x -++=⇔的图象关于点(,)a b 对称(二)两个函数的图象对称性(互对称性)(利用解析几何中的对称曲线轨迹方程理解) 1、()y f x =与()y f x =-图象关于y 轴对称 2、()y f x =与()y f x =--图象关于原点对称 3、()y f x =与()y f x =-图象关于x 轴对称 4、()y f x =与其反函数1()y fx -=图象关于直线y x =对称※5、函数()y f a x =+与()y f b x =-图象关于直线2b ax -=对称 对称性与周期性、函数的图像知识梳理推论1、函数()y f a x =+与()y f a x =-图象关于直线0x =对称 推论2、函数()y f x =与(2)y f a x =-图象关于直线x a =对称 推论3、函数()y f x =-与(2)y f a x =+图象关于直线x a =-对称二、周期性:()()f x T f x += 1、T 必须是常数,且不为零;2、等式必须对于定义域上的所有x 值都成立;3、如果T 是函数()f x 的一个周期,则(0)kT k k ∈≠Z 且都是()f x 的周期. 周期函数的定义域是无界的,存在无数个周期.【思考】是否存在函数为周期函数,但是无最小正周期? 存在,常值函数 函数关系()x a b ∈≠R 且周期说明 )()(x f T x f =+T)()(x f T x f -=+ T 2)(1)(x f T x f ±=+ T 2)()(T x f T x f -=+ T 2 )()(T x f T x f --=+ T 4⎩⎨⎧-=+-=+)()()()(x b f x b f x a f x a f )(2a b -正(余)弦函数相邻两条对称轴间的距离为12周期 ()()()f a x f a x f x +=-⎧⎨⎩为偶函数 a 2⎩⎨⎧--=+--=+)()()()(x b f x b f x a f x a f )(2a b -正(余)弦函数相邻两个对称中心间的距离为12周期 ()()()f a x f a x f x +=--⎧⎨⎩为奇函数a 2()()()()f a x f a x f b x f b x +=-⎧⎨+=--⎩ 4()b a -正(余)弦函数相邻一条对称轴和一个对称中心间的距离为14周期 ()()()f a x f a x f x +=-⎧⎨⎩为奇函数 4a()()()f a x f a x f x +=--⎧⎨⎩为偶函数4a1.1(1)1()f x f x +=-,3T =; 2.1()(1)1()f x f x f x -+=+,2T =;3.1()(1)1()f x f x f x ++=-,4T =; 4.(1)()(2)f x f x f x +=++,6T =;5.(1)()(2)f x f x f x +=+g ,6T =.三、图像变换问题平移 变换向左移)0(>a a 个单位 向右移)0(>a a 个单位 向上移(0)b a >个单位 向下移(0)b a >个单位按向量(,)a h k =r平移)(x f y =的图像)(a x f y +=→的图像 )(x f y =的图像()y f x a →=-的图像 )(x f y =的图像b x f y +=→)(的图像 )(x f y =的图像()y f x b →=-的图像 )(x f y =的图像k h x f y +-=→)(的图像 伸缩 变换每点纵标伸)0(>a a 倍 每点横标伸)0(>a a 倍)(x f y =的图像)(x af y =→的图像)(x f y =的图像⎪⎭⎫⎝⎛=→x a f y 1的图像绝对值 变换关于y 轴对称 将x 轴下方图像翻上)(x f y =的图像|)(|x f y =→的图像 )(x f y =的图像|)(|x f y =→的图像一、对称性与周期性【例1】已知函数()1x af x x a -=--的图象的对称中心是(4,1),则a = .【难度】★ 【答案】3【例2】(2010上海春18)已知函数xx f 241)(-=的图像关于点P 对称,则点P 的坐标是( ).A .)21,2(B .)41,2(C .)81,2( D .(0,0)【难度】★★【答案】C【例3】已知函数a x x x x f -+-++=11)(的图像关于垂直于x 轴的直线对称,则a 的取值集合是 . 【难度】★★ 【答案】{}3,0,3-【例4】已知定义在R 上的函数()f x 满足:222,[0,1),()2,[1,0)x x f x x x ⎧+∈=⎨-∈-⎩.且(2)()f x f x +=,25()2x g x x +=+,则方程()()f x g x =在区间[8,3]-上的所有实根之和为 . 【难度】★★【答案】26(1)11-⨯--=-例题解析【例5】函数2()f x ax bx c =++的图像关于任意直线l 对称后的图像依然为某函数图像,则实数a 、b 、c 应满足的充要条件为 .【难度】★★★【答案】20,40a b ac <-=【解析】由题意,得函数图象上有且仅有一个点【例6】若关于x 的方程(2008)()0+-=f x f a x 恰有2009个根,且所有根的和为2009,则实数a 的值为 . 【难度】★★★ 【答案】2010【解析】(2008)y f x =+与()y f a x =-关于20082a x -=对称【例7】已知函数()y f x =既为偶函数,又是以6为周期的周期函数,若当[0,3]x ∈时,2()24f x x x =-++,则当[3,6]x ∈时,()f x =__________.【难度】★★【答案】21020x x -+-【解析】若[3,6]x ∈,则6[3,0]x -∈-,6[0,3]x -∈22()(6)(6)(6)2(6)241020f x f x f x x x x x =-=-=--+-+=-+-【例8】已知定义在R 上的奇函数()f x 满足(4)()f x f x -=-,且在区间[0,2]上是增函数.若方程()(0)f x m m =>在区间[8,8]-上有四个不同的根1234,,,x x x x ,则1234x x x x +++= . 【难度】★★ 【答案】8-【解析】12342(6)228x x x x +++=⨯-+⨯=-【例9】已知函数()f x 的定义域为R ,且对任意x ∈Z ,都有()()()11f x f x f x =-++.若()()12,13f f -==,则()()20122012f f +-=__________.【难度】★★ 【答案】5- 【解析】()()()()()()()()112112f x f x f x f x f x f x f x f x =-++⎧⎪⇒+=--⎨+=++⎪⎩ ()()()()52116f x f x f x f x T ⇒+=-+=---=-⇒=⎡⎤⎣⎦()()()()()()2012201222115f f f f f f ⇒+-=+-=---=-【例10】(2011上海高考理13)设()g x 是定义在R 上,以1为周期的函数,若函数()()f x xg x =+在区间[3,4]上的值域为[2,5]-,则()f x 在区间[10,10]-上的值域为 . 【难度】★★★ 【答案】[15,11]-【解析】若[4,5]x ∈,则1[3,4]x -∈则()()(1)1(1)1[1,6]f x x g x x g x x g x =+=+-=-+-+∈- ※值域为[15,8][1,6][4,11][15,11]---=-UL U UL【巩固训练】1.已知函数2221()()21mx mx m f x m x x -+-=∈-+R ,则该函数的对称轴方程为 . 【难度】★ 【答案】1x =2.已知(1)f x +是偶函数,则函数(2)y f x =的图象的对称轴方程是 . 【难度】★ 【答案】12x =3.若函数()y f x =满足:对于任意的x ∈R 有(1)()f x f x +=-成立,且当[)1,2x ∈时,()21f x x =-,则(1)(2)(3)(2006)f f f f ++++=L .【难度】★ 【答案】04.函数()y f x =的图象沿x 轴正方向平移2个单位,得图象1c ,图象1c 关于y 轴对称图象为2c ,那么2c 对应的函数解析式是 .【难度】★★【答案】(2)y f x =-- 5.定义在R 上的函数)(x f 既是奇函数,又是周期函数,T 是它的一个正周期.若将方程0)(=x f 在闭区间][T T ,-上的根的个数记为n ,则n 至少为 .【难度】★★ 【答案】56.若函数()y f x =满足()(2)20f x f x +-+=,则()y f x =图象的对称中心是 . 【难度】★★ 【答案】(1,1)- 7.(1)函数()y f k x =-和函数()y f x k =-的图象关于直线 对称; (2)函数()y f k x =-和函数()y f k x =+的图象关于直线 对称. 【难度】★★【答案】x k =;0()x y =轴8.定义在R 上的函数)(x f 满足)(2)2(x f x f =+,当]2,0[∈x 时,x x x f 2)(2-=,则当]2,4[--∈x 时,函数)(x f 的最小值为 . 【难度】★★ 【答案】41-9.已知函数1()()f x m x x =+的图象与函数11()()24h x x x=++的图象关于点(0,1)A 对称. (1)求m 的值; (2)若()()4ag x f x x=+在(]0,2上为减函数,求a 的取值范围. 【难度】★★ 【答案】(1)14m =;(2)3a ≥10.设),()(+∞-∞是x f 上的奇函数,对任意实数x ,都有)()2(x f x f -=+,当11x -≤≤时,()sin f x x =.(1)试证:直线x = 1是函数)(x f 图象的一条对称轴; (2)证明:函数)(x f 是以4为周期的函数; (3)求]5,1[∈x 时,)(x f 的解析式;(4)若集合{}(),A x f x a x =>∈R 是非空集合,求a 的取值范围. 【难度】★★ 【答案】(1)提示:证明(1)(1)f x f x +=-; (2)提示:证明(4)()f x f x +=;(3)sin(2)[1,3]()sin(4)(3,5]x x f x x x -∈⎧=⎨-∈⎩;(4)sin1a <.11.已知二次函数2()f x ax bx =+对任意x ∈R 均有)2()4(x f x f -=-成立,且函数的图像过点A 3(1,)2.(1)求函数()y f x =的解析式;(2)若不等式()f x t x -≤的解集为[4,]m ,求实数t m 、的值. 【难度】★★★【答案】 (1)2()(4)(2)f x ax bx x f x f x R 对任意恒有=+?=-Q 成立,且图像过点3(1,)2A ,22(4)(4)(2)(2),3.2a x b x a x b x a b ìï-+-=-+-ïï\íï+=ïïî化简22(4)(4)(2)(2)(126)0a x b x a x b x 2b -4a x a b -+-=-+-+-=,得().此一元一次方程对x R Î都成立,于是,2401260b a a b ì-=ïïíï-=ïî,即2b a =. 进一步可得121a b ìïï=ïíïï=ïî.21()2f x x x 所求函数解析式为\=+. (2)()[4]f x t x m -?Q 的解集为,, 2221(),220[4,],42x t x t x x tx t t m m 即的解集是且.\-+-?+-? 224220m x tx t t 、是方程的两根\-+-=.于是,24242m t m t tì+=ïïíï=-ïî,解此方程组,得120()82m m t t 祆==镲镲眄镲==镲铑或舍去.※128m t ì=ïïíï=ïî.二、函数的图像【例11】分别画出以下函数的图像:(1)2||y x x =-; (2)2||y x x =-; (3)2|2|3y x x =+-;(4)lg |1|y x =-; (5)2(1)3y x -=-+; (6)()2lg 2y x =-.【难度】★★ 【答案】略【例12】手机产业的发展催生了网络新字“孖”.某学生准备在计算机上作出其对应的图像,其中(2,2)A ,如图所示.在作曲线段AB 时,该学生想把xyO AB223函数12,[0,2]y x x =∈的图像作适当变换,得到该段函数的曲线.请写出曲线段AB 在[2,3]x ∈上对应的函数解析式________. 【难度】★★【答案】12222y x =-+()【例13】设定义域为R 的函数|lg |1||,1,()0,1,x x f x x -≠⎧=⎨=⎩关于x 的方程2()()0f x bf x c ++=有7个不同实数解,求实数b 、c 需要满足的条件. 【难度】★★【答案】0b <且0c =【解析】lg lg |||lg ||||lg |1||x x x x →→→-或lg |lg ||lg ||||lg |1||x x x x →→→-令()t f x =,则20t bt c ++=由题意,得121220000t t t b t t t c t +=->>⎧⎧⇒⎨⎨⋅===⎩⎩解得,0b <且0c =【例14】已知函数()1f x x =-,关于x 的方程2()()0f x f x k -+=,给出下列四个命题:① 存在实数k ,使得方程恰有2个不同的实根; ② 存在实数k ,使得方程恰有4个不同的实根; ③ 存在实数k ,使得方程恰有5个不同的实根; ④ 存在实数k ,使得方程恰有8个不同的实根. 其中真命题的序号为 . 【难度】★★ 【答案】①②③④【解析】方法一:212()()y f x f x k y =-=-=,易得,1y 为偶函数 当0x ≥时,21(1)(2)1(1)|1|(1)01x x x y x x x x x --≥⎧=---=⎨-≤<⎩方法二:令|()||||1|t f x x ==-,则2(0)k t t t =-+≥当14k =,1212t t ==,4个不同的实根 当104k <<,121012t t <<<<,8个不同的实根当0k =,120,1t t ==,5个不同的实根 当0k <,1t >,2个不同的实根【例15】(2014浦东二模理18)方程27lg(100)(||200)(||202)2x x x -=---的解的个数为( ) A .2 B .4 C .6 D .8 【难度】★★ 【答案】B【解析】21lg(100)2lg 100y x x =-=-关于100x =对称,27(||200)(||202)2y x x =---为偶函数,且0x ≥的部分的对称轴为201x =, 两个函数在100x =的左侧和右侧分别有1个和3个交点,∴选B【例16】定义在(0,)+∞上的函数()f x 满足:①当[1,3)x ∈时,()1|2|f x x =--,②(3)3()f x f x =,设关于x 的函数()()1F x f x =-的零点从小到大依次记为31542,,,,,x x x x x ⋅⋅⋅,则12345x x x x x ++++=______.【难度】★★ 【答案】50【解析】在同一直角坐标平面内作出()y f x =与1y =的图象123452,2612,21836x x x x x =+=⨯=+=⨯=※1234550x x x x x ++++=【例17】已知函数()f x 满足:※对任意(0,)x ∈+∞,恒有(2)2()f x f x =成立;※当(1,2]x ∈时,()2f x x =-.若()(2020)f a f =,则满足条件的最小的正实数a 是 .【难度】★★★ 【答案】36【解析】21010101020202020(2020)2(1010)2(505)2222822f f f f ⎛⎫⎛⎫=====-=⎪ ⎪⎝⎭⎝⎭L (1,2]x ∈时,()2f x x =-,()[0,1)f x ∈ (2,4]x ∈时,()4f x x =-,()[0,2)f x ∈……1(2,2]n n x +∈时,1()2n f x x +=-,()[0,2),n f x n ∈∈Z显然,()28f a =,a 必须最小,(32,64]a ∈,(32,64]x ∈,()64f x x =-,∴min 36a =【例18】定义在R 上的函数)(x f ,当(1,1]x ∈-时,x x x f -=2)(,且对任意的x 满足(2)()f x af x -=(常数0>a ),则函数)(x f 在区间(5,7]上的最小值是 .【难度】★★【答案】36 【解析】1()(2)f x f x a =-,可以看成平移2个单位后,再将纵坐标变为原来的1a倍,易得341a -【例19】已知函数D x x f y ∈=),(,如果对于定义域D 内的任意实数x ,对于给定的非零常数m ,总存在非零常数T ,恒有)()(x f m T x f ⋅=+成立,则称函数)(x f 是D 上的m 级类周期函数,周期为T .(1)已知 1=T ,)(x f y =是[)∞+,0上m 级类周期函数,且)(x f y =是[)∞+,0上的单调递增函数,当[)1,0∈x 时,xx f 2)(=,求实数m 的取值范围;(2)已知当[]4,0∈x 时,函数x x x f 4)(2-=,若)(x f 是[)∞+,0上周期为4的m 级类周期函数,且)(x f y =的值域为一个闭区间,求实数m 的取值范围. 【难度】★★★【答案】(1)※[)1,0∈x 时,xx f 2)(=,※当[)2,1∈x 时,12)1()(-⋅=-=x m x mf x f ,当[)1,+∈n n x 时,)()2()1()(2n x f m x f m x mf x f n-==-=-=Λn x n m -⋅=2,即[)1,+∈n n x 时,nx nm x f -⋅=2)(,*n ∈N ,※)(x f 在[)∞+,0上单调递增,※0>m 且()1122----⋅≥⋅n n n n n n m m ,即2≥m .(2)※当[]4,0∈x 时,[]0,4-∈y ,且有)()4(x mf x f =+,※当[]4,44,x n n n ∈+∈Z 时,()()2()(4)(4)444n n f x mf x m f x n m x n x n ⎡⎤=-==-=---⎣⎦L ,当10≤<m 时,[]0,4)(-∈x f ;当01<<-m时,[]mxf4,4)(--∈;当1-=m时,[]4,4)(-∈xf;当1>m时,(]0,)(∞-∈xf;当1-<m时,()+∞∞-∈,)(xf;综上可知:01<≤-m或10≤<m.【巩固训练】1.函数(),01,10x by a a b+=<<-<<的图象为().A.B.C.D.【难度】★【答案】C2.已知,,m n m nαβαβ∈<<R、、、,若αβ、是函数()2()()7f x x m x n=---的零点,则m nαβ、、、四个数按从小到大的顺序是(用符号<“”连接起来).【难度】★【答案】m na b<<<3.若曲线与直线没有公共点,则实数的取值范围是.【难度】★【答案】4.关于x的方程243x x a x-+-=有三个不相等的实数根,则实数a的值是.【难度】★【答案】1-或34-21xy=+y b=b[]1,1-5.若直线1y kx =+与曲线11y x x x x=+--有四个不同交点,则实数k 的取值范围是( ). A .11,0,88⎧⎫-⎨⎬⎩⎭ B .11,88⎧⎫-⎨⎬⎩⎭ C .11,88⎡⎤-⎢⎥⎣⎦ D .11,88⎛⎫- ⎪⎝⎭【难度】★★【答案】A6.在平面直角坐标系中,对于函数()y f x =的图像上不重合的两点,A B ,若,A B 关于原点对称,则称点对(),A B 是函数()y f x =的一组“奇点对”(规定(),A B 与(),B A 是相同的“奇点对”).函数()()()1lg 01sin 02x xf x x x ⎧>⎪⎪=⎨⎪<⎪⎩的“奇点对”的组数是 .【难度】★★【答案】3【解析】利用将0x >时的图象关于原点对称,看和0x <时的图象的交点个数,所以答案为37.定义函数348122()1()222x x f x x f x ⎧--≤≤⎪⎪=⎨⎪>⎪⎩,则函数()()6g x xf x =-在区间[]8,1内的所有零点的和为 . 【难度】★★ 【答案】221 【解析】转化为6()f x x=,作出两个函数的图象, 可得交点的横坐标分别为3362、、,※和为2218.已知定义在[)+∞,0上的函数)(x f 满足)2(3)(+=x f x f .当[)2,0∈x 时x x x f 2)(2+-=.设)(x f 在[)n n 2,22-上的最大值为n a ,且数列}{n a 的前n 项和为n S ,则=∞→n n S lim .(其中n *∈N )【难度】★★ 【答案】32【解析】1(2)(),[0,)3f x f x x +=∈+∞【图象右移2个单位的同时,纵坐标变为原来的13】 ※1(1)1a f ==,21(3)3a f ==,…,11(21)3n n a f n -⎛⎫=-= ⎪⎝⎭※113lim 11213n n a S q →∞===--9.已知函数)(x f y =的定义域和值域都是]1,1[-(其图像如下图所示),函数],[,sin )(ππ-∈=x x x g .定义:当])1,1[(0)(11-∈=x x f 且]),[()(212ππ-∈=x x x g 时,称2x 是方程0))((=x g f 的一个实数根.则方程0))((=x g f 的所有不同实数根的个数是 . 【难度】★★ 【答案】810.(2012上海理13)已知函数)(x f y =的图象是折线段ABC ,其中)0,0(A 、)5,21(B 、)0,1(C ,函数)(x xf y =(10≤≤x )的图象与x 轴围成的图形的面积为 . 【难度】★★ 【答案】54【解析】由题意,得110,02()11010,12x x f x x x ⎧≤≤⎪⎪=⎨⎪-+<≤⎪⎩,从而22110,02()11010,12x x y xf x x x x ⎧≤≤⎪⎪==⎨⎪-+<≤⎪⎩.左图中的图形进行分割和重新拼合后能得到右图中的矩形.故,所求图形的面积155224=⨯=.11.已知函数21(1),02,()1(2),2,2x x f x f x x ⎧--≤<⎪=⎨-≥⎪⎩若对于正数n k (*N ∈n ),直线x k y n ⋅=与函数)(x f y =的图像恰有12+n 个不同交点,则2nk = . 【难度】★★★ 【答案】1214()n n n ++ 【解析】n y k x ⇔=⋅与从左往右数的第1n +个半椭圆弧相切22222[(21)](2)1(14)(42)(44)0n n n n x n y k x n x n n y k x⎧-++⋅=⇒+-+++=⎨=⋅⎩ 212104()n n k n n +∆=⇒=+1、函数作图的难点问题(1)()y f x =?(||)y f x a −−−−−−→=+如何变换 方法一:()()0,+(||)0,a x a x a y f x y f x a y f x a a x a >===−−−−−−→=−−−−−−−−−−−−−−−−−−→=+<=左移保留右边图像,去掉左边图像右移并作关于对称图像方法二:()()0,(||)0,y y a y f x y f x y f x a y a >=−−−−−−−−−−−−−−−−−→=−−−−−−→=+<保留轴右边图像,去掉轴左边图像左移并作关于轴对称图像右移(2)()y f x =?(||)y f x a −−−−−−→=+如何变换 ()()0,+(||)0,a y y y f x y f x a y f x a a y >=−−−−−−→=−−−−−−−−−−−−−−−−−→=+<左移保留轴右边图像,去掉轴左边图像右移并作关于轴对称图像.2、函数作图的一些建议(1)作图前先分析函数的奇偶性、对称性、周期性等性质;反思总结(2)遇到含绝对值的函数,做好分类讨论去绝对值的准备; (3)合理利用平移变换和对称变换进行作图方法的设计. 如:(2016浦东二模理14)关于x 的方程11sin 211x x π=--在[2016,2016]-上解的个数是 . 看作1111y x =--与21sin 2y x π=在[2016,2016]-图象交点的个数问题1y :111()1y y x x =−−−−−−→=-向右移个单位偶函数111()111y y x x −−−−→=−−−−−−→=---右翻左向右移个单位偶函数如图可知,两函数图象在[1,3]-上有3个交点, 在[2016,2015)--、[2015,2014)--、…、[2,1)--、(3,4]、(4,5]、…、(2015,2016]均只有1个交点,∴共4031个交点,∴∴解的个数是40311.对于定义在R 上的函数)(x f ,有下述命题:※若)(x f 是奇函数,则)1(-x f 的图象关于点(1,0)A 对称; ※若函数)1(-x f 的图象关于直线1=x 对称,则)(x f 为偶函数; ※若对x ∈R ,有则),()1(x f x f -=-2是)(x f 的一个周期; ※函数)1()1(x f y x f y -=-=与的图象关于直线1=x 对称. 其中正确的命题是 .(写出所有正确命题的序号) 【知识点】对称性、周期性 【题型】填空题 【难度】★★ 【答案】①②③④ 课后练习2.已知函数2()|2|f x x ax a =-+(x ∈R ),给出下列四个命题:※ 当且仅当0a =时,()f x 是偶函数; ※ 函数()f x 一定存在零点; ※ 函数在区间(,]a -∞上单调递减;※ 当01a <<时,函数()f x 的最小值为2a a -.那么所有真命题的序号是 .※※ 【知识点】函数图象与函数性质的综合 【题型】填空题 【难度】★★ 【答案】①④3.给出定义:若(其中m 为整数),则m 叫做离实数x 最近的整数,记作,在此基础上给出下列关于函数的四个命题:※函数的定义域为,值域为;※函数在上是增函数;※函数是周期函数,最小正周期为1;※函数的图像关于直线对称.其中正确命题的序号是 .【知识点】新定义、函数图象与函数性质的综合 【题型】填空题 【难度】★★ 【答案】①③④4.(2014宝山一模14)关于函数()1x f x x =-给出下列四个命题:※当0x >时,()y f x =单调递减且没有最值; ※方程()(0)f x kx b k =+≠一定有解;※如果方程()f x k =有解,则解的个数一定是偶数;※()y f x =是偶函数且有最小值.则其中真命题是 .(只要写标题号) 1122m x m -<+≤{}x m =(){}f x x x =-()y f x =R 10,2⎡⎤⎢⎥⎣⎦()y f x =11,22⎡⎤-⎢⎥⎣⎦()y f x =()y f x =2kx =()k Z ∈【知识点】函数图象与函数性质的综合 【题型】填空题 【难度】★★ 【答案】②④5.(2014嘉定一模13)已知函数⎪⎩⎪⎨⎧<++-≥++=0,,0,12)(22x c bx x x x ax x f 是偶函数,直线t y =与函数)(x f 的图像自左至右依次交于四个不同点A 、B 、C 、D ,若||||BC AB =,则实数t 的值为________. 【知识点】函数图象与函数性质的综合【题型】填空题 【难度】★★ 【答案】47【解析】※()f x 为偶函数,※1a =- 设C x x =,则B x x =-,3D x x =C D 、关于1x =对称13212x x x ⇒+=⨯⇒=,※1724t f ⎛⎫== ⎪⎝⎭6.(2014闵行二模理14)对于函数[]sin ,0,2()1(2),(2,)2x x f x f x x π⎧∈⎪=⎨-∈+∞⎪⎩,有下列4个命题:※任取[)120,x x ∈+∞、,都有12()()2f x f x -≤恒成立;※()2(2)f x kf x k =+*()k ∈N ,对于一切[)0,x ∈+∞恒成立;※函数()ln(1)y f x x =--有3个零点; ※对任意0x >,不等式()k f x x ≤恒成立,则实数k 的取值范围是9,8⎡⎫+∞⎪⎢⎣⎭. 则其中所有真命题的序号是 .【知识点】函数图象与函数性质的综合【题型】填空题 【难度】★★ 【答案】①③【解析】图象右移2个单位的同时,纵坐标变为原来的12※[0,),()[1,1]x f x ∈+∞∈-,该命题正确※※1()(2)2f x f x =- ※2111(2)(22)(24)()222k f x k f x k f x k f x +=⋅+-=⋅+-==L※()2(2)kf x f x k =⋅+,该命题错误※如图,()y f x =与ln(1)y x =-图象的交点有3个,该命题正确※反例:当52x =时,555159222248f ⎛⎫⋅=⋅=> ⎪⎝⎭ ※正确的序号为※※7.(2015虹口二模理14)若()f x 是定义在R 上的奇函数,且对任意的实数0x ≥,总有正常数T ,使得()()f x T f x T +=+成立,则称()f x 具有“性质p ”,已知函数()g x 具有“性质p ”,且在[]0,T 上,()2g x x =;若当[],4x T T ∈-时,函数()y g x kx =-恰有8个零点,则实数k = .【知识点】函数图象与函数性质的综合 【题型】填空题 【难度】★★★ 【答案】436-【解析】“()()f x T f x T +=+”表示函数图象向右平移T 个单位后,再向上平移T 个单位2()1()(0)g T T T g T g T T⎧=⇒=⎨=+=⎩,由于()g x 是R 上的奇函数,※可得()[]2,1,0g x x x =-∈- 零点个数问题转化为函数()y g x =与y kx =的交点问题, 要有8个交点,表示2()(3)3,[3,4]y g x x x ==-+∈的图象与y kx =相切2436(6)1200k k x k x ∆>⎧⇒=-⎨-++==⎩方程的8.已知:()x f y =是最小正周期为2的函数,当[]1,1-∈x 时,()2x x f =,则函数()x f y =()x ∈R 图像与x y 5log =图像的交点的个数是( ).A .8B .9C .10D .12 【知识点】函数周期、图象综合 【题型】选择题 【难度】★★ 【答案】C9.对于函数()y f x =,定义:若存在非零常数M T 、,使函数()f x 对定义域内的任意实数x ,都满足()()f x T f x M +-=,则称函数()y f x =是准周期函数,常数T 称为函数()y f x =的一个准周期.如函数()(1)()xf x x x =+-∈Z 是以2T =为一个准周期且2M =的准周期函数.(1)试判断2π是否是函数()sin f x x =的准周期,说明理由; (2)证明函数()2sin f x x x =+是准周期函数,并求出它的一个准周期和相应的M 的值;(3)请你给出一个准周期函数(不同于题设和(2)中函数),指出它的一个准周期和一些性质,并画出它的大致图像. 【知识点】新定义、函数周期与函数图象综合、探究性问题 【题型】选择题 【难度】★★★【答案】(1)()sin f x x =Q ,(2)()sin(2)sin 0f x f x x x ππ∴+-=+-=2π∴不是函数()f x 的准周期 (2)(2)()[2(2)sin(2)](2sin )24sin 2sin 4f x f x x x x x x x x x πππππ+-=+++-+=++--=Q※()2sin f x x x =+是准周期函数,2T π=是它的一个准周期,相应的4M π= (3)① 写出一个不同于题设和(2)中函数,如3sin ,2(1),23sin ,[]xy x x y x y x x y x =+=+-=+=等得1分(0),()sin(),()cos()y kx b k y kx b A x y kx b a x ωϕωϕ=+≠=+++=+++, 或其它一一次函数(正比例函数)与周期函数的线性组合的具体形式得3分 ② 指出所写函数的一个准周期,得2分③ 指出它的一些性质,如定义域、值域、奇偶性、单调性、最值、…, (写出一条得1分,写出两条以上得2分,可以不证明) ④ 画出其大致图像,得3分. Oxy1234123455-1-2-3-4-5-1-2-3-4-5。