含参数的一元二次不等式的解法以及含参不等式恒成立问题
- 格式:doc
- 大小:720.00 KB
- 文档页数:8
一元二次不等式题型归纳总结:题型一 解含参一元二次不等式问题1、若二次项有参数,讨论等于0、大于0、小于02、判断相应方程是否有根,即求∆,讨论000<∆>∆=∆、、,(若可以因式分解,则不需求∆)3、方程若无实根或有一根,则直接写出解集;若有两根需讨论根的大小。
例1.解关于x 的不等式2ax -(a +1)x +1<0.解:①当a =0时,不等式即-x +1<0,解集为{x|x >1}.②当a >0时,不等式化为0)1)(1(<--ax x 即0)1)(1(<--ax x ,当a 11=,即1=a 时,不等式的解集为φ;当a 11>,即a >1时,不等式的解集为{x|a 1<x <1};当a 11<,即0<a <1时,不等式的解集为{x|1<x <a1};③当a <0时,不等式化为0)1)(1(<--ax x 即0)1)(1(>--ax x ,∵a<0,∴a 1<1, ∴不等式的解集为{x|x <a1或x >1}.综上所述:当a =0时,解集为{x|x >1};当0<a <1时,不等式的解集为{x|1<x <a1}.当a >1时,不等式的解集为{x|a1<x <1};当a <0时,不等式的解集为{x|x <a 1或x >1}.例2.解关于x 的不等式:2ax -2x +1>0.解:①当a =0时,不等式即-2x +1>0,∴解集为{x|x <21}; ②当a >0时,a 44-=∆当0>∆即0<a <1时 ,由于方程2ax -2x +1=0的两根分别为a a -+11、a a --11且aaa a -->-+1111∴不等式解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+>--<a a x a a x x 1111或 当0<∆即1>a 时,不等式解集为R.当0=∆即1=a 时,不等式解集为{x|x≠1}; ③当a <0时,044>-=∆a ,此时aaa a --<-+1111 ∴不等式的解集⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+>>--a a x a a x 1111 综上所述当a =0时,不等式的解集为解集为{x|x <21} 当0<a <1时 不等式解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+>--<a a x a a x x 1111或 当1=a 时,不等式解集为{x|x≠1}当1>a 时,不等式解集为R.当a <0时,不等式的解集⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-+>>--a a x a a x 1111 练习(1)解关于x 的不等式ax 2-2(a +1)x +4>0. (2)解关于x 的不等式3x 2-mx -m >0.题型二 逆向求值问题例3已知关于x 的不等式2x +ax +b <0的解集为{x|1<x <2}, 求关于x 的不等式2bx +ax +1>0的解集. 解:∵2x +ax +b <0的解集为{x|1<x <2}, ∴1,2是2x +ax +b =0的两根.由根与系数的关系得 -a =1+2,b =1×2,得 a =-3,b =2, 代入所求不等式,得22x -3x +1>0. 由22x -3x +1>0⇔(2x -1)(x -1)>0⇔x <21或x >1. ∴2bx +ax +1>0的解集为⎭⎬⎫⎩⎨⎧1>x 或21<x(把根代入对应方程或利用韦达定理求系数的值)练习:已知关于x 的不等式ax 2+bx +c <0的解集是{x |x <-2或x >-12},求不等式ax 2-bx +c >0的解集.题型三 分式不等式的解法0)()(>x g x f 与⎩⎨⎧>>0)(0)(x f x g 或⎩⎨⎧<<0)(0)(x f x g 同解;与0)()(>x g x f 同解; 0)()(<x g x f 与⎩⎨⎧><0)(0)(x f x g 或⎩⎨⎧<>0)(0)(x f x g 同解;与0)()(<x g x f 同解; 0)()(≥x g x f 与⎩⎨⎧≥>0)(0)(x f x g 或⎩⎨⎧≤<0)(0)(x f x g 同解;与⎩⎨⎧≥≠0)()(0)(x g x f x g 同解 ;0)()(≤x g x f 与⎩⎨⎧≥<0)(0)(x f x g 或⎩⎨⎧≤>0)(0)(x f x g 同解;与⎩⎨⎧≤≠0)()(0)(x g x f x g 同解 例4 (1)x +21-x <0;(2)x +1x -2≤2. 解:(1)由x +21-x <0得x +2x -1>0,等价于(x +2)(x -1)>0,∴原不等式的解集为{x |x <-2或x >1}.(2)法一:移项得x +1x -2-2≤0,左边通分并化简有-x +5x -2≤0,即x -5x -2≥0,它的同解不等式为⎩⎨⎧≥--≠-0)2)(5(02x x x ∴x <2或x ≥5. ∴原不等式的解集为{x |x <2或x ≥5}.法二:原不等式可化为x -5x -2≥0,此不等式等价于⎩⎨⎧x -5≥0,x -2>0,① 或 ⎩⎨⎧x -5≤0,x -2<0,②解①得x ≥5,解②得x <2,∴原不等式的解集为{x |x <2或x ≥5}.注:1.对于比较简单的分式不等式,可直接转化为一元二次不等式或一元一次不等式组求解,但要注意分母不为零.2.对于不等号右边不为零的较复杂的分式不等式,先移项再通分(不要去分母),使之转化为不等号右边为零,然后再用上述方法求解.练习:解下列不等式: (1)x +23-x ≥0;(2)2x -13-4x >1.题型四 不等式恒成立求参数问题(一)利用二次函数的判别式对于二次函数()0)(2≠++=a c bx ax x f ,有0)(>x f 对R x ∈恒成立⇔⎩⎨⎧><∆00a ; 0)(<x f 对R x ∈恒成立⇔⎩⎨⎧<<∆00a;0)(≥x f 对R x ∈恒成立⇔⎩⎨⎧>≤∆00a ; 0)(≤x f 对R x ∈恒成立⇔⎩⎨⎧<≤∆00a;(注:讨论二次项的系数是否为0)(二)转化为求函数的最值1、直接利用二次函数单调性求最值2、先分离参数(把不等式中的参数t 与未知数x 分离出来, 得到)(x f t >或)(x f t <),再利用单调性求最值。
【高考地位】解含参一元二次不等式,常涉及对参数的分类讨论以确定不等式的解,这是解含参一元二次不等式问题的一个难点. 在高考中各种题型多以选择题、填空题等出现,其试题难度属中高档题.【方法点评】类型一 根据二次项系数的符号分类使用情景:参数在一元二次不等式的最高次项解题模板:第一步 直接讨论参数大于0、小于0或者等于0;第二步 分别求出其对应的不等式的解集; 第三步 得出结论.例1 已知关于x 的不等式2320ax x -+>)(R a ∈.(1)若不等式2320ax x -+>的解集为{|1}或x x x b <>,求,a b 的值.(2)求不等式ax x ax ->+-5232)(R a ∈的解集【答案】(1)1,2a b ==(2)①当0>a 时,a x x 3{>或}1-<x ②当03<<-a 时,}13{-<<x ax ③当3-=a 时,∅④当3-<a 时,}31{ax x <<-⑤ 当0=a 时,原不等式解集为{}1-<x x(2)第一步,直接讨论参数大于0、小于0或者等于0: 不等式为()0332>--+x a ax ,即()()013>+-x ax第二步,分别求出其对应的不等式的解集: 当0=a 时,原不等式的解集为{}1|-<x x ; 当0≠a 时,方程()()013=+-x ax 的根为1,321-==x ax ;所以当0>a 时,⎭⎬⎫⎩⎨⎧-<>13|x a x x 或; ②当03<<-a 时,13-<a,∴}13{-<<x a x③当3-=a 时,13-=a ,∴∅④当3-<a 时,13->a,∴}31{a x x <<-学*科网第三步,得出结论:综上所述,原不等式解集为①当0>a 时,a x x 3{>或}1-<x ;②当03<<-a 时,}13{-<<x a x ③当3-=a 时,∅;④当3-<a 时,}31{ax x <<-;⑤当0=a 时,原不等式解集为{}1-<x x .考点:一元二次不等式的解法.【点评】(1)本题考察的是一元二次不等式和一元二次方程的关系,由题目所给条件知2320ax x -+=的两根为1x x b ==或,且0a >,根据根与系数的关系,即可求出,a b 的值.(2)本题考察的是解含参一元二次不等式,根据题目所给条件和因式分解化为()()310ax x -+>,然后通过对参数a 进行分类讨论,即可求出不等式的解集.学*科网【变式演练1】【河南省平顶山市2017-2018学年期末调研考试高二理科数学】若不等式对任意实数 均成立,则实数 的取值范围是( )A .B .C .D .【答案】C【变式演练2】已知p :1x 和2x 是方程220x mx --=的两个实根,不等式21253||a a x x --≥-对任意实数[]1,1m ∈-恒成立;q :不等式2210ax x +->有解,若p 为真,q 为假,求a 的取值范围.【答案】1a ≤-∴440a ∆=+>,∴10a -<<, ∴不等式2210ax x +->有解时1a >-, ∴q 假时a 的范围为1a ≤-,②由①②可得a 的取值范围为1a ≤-.学*科网考点:命题真假性的应用类型二 根据二次不等式所对应方程的根的大小分类使用情景:一元二次不等式可因式分解类型解题模板:第一步 将所给的一元二次不等式进行因式分解;第二步 比较两根的大小关系并根据其大小进行分类讨论;第三步 得出结论.例2 解关于x 的不等式01)1(2>++-x a ax (a 为常数且0≠a ).【答案】0<a 时不等式的解集为)1,1(a ; 10<<a 时不等式的解集为),1()1,(+∞-∞a;1=a 时不等式的解集为),1()1,(+∞-∞ ;1>a 时不等式的解集为),1()1,(+∞-∞ a.若1>a ,110<<a ,不等式的解集为),1()1,(+∞-∞ a学*科网 试题分析:21(1)10()(1)0ax a x a x x a-++>⇔-->,先讨论0a <时不等式的解集;当0a >时,讨论1与1a的大小,即分10<<a ,1=a ,1>a 分别写出不等式的解集即可. 考点:1.一元二次不等式的解法;2.含参不等式的解法.【变式演练3】已知0a <,解关于x 的不等式2(2)20ax a x ---<. 【答案】当2a <-时,2{x | x x 1}a <-或>;当2a =-时,{}1x x ≠;当20a -<<时,2{x |x 1x }a<或>-.考点:一元二次不等式.【变式演练4】【2018重庆高三理科数学不等式单元测试卷】已知0<b<1+a ,若关于x 的不等式(x -b )2>(ax )2的解集中的整数恰有3个,则( )A . -1<a<0B . 0<a<1C . 1<a<3D . 3<a<6 【答案】C【解析】由()()22x b ax ->,整理可得(1-2a )2x -2bx+2b >0,由于该不等式的解集中的整数恰有3个,则有1-2a <0,此时2a >1,而0<b<1+a ,故a>1, 由不等式()22212a x bx b -+-<0解得()()222222,2121b ab b ab x a a ---+<<--即111b bx a a -<<<-+要使该不等式的解集中的整数恰有3个,那么-3<1b a --<-2,由1b a --<-2得-b<-2(a -1),则有a<2b +1,即a<2b +1<12a ++1,解得a<3,由-3<1ba --得3a -3>b>0,解得a>1,则1<a<3.学&科网类型三 根据判别式的符号分类使用情景:一般一元二次不等式类型解题模板:第一步 首先求出不等式所对应方程的判别式;第二步 讨论判别式大于0、小于0或等于0所对应的不等式的解集;第三步 得出结论.例3 设集合A={x |x 2+3k 2≥2k (2x -1)},B={x |x 2-(2x -1)k +k 2≥0},且A ⊆B ,试求k 的取值范围. 【答案】.010<≤-≥k k 或【解析】第一步,首先求出不等式所对应方程的判别式:B 中的不等式不能分解因式,故考虑判断式k k k k 4)(4422-=+-=∆, (1)当k =0时,R x ∈<∆,0. (2)当k >0时,△<0,x R ∈.(3)当k <0时,k k x k k x -+≥--≤>∆或,0.第三步,得出结论:综上所述,k 的取值范围是:.010<≤-≥k k 或【点评】解含参的一元二次不等式,可先分解因式,再讨论求解,若不易分解,也可对∆进行分类,或利用二次函数图像求解.对于二次项系数不含参数且不能因式分解时,则需对判别式∆的符号分类. 【变式演练5】在区间错误!未找到引用源。
含参一元二次不等式的解法与恒成立问题
一元二次不等式是几何、代数以及统计学等领域中使用最广泛的不等式之一,其解法和恒成立问题也是学习和研究的重要内容。
首先,要理解含参一元二次不等式的解法,我们需要对一元二次方程有所了解。
一元二次不等式也可以表示为一元二次方程形式,也可以将一元二次方程化为一元二次不等式形式。
一元二次方程有一般形式ax^2 + bx + c = 0,其中a,b,c均为实数,且a≠0,这个方程有两个实根,如果a,b,c满足一定条件,那么解得的方程式可以写作
x^2+px+q≥0,其中p为常数,q为常数。
在求解含参一元二次不等式的时候,要先化成一元二次方程的形式,然后根据首项系数是正还是负,分两种情况讨论,如果ax^2为正,那么此一元二次不等式在实数集上有解,只要保证满足一定条件即可;若ax^2为负,则含参一元二次不等式可以分离,而只要满足条件就必定存在解。
当求解不等式的恒成立问题时,一般的思路是先将不等式的非负部分和负部分分开,求解其左右两边的值,例如:若有ax^2+bx+c≥0,可先将其分解为ax^2+c≥0和bx≥0,然后求解其左右两边的值,根据不等式的性质,求解其两个值,确定其恒成立条件。
总之,一元二次不等式的解法及其恒成立问题是学习和研究中重要的内容,也是大家常用的不等式之一。
要正确求解,首先要正确分离不等式,然后根据不等式的性质确定相应的恒成立条件。
含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元二次不等式常用的分类方法有三种:一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ;例1 解不等式:()0122>+++x a ax分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项系数进行分类讨论。
解:∵()044222>+=-+=∆a a a解得方程()0122=+++x a ax 两根,24221a a a x +---=aa a x 24222++--=∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧->21|x x当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22练习1 解不等式()00652≠>+-a a ax ax二、按判别式∆的符号分类,即0,0,0<∆=∆>∆;例2 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情况。
解:∵162-=∆a ∴当()4,4-∈a 即0<∆时,解集为R ;当4±=a 即Δ=0时,解集为⎭⎬⎫⎩⎨⎧≠∈2a xR x x 且; 当4>a 或4-<a 即>∆,此时两根分别为21621-+-=a a x ,21622---=a a x ,显然21x x >, ∴不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----+->21621622a a x a a x x 〈或练习2 解不等式()()R m x x m∈≥+-+014122三、按方程2=++c bx ax 的根21,x x 的大小来分类,即212121,,x x x x x x <=<;例3 解不等式)0( 01)1(2≠<++-a x aa x分析:此不等式可以分解为:()0)1(<--ax a x ,故对应的方程必有两解。
含参数一元二次不等式的解法我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.一元二次不等式的一般形式是或(其中均为常数,).解含参一元二次不等式的相关问题对于基础薄弱的同学来说是一个难点.为了帮助这些同学解决此类问题,本文将相关解题方法进行简化、总结,帮助同学们理解和学习.下面我们通过例举进行具体的分析说明.类型一解二次项前不带参数的一元二次不等式1、对应方程(其中均为常数,)可以进行因式分解.方法:所求解的一元二次不等式对应的一元二次方程可因式分解为(为方程的实数根)的形式,则分类讨论的关键在于通过比较两根的大小,确定参数讨论的界限,进而解出的取值范围.例1 解关于的不等式 .分析:对应方程可因式分解为的形式,讨论两根的大小,即可解出的取值范围.解:原不等式等价于,所对应方程的两根是当时,不等式的解集为 .当时,不等式的解集为 .当时,不等式的解集为 .2、对应方程(其中均为常数,)不能进行因式分解.方法:所求解的一元二次不等式对应的一元二次方程不能进行因式分解,则分类讨论的关键在于判别式,此时根据判别式确定参数讨论的界限,解出的取值范围.例2 解关于的不等式 .分析:对应方程不能进行因式分解,此时根据判别式确定参数讨论的界限,求出的取值范围.解:原不等式对应方程的判别式为(1)当,时,的两根为或,不等式的解集为 .(2)当,时,的根为,不等式的解集为 .1.当,时, 不等式的解集为 .综上所述:当时,不等式的解集为.当时,不等式的解集为 .当时,不等式的解集为 .类型二解二次项前带参数的一元二次不等式1、对应方程(其中均为常数,)可以进行因式分解.方法:所求解的一元二次不等式对应的一元二次方程可因式分解为(为方程的实数根)的形式,则分类讨论的关键仍然在于通过比较两根的大小确定参数讨论的界限. 另外,需要注意的问题是二次项前带参数与二次项前不带参数不同,参数的范围决定对应二次函数的开口方向,影响对应一元二次不等式的解集.例3 解关于的不等式 .分析:对应方程可因式分解为的形式,讨论两根的大小,即可确定参数讨论的界限,根据参数的不同取值范围,求出不等式相应解集。
含参数的一元二次不等式的解法含参一元二次不等式常用的分类方法有三种:一、按$x$项的系数$a$的符号分类,即$a>0$,$a=0$,$a<0$。
例1:解不等式$ax+(a+2)x+1>2$分析:本题二次项系数含有参数,$\Delta=(a+2)^2-4a=a+4>0$,故只需对二次项系数进行分类讨论。
解:当$a>0$时,解得方程$ax+(a+2)x+1=0$的两根$x_1=-\frac{a+2+\sqrt{a+4}}{2a}$,$x_2=-\frac{a+2-\sqrt{a+4}}{2a}$,因为$a>0$,所以$x_1x_2$或$x<x_1$,即$x\in\left(-\infty,\frac{a+2-\sqrt{a+4}}{2a}\right)\cup\left(\frac{a+2+\sqrt{a+4}}{2a},+\infty\right)$。
当$a=0$时,不等式为$2x+1>2$,解得$x>\frac{1}{2}$,即解集为$x>\frac{1}{2}$。
当$a<0$时,解得方程$ax+(a+2)x+1=0$的两根$x_1=-\frac{a+2-\sqrt{a+4}}{2a}$,$x_2=-\frac{a+2+\sqrt{a+4}}{2a}$,因为$a<0$,所以$x_1<x_2$。
所以解集为$x_1<x<x_2$,即$x\in\left(\frac{a+2-\sqrt{a+4}}{2a},\frac{a+2+\sqrt{a+4}}{2a}\right)$。
例2:解不等式$ax-5ax+6a>(a\neq0)^2$分析:因为$a\neq0$,$\Delta>0$,所以我们只需讨论二次项系数的正负。
解:当$a>0$时,解得方程$ax-5ax+6a=0$的两根$x_1=2$,$x_2=3$,因为$a>0$,所以$x_13$,即$x\in\left(-\infty,2\right)\cup\left(3,+\infty\right)$。
含参数的一元二次不等式的解法解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元 二次不等式常用的分类方法有三种:一、按2x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122>+++x a ax分析:本题二次项系数含有参数,()044222>+=-+=∆a a a ,故只需对二次项系数进行分类讨论。
解:∵()044222>+=-+=∆a a a解得方程 ()0122=+++x a ax 两根,24221a a a x +---=aa a x 24222++--=∴当0>a 时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<++-->a a a x a a a x x 242242|22或当0=a 时,不等式为012>+x ,解集为⎭⎬⎫⎩⎨⎧>21|x x 当0<a 时, 解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+---<<++--a a a x a a a x 242242|22例2 解不等式分析 因为0≠a ,0>∆,所以我们只要讨论二次项系数的正负。
解 ()()032)65(2>--=+-x x a x x a Θ∴当0>a 时,解集为{}32|><x x x 或;当0<a 时,解集为{}32|<<x x二、按判别式∆的符号分类,即0,0,0<∆=∆>∆; 例3 解不等式042>++ax x分析 本题中由于2x 的系数大于0,故只需考虑∆与根的情况。
解:∵162-=∆a∴当()4,4-∈a 即0<∆时,解集为R ; 当4±=a 即Δ=0时,解集为⎭⎬⎫⎩⎨⎧≠∈2a x R x x 且;当4>a 或4-<a 即0>∆,此时两根分别为21621-+-=a a x ,21622---=a a x ,显然21x x >,∴不等式的解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧----+->21621622a a x a a x x 〈或例4 解不等式()()R m x x m ∈≥+-+014122解 因,012>+m ()()2223414)4(m m -=+--=∆所以当3±=m ,即0=∆时,解集为⎭⎬⎫⎩⎨⎧=21|x x ; 当33<<-m ,即0>∆时,解集为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+--+-+>1321322222m m x m m x x 〈或; 当33>-<m m 或,即0<∆时,解集为R 。
三、按方程02=++c bx ax 的根21,x x 的大小来分类,即212121,,x x x x x x <=<; 例5 解不等式)0( 01)1(2≠<++-a x aa x 分析:此不等式可以分解为:,故对应的方程必有两解。
本题 只需讨论两根的大小即可。
解:原不等式可化为:()0)1(<--a x a x ,令aa 1=,可得:1±=a ∴当1-<a 或10<<a 时,a a 1<,故原不等式的解集为⎭⎬⎫⎩⎨⎧<<a x a x 1|; 当1=a 或1-=a 时,aa 1=,可得其解集为φ; 当01<<-a 或1>a 时, a a 1>,解集为⎭⎬⎫⎩⎨⎧<<a x a x 1|。
例6 解不等式06522>+-a ax x ,0≠a分析 此不等式()0245222>=--=∆a a a ,又不等式可分解为,故只需比较两根a 2与a3的大小.解 原不等式可化为:,对应方程()0)3(2=--a x a x 的两根为a x a x 3,221==,当0a f 时,即23a a p ,解集为{}a x a x x 23|<>或;当0<a 时,即23a a f ,解集为{}|23x x a x a ><或含参不等式恒成立问题的求解策略“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。
另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。
本文就结合实例谈谈这类问题的一般求解策略。
一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。
一般地,对于二次函数),0()(2R x a c bx ax x f ∈≠++=,有1)0)(>x f 对R x ∈恒成立⎩⎨⎧<∆>⇔0a ;2)0)(<x f 对R x ∈恒成立.00⎩⎨⎧<∆<⇔a例1:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。
解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m ,所以要讨论m-1是否是0。
(1)当m-1=0时,元不等式化为2>0恒成立,满足题意; (2)01≠-m 时,只需⎩⎨⎧<---=∆>-0)1(8)1(012m m m ,所以,)9,1[∈m 。
例2.已知函数])1(lg[22a x a x y +-+=的定义域为R ,求实数a 的取值范围。
解:由题设可将问题转化为不等式0)1(22>+-+a x a x 对R x ∈恒成立,即有04)1(22<--=∆a a 解得311>-<a a 或。
所以实数a 的取值范围为),31()1,(+∞--∞Y 。
若二次不等式中x 的取值范围有限制,则可利用根的分布解决问题。
二、最值法将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有: 1)a x f >)(恒成立min )(x f a <⇔ 2)a x f <)(恒成立max )(x f a >⇔例3、若[]2,2x ∈-时,不等式23x ax a ++≥恒成立,求a 的取值范围。
解:设()23f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。
(1) 当22a -<-即:4a >时,()()min 2730f x f a =-=-≥ 73a ∴≤又4a >所以a 不存在;(2) 当222a -≤≤即:44a -≤≤时,()2min 3024a a f x f a ⎛⎫=-=--≥ ⎪⎝⎭62a ∴-≤≤ 又44a -≤≤ 42a ∴-≤≤(3) 当22a-> 即:4a <-时,()()min 270f x f a ==+≥ 7a ∴≥-又4a <-74a ∴-≤<-综上所得:72a -≤≤例4.函数),1[,2)(2+∞∈++=x xax x x f ,若对任意),1[+∞∈x ,0)(>x f 恒成立,求实数a 的取值范围。
解:若对任意),1[+∞∈x ,0)(>x f 恒成立,即对),1[+∞∈x ,02)(2>++=xax x x f 恒成立, 考虑到不等式的分母),1[+∞∈x ,只需022>++a x x 在),1[+∞∈x 时恒成立而得 而抛物线a x x x g ++=2)(2在),1[+∞∈x 的最小值03)1()(min >+==a g x g 得3->a注:本题还可将)(x f 变形为2)(++=xax x f ,讨论其单调性从而求出)(x f 最小值。
例5:在∆ABC 中,已知2|)(|,2cos )24(sin sin 4)(2<-++=m B f B B B B f 且π恒成立,求实数m 的范围。
解析:由]1,0(sin ,0,1sin 22cos )24(sin sin 4)(2∈∴<<+=++=B B B B BB B f ππΘ,]3,1()(∈B f ,2|)(|<-m B f Θ恒成立,2)(2<-<-∴m B f ,即⎩⎨⎧+<->2)(2)(B f m B f m 恒成立,]3,1(∈∴m例6:求使不等式],0[,cos sin π∈->x x x a 恒成立的实数a 的范围。
解析:由于函]43,4[4),4sin(2cos sin ππππ-∈--=->x x x x a ,显然函数有最大值2,2>∴a 。
三、分离变量法若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。
这种方法本质也还是求最值,但它思路更清晰,操作性更强。
一般地有:1)为参数)a a g x f )(()(<恒成立max )()(x f a g >⇔ 2)为参数)a a g x f )(()(>恒成立max )()(x f a g <⇔ 。
例7、已知(],1x ∈-∞时,不等式()21240x x a a ++-⋅>恒成立,求a 的取值范围。
解:令2xt =,(],1x ∈-∞Q (]0,2t ∴∈ 所以原不等式可化为:221t a a t +-<, 要使上式在(]0,2t ∈上恒成立,只须求出()21t f t t +=在(]0,2t ∈上的最小值即可。
()22211111124t f t t t t t +⎛⎫⎛⎫==+=+- ⎪ ⎪⎝⎭⎝⎭Q 11,2t ⎡⎫∈+∞⎪⎢⎣⎭Q()()min 324f t f ∴==234a a ∴-< 1322a ∴-<< 例8、已知函数()lg 2a f x x x ⎛⎫=+- ⎪⎝⎭,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。
解:根据题意得:21ax x+->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立,设()23f x x x =-+,则()23924f x x ⎛⎫=--+ ⎪⎝⎭当2x =时,()max 2f x = 所以2a >例9.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(<x f 恒成立,求实数a 的取值范围。
解: 将问题转化为xx x a 24-<对]4,0(∈x 恒成立。
令xx x x g 24)(-=,则min )(x g a < 由144)(2-=-=xxx x x g 可知)(x g 在]4,0(上为减函数,故0)4()(min ==g x g ∴0<a 即a 的取值范围为)0,(-∞。