求线性目标函数的取值范围或最值
- 格式:doc
- 大小:1.47 MB
- 文档页数:8
线性规划的常见题型一、基础能力【一】已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的取值范围为( )A .[7,23]B .[8,23]C .[7,8]D .[7,25]【二】变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1,(1)设z =y2x -1,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围;(3)设z =x 2+y 2+6x -4y +13,求z 的取值范围.技能掌握1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值,间接求出z 的最值.(2)距离型:形一:如z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离;形二:z =(x -a )2+(y -b )2,z =x 2+y 2+Dx +Ey +F ,此类目标函数常转化为点(x ,y )与定点的距离的平方.(3)斜率型:形如z =y x ,z =ay -b cx -d ,z =ycx -d ,z =ay -b x ,此类目标函数常转化为点(x ,y )与定点所在直线的斜率.二、题型分解题型一:求线性目标函数的最值1.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2≥0,x -y +3≥0,2x +y -3≤0,则目标函数z =x +6y 的最大值为( )A .3B .4C .18D .403.若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( ) A .-6 B .-2 C .0D .2题型二:求非线性目标的最值4.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM斜率的最小值为( )A .2B .1C .-13D .-125.已知实数x ,y 满足⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y ,则z =2x +y -1x -1的取值范围 . 6.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2y -x ≤2,y ≥1,则x 2+y 2的取值范围是( )A .[1,2]B .[1,4]C .[2,2]D .[2,4]7.设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.8.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0,y ≥x所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,|AB |的最小值等于( )A .285B .4C .125D .2题型三:求线性规划中的参数9.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是A .73B .37C .43D .3410.若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C .12D .-1211.x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为A .12或-1B .2或12C .2或1D .2或-112.在约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤s ,y +2x ≤4.下,当3≤s ≤5时,目标函数z =3x +2y 的最大值的取值范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]13.设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x 3a +y 4a ≤1,若z =x +2y +3x +1的最小值为32,则a 的值为________.题型四:线性规划的实际应用14.A,B两种规格的产品需要在甲、乙两台机器上各自加工一道工序才能成为成品.已知A产品需要在甲机器上加工3小时,在乙机器上加工1小时;B产品需要在甲机器上加工1小时,在乙机器上加工3小时.在一个工作日内,甲机器至多只能使用11小时,乙机器至多只能使用9小时.A产品每件利润300元,B产品每件利润400元,则这两台机器在一个工作日内创造的最大利润是________元.15.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x与骑兵个数y表示每天的利润w(元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?三、练习巩固一、选择题1.已知点(-3,-1)和点(4,-6)在直线3x -2y -a =0的两侧,则a 的取值范围为( ) A .(-24,7)B .(-7,24)C .(-∞,-7)∪(24,+∞)D .(-∞,-24)∪(7,+∞)2.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +2y ≥3,2x +y ≤3,则z =x -y 的最小值是( )A .-3B .0C .32D .33.已知O 为坐标原点,A (1,2),点P 的坐标(x ,y )满足约束条件⎩⎪⎨⎪⎧x +|y |≤1,x ≥0,则z =OA →·OP →的最大值为( )A .-2B .-1C .1D .24.已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .⎣⎡⎦⎤53,5B .[0,5]C .⎣⎡⎭⎫53,5D .⎣⎡⎭⎫-53,5 5.如果点(1,b )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则b 应取的整数值为( ) A .2 B .1 C .3D .06.已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x +y 的取值范围是( )A .(1-3,2)B .(0,2)C .(3-1,2)D .(0,1+3)7.在平面直角坐标系xOy 中,P 为不等式组⎩⎪⎨⎪⎧y ≤1,x +y -2≥0,x -y -1≤0,所表示的平面区域上一动点,则直线OP 斜率的最大值为( )A .2B .13C .12D .18.在平面直角坐标系xOy 中,已知平面区域A ={(x ,y )|x +y ≤1,且x ≥0,y ≥0},则平面区域B ={(x +y ,x -y )|(x ,y )∈A }的面积为( )A .2B .1C .12D .149.设x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -2≤0,x -y ≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为4,则ab的取值范围是( )A .(0,4)B .(0,4]C .[4,+∞)D .(4,+∞)10.设动点P (x ,y )在区域Ω:⎩⎪⎨⎪⎧x ≥0,y ≥x ,x +y ≤4上,过点P 任作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为( )A .πB .2πC .3πD .4π11.变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥-1,x -y ≥2,3x +y ≤14,若使z =ax +y 取得最大值的最优解有无穷多个,则实数a 的取值集合是( )A .{-3,0}B .{3,-1}C .{0,1}D .{-3,0,1}12.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =( )A .-5B .3C .-5或3D .5或-313.若a ≥0,b ≥0,且当⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1时,恒有ax +by ≤1,则由点P (a ,b )所确定的平面区域的面积是( )A .12B .π4C .1D .π214.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2.求得m 的取值范围是( )A .⎝⎛⎭⎫-∞,43B .⎝⎛⎭⎫-∞,13 C .⎝⎛⎭⎫-∞,-23D .⎝⎛⎭⎫-∞,-53 15.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,则a 的取值范围是 ( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞)16.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .4917.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧y ≥0,y ≤x ,y ≤k (x -1)-1表示一个三角形区域,则实数k 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)18.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,|x |-y -1≤0,则z =2x +y 的最大值为( )A .4B .6C .8D .1019.当变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x x +3y ≤4x ≥m 时,z =x -3y 的最大值为8,则实数m 的值是( )A .-4B .-3C .-2D .-120.已知O 为坐标原点,A ,B 两点的坐标均满足不等式组⎩⎪⎨⎪⎧x -3y +1≤0,x +y -3≤0,x -1≥0,则tan ∠AOB 的最大值等于( )A .94B .47C .34D .12二、填空题21.不等式组 ⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.22.若实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则x +y 的取值范围是________.23.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为____.24.已知实数x ,y 满足⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,则w =x 2+y 2-4x -4y +8的最小值为________.25.在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM |的最小值是________.26.某企业生产甲、乙两种产品,已知生产每吨甲产品要用水3吨、煤2吨;生产每吨乙产品要用水1吨、煤3吨.销售每吨甲产品可获得利润5万元,销售每吨乙产品可获得利润3万元,若该企业在一个生产周期内消耗水不超过13吨,煤不超过18吨,则该企业可获得的最大利润是______万元.27.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:________亩. 28.若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.29.当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.30.已知动点P (x ,y )在正六边形的阴影部分(含边界)内运动,如图,正六边形的边长为2,若使目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,则k 的值为________.31.设m >1,在约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围 .32.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,若目标函数z =x -y 的最小值的取值范围是[-2,-1],则目标函数的最大值的取值范围是________.33.给定区域D :⎩⎪⎨⎪⎧x +4y ≥4,x +y ≤4,x ≥0.令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D 上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.34.已知向量a =(x +z,3),b =(2,y -z ),且a ⊥b .若x ,y 满足不等式|x |+|y |≤1,则z 的取值范围为__________.35.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +4y -13≤02y -x +1≥0x +y -4≥0且有无穷多个点(x ,y )使目标函数z =x +my 取得最小值,则m =________.。
线性目标函数的最值
在线性规划中,我们通常会遇到线性目标函数的最值问题。
线性目标函数是指由线性项组成的目标函数,其中每个变量的系数都是常数。
最值问题要求找出使目标函数取得最大值或最小值的变量取值。
在解决线性目标函数的最值问题时,我们可以使用多种方法。
其中一种常用的方法是图形法。
首先,我们将目标函数表示为一个以变量为自变量的直线方程。
然后,我们将所有约束条件表示为线性不等式,并将它们绘制在一个二维坐标系中。
通过观察约束条件和目标函数在图中的关系,我们可以确定目标函数取得最大值或最小值的范围。
另一种解决线性目标函数最值问题的常用方法是单纯形法。
这是一种基于可行解空间的迭代算法,通过不断迭代改善当前解的目标函数值,直到找到最优解。
单纯形法利用了线性规划解的几何特性,通过在可行解空间中移动,逐步接近最优解。
当线性目标函数的变量较多或约束条件较复杂时,我们还可以使用线性规划软件来求解最值问题。
这些软件能够自动解决包含数百个变量和约束条件的线性规划问题,并给出最优解。
线性目标函数的最值问题在实际中有着广泛的应用。
例如,在生产计划中,我们需要确定如何安排资源以最大化利润或最小化成本。
在运输领域,我们需要确定如何最优地分配货物以最小化运输成本。
在金融领域,我们需要确定如何最优地分配投资以最大化收益。
总之,线性目标函数的最值问题是线性规划中的核心问题之一。
通过图形法、单纯形法或线性规划软件,我们可以解决这类问题,并得出使目标函数取得最大值或最小值的变量取值。
这些方法在实际中有广泛的应用,能够帮助我们进行有效的决策和资源分配。
线性规划最值问题什么是线性规划线性规划是一种数学优化方法,用于解决一类最值问题。
在线性规划中,我们试图找到一组变量的值,使得目标函数取得最大(或最小)值,同时满足一组线性等式或不等式约束条件。
线性规划问题的一般形式线性规划问题可以用下列一般形式来表示:$$\max (或 \min) c^T x$$$$s.t.\quad Ax \leq b$$其中,$x$是变量向量,$c$是目标函数系数向量,$A$是约束条件系数矩阵,$b$是约束条件右侧常数向量。
求解线性规划最值问题的步骤求解线性规划最值问题的一般步骤如下:1. 确定目标函数:根据问题要求确定目标函数的系数向量$c$和优化目标(最大化或最小化)。
2. 设置约束条件:根据问题要求确定约束条件的系数矩阵$A$和右侧常数向量$b$。
3. 求解最值:应用线性规划算法,求解线性规划问题,找到使目标函数取得最大(或最小)值的变量向量$x$。
4. 解释结果:将最值代入目标函数,得到最终的最值结果,并解释其含义。
线性规划最值问题的应用线性规划最值问题在实际应用中具有广泛的应用,例如:- 产品混合问题:决定不同产品的生产数量,以最大化收益或最小化成本。
- 运输问题:确定不同货物在不同运输路线上的分配方案,以最小化运输成本。
- 资源分配问题:决定资源的最优分配,以最大化效益或实现平衡。
总结线性规划最值问题是一种在实际应用中常见的问题求解方法。
通过确定目标函数和约束条件,并应用线性规划算法,我们可以找到使目标函数取得最大(或最小)值的变量向量。
该方法可以应用于多个领域,帮助优化决策和资源分配。
第2节二元一次不等式(组)与简单的线性规划问题【最新考纲】 1.会从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.【高考会这样考】 1.考查二元一次不等式组表示的区域面积和目标函数最值(或取值范围);2.考查约束条件、目标函数中的参变量的取值范围;3.利用线性规划方法设计解决实际问题的最优方案.要点梳理1.二元一次不等式(组)表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧的所有点组成的平面区域(半平面)不含边界直线.不等式Ax+By+C≥0所表示的平面区域(半平面)包括边界直线.(2)对于直线Ax+By+C=0同一侧的所有点(x,y),使得Ax+By+C的值符号相同,也就是位于同一半平面内的点,其坐标适合同一个不等式Ax+By+C>0;而位于另一个半平面内的点,其坐标适合另一个不等式Ax+By+C<0.(3)由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的公共部分.2.线性规划的有关概念[友情提示]1.画二元一次不等式表示的平面区域的直线定界,特殊点定域:(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.2.在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距zb 取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距zb 取最大值时,z 取最小值;截距zb取最小值时,z 取最大值.基 础 自 测1.思考辨析(在括号内打“√”或“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( ) (2)线性目标函数的最优解可能是不唯一的.( )(3)线性目标函数取得最值的点一定在可行域的顶点或边界上.( )(4)在目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( )解析 (1)不等式x -y +1>0表示的平面区域在直线x -y +1=0的下方. (4)直线ax +by -z =0在y 轴上的截距是zb . 答案 (1)× (2)√ (3)√ (4)×2.下列各点中,不在x +y -1≤0表示的平面区域内的是( ) A .(0,0)B .(-1,1)C .(-1,3)D .(2,-3)解析 把各点的坐标代入可得(-1,3)不适合,故选C. 答案 C3.不等式组⎩⎨⎧x -3y +6≥0,x -y +2<0表示的平面区域是( )解析 x -3y +6≥0表示直线x -3y +6=0及其右下方部分,x -y +2<0表示直线x -y +2=0左上方部分,故不等式表示的平面区域为选项B. 答案 B4.设x ,y 满足约束条件⎩⎨⎧x +2y ≤1,2x +y ≥-1,x -y ≤0,则z =3x -2y 的最小值为________.解析不等式组⎩⎨⎧x +2y ≤1,2x +y ≥-1,x -y ≤0表示的平面区域如图所示.由z =3x -2y 得y =32x -z 2,当直线y =32x -z2过图中点A 时,纵截距最大,此时z 取最小值.由⎩⎨⎧2x +y =-1,x +2y =1解得点A 坐标为(-1,1),此时z =3×(-1)-2×1=-5.答案 -55.若x ,y 满足约束条件⎩⎨⎧x -y +1≥0,x -2≤0,x +y -2≥0,则z =yx的最大值为________.解析 作出不等式组表示的平面区域,如图所示阴影部分,z =y x =y -0x -0,表示区域内的点与原点连线的斜率,易知z max =k OA ,由⎩⎨⎧x -y +1=0,x +y -2=0,得A ⎝⎛⎭⎫12,32,k OA =3212=3,∴z max =3.答案 3题型分类 考点突破考点一 二元一次不等式(组)表示的平面区域【例1】 (1)不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的()(2)若不等式组⎩⎨⎧x +y -2≤0,x +2y -2≥0,x -y +2m ≥0表示的平面区域为三角形,且其面积等于43,则m 的值为( ) A .-3B .1C.43D .3解析 (1)(x -2y +1)(x +y -3)≤0⇒⎩⎨⎧x -2y +1≥0,x +y -3≤0或⎩⎨⎧x -2y +1≤0,x +y -3≥0.画出平面区域后,只有C 符合题意.(2)如图,要使不等式组表示的平面区域为三角形,则-2m <2,则m >-1,由⎩⎨⎧x +y -2=0,x -y +2m =0,解得⎩⎨⎧x =1-m ,y =1+m ,即A (1-m ,1+m ). 由⎩⎨⎧x +2y -2=0,x -y +2m =0,解得⎩⎨⎧x =23-43m ,y =23+23m ,即B ⎝⎛⎭⎫23-43m ,23+23m ,所围成的区域为△ABC ,则S △ABC =S △ADC -S △BDC =12(2+2m )(1+m )-12(2+2m )·23(1+m )=13(1+m )2=43, 解得m =-3(舍去)或m =1.故选B. 答案 (1)C (2)B规律方法 1.二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域. 2.求平面区域的面积:(1)首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;(2)对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和.【变式练习1】 若不等式x 2+y 2≤2所表示的平面区域为M ,不等式组⎩⎨⎧x -y ≥0,x +y ≥0,y ≥2x -6表示的平面区域为N ,现随机向区域N 内抛一粒豆子,则豆子落在区域M 内的概率为________.解析 作出不等式组与不等式表示的可行域如图阴影部分所示,平面区域N 的面积为12×3×(6+2)=12,区域M 在区域N 内的面积为14π(2)2=π2,故所求概率P =π212=π24.答案 π24考点二 求目标函数的最值问题(多维探究) 命题角度1 求线性目标函数的最值【例2-1】设x ,y 满足约束条件⎩⎨⎧x +3y ≤3,x -y ≥1,y ≥0,则z =x +y 的最大值为()A .0B .1C .2D .3解析 根据约束条件画出可行域,如图中阴影部分(含边界),则当目标函数z =x +y 经过A (3,0)时取得最大值,故z max =3+0=3,故选D.答案 D命题角度2 求非线性目标函数的最值【例2-2】 (1)若变量x ,y 满足⎩⎨⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是()A .4B .9C .10D .12(2)已知实数x ,y 满足⎩⎨⎧y ≤x -1,x ≤3,x +5y ≥4,则xy 的最小值是________.解析 (1)作出不等式组所表示的平面区域,如图中阴影部分所示(包括边界),x 2+y 2表示平面区域内的点与原点的距离的平方.由图易知平面区域内的点A (3, -1)与原点的距离最大,所以x 2+y 2的最大值是10,故选C.(2)作出不等式组表示的平面区域,如图所示,又xy 表示平面区域内的点与原点连线所在直线的斜率的倒数.由图知,直线OA 的斜率最大,此时x y 取得最小值,所以⎝⎛⎭⎫x y min =1k OA =32.答案 (1)C (2)32命题角度3 求参数的值或范围【例2-3】 已知实数x ,y 满足:⎩⎨⎧x +3y +5≥0,x +y -1≤0,x +a ≥0,若z =x +2y 的最小值为-4,则实数a =( ) A .1B .2C .4D .8解析 作出不等式组表示的平面区域,如图中阴影部分所示,当直线z =x +2y 经过点C ⎝⎛⎭⎪⎫-a ,a -53时,z 取得最小值-4,所以-a +2·a -53=-4,解得a =2,选B.答案 B规律方法 1.先准确作出可行域,再借助目标函数的几何意义求目标函数的最值. 2.当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义:(1)x 2+y 2表示点(x ,y )与原点(0,0)的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离;(2)yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率.3.当目标函数中含有参数时,要根据临界位置确定参数所满足的条件.【变式练习2】 (1)已知x ,y 满足约束条件⎩⎨⎧x -y +3≤0,3x +y +5≤0,x +3≥0,则z =x +2y 的最大值是()A .0B .2C .5D .6(2)若实数x ,y 满足⎩⎨⎧2x -y +2≥0,2x +y -6≤0,0≤y ≤3,且z =mx -y (m <2)的最小值为-52,则m 等于()A.54B .-56C .1D.13解析 (1)由已知得约束条件的可行域如图中阴影部分所示,故目标函数z =x +2y 经过点C (-3,4)时取最大值z max =-3+2×4=5.(2)作出约束条件所表示的可行域如图中阴影部分所示,z =mx -y (m <2)的最小值为-52,可知目标函数的最优解过点A ,由⎩⎨⎧y =3,2x -y +2=0,解得A ⎝⎛⎭⎫12,3,∴-52=m2-3,解得m =1.答案 (1)C (2)C考点三 实际生活中的线性规划问题【例3】 某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析 设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,得线性约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *,目标函数z =2 100x +900y .作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0),在(60,100)处取得最大值,z max =2 100×60+900×100=216 000(元).答案 216 000规律方法 解线性规划应用问题的一般步骤: (1)分析题意,设出未知量; (2)列出线性约束条件和目标函数; (3)作出可行域并利用数形结合求解; (4)作答.【变式练习3】 一个小型加工厂用一台机器生产甲、乙两种桶装饮料,生产一桶甲饮料需要白糖4千克,果汁18千克,用时3小时;生产一桶乙饮料需要白糖1千克,果汁15千克,用时1小时.现库存白糖10千克,果汁66千克,生产一桶甲饮料利润为200元,生产一桶乙饮料利润为100元,在使用该机器用时不超过9小时的条件下,生产甲、乙两种饮料利润之和的最大值为________.解析 设生产甲、乙两种饮料分别为x 桶、y 桶,利润为z 元,则得⎩⎪⎨⎪⎧4x +y ≤10,18x +15y ≤66,3x +y ≤9,x ≥0,y ≥0.即⎩⎪⎨⎪⎧4x +y ≤10,6x +5y ≤22,3x +y ≤9,x ≥0,y ≥0.目标函数z =200x +100y .作出可行域(如图阴影部分所示),当直线z =200x +100y 经过可行域上点B 时,z 取得最大值,解方程组⎩⎨⎧4x +y =10,6x +5y =22,得点B 的坐标(2,2),故z max =200×2+100×2=600. 答案 600错误! 课后练习A 组 (时间:30分钟)一、选择题1.不等式组⎩⎨⎧y ≤-x +2,y ≤x -1,y ≥0所表示的平面区域的面积为()A .1B.12C.13D.14解析 作出不等式组对应的区域为△BCD ,由题意知x B =1,x C =2.由⎩⎨⎧y =-x +2,y =x -1,得y D=12,所以S △BCD =12×(x C -x B )×12=14.答案D2.若x ,y 满足⎩⎨⎧x ≤3,x +y ≥2,y ≤x ,则x +2y 的最大值为()A .1B .3C .5D .9解析 画出可行域,设z =x +2y ,则y =-12x +z 2,当直线y =-12x +z2过B (3,3)时,z 取得最大值9,故选D. 答案 D3.设x ,y 满足约束条件⎩⎨⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是()A .-15B .-9C .1D .9解析 作出不等式组表示的可行域,结合目标函数的几何意义可得函数在点B (-6,-3)处取得最小值z min =-12-3=-15.故选A.答案 A4.设x ,y 满足约束条件⎩⎨⎧3x +2y -6≤0,x ≥0,y ≥0,则z =x -y 的取值范围是()A .[-3,0]B .[-3,2]C .[0,2]D .[0,3]解析 画出不等式组表示的可行域(如图阴影部分所示),结合目标函数的几何意义可得函数在点A (0,3)处取得最小值z =0-3=-3,在点B (2,0)处取得最大值z =2-0=2.答案 B5.设变量x ,y 满足约束条件⎩⎨⎧x -y -1≤0,x +y ≥0,x +2y -4≥0,则z =x -2y 的最大值为()A .-12B .-1C .0D.32解析 作出可行域,如图阴影部分,作直线l 0:x -2y =0,平移直线l 0,可知经过点A 时,z =x -2y 取得最大值,由⎩⎨⎧x +2y -4=0,x -y -1=0,得A (2,1),所以z max =2-2×1=0, 故选C.答案 C6.若1≤log 2(x -y +1)≤2,|x -3|≤1,则x -2y 的最大值与最小值之和是( ) A .0B .-2C .2D .6解析 1≤log 2(x -y +1)≤2,|x -3|≤1即变量x ,y 满足约束条件⎩⎨⎧2≤x -y +1≤4,2≤x ≤4,即⎩⎨⎧x -y -3≤0,x -y -1≥0,2≤x ≤4,作出可行域(图略),可得x -2y 的最大值、最小值分别为4,-2,其和为2. 答案 C7.若x ,y 满足⎩⎨⎧x +y ≥1,mx -y ≤0,3x -2y +2≥0且z =3x -y 的最大值为2,则实数m 的值为()A.13B.23C .1D .2解析 若z =3x -y 的最大值为2,则此时目标函数为y =3x -2,直线y =3x -2与3x -2y +2=0和x +y =1分别交于A (2,4),B ⎝⎛⎭⎫34,14,mx -y =0经过其中一点,所以m =2或m =13,当m =13时,经检验不符合题意,故m =2,选D. 答案 D8.若变量x ,y 满足约束条件⎩⎨⎧x -y +1≤0,y ≤1,x >-1,则(x -2)2+y 2的最小值为()A.322B. 5C.92D .5解析 作出不等式组对应的平面区域如图中阴影部分所示.设z =(x -2)2+y 2,则z 的几何意义为区域内的点到定点D (2,0)的距离的平方,由图知C ,D 间的距离最小,此时z 最小.由⎩⎨⎧y =1,x -y +1=0得⎩⎨⎧x =0,y =1,即C (0,1),此时z min =(x -2)2+y 2=4+1=5,故选D. 答案 D 二、填空题9.若x ,y 满足约束条件⎩⎨⎧x -y ≥0,x +y -2≤0,y ≥0,则z =3x -4y 的最小值为________.解析 画出可行域如图阴影部分所示. 由z =3x -4y ,得y =34x -z4,作出直线y =34x ,平移使之经过可行域,观察可知,当直线经过点A (1,1)处取最小值,故z min =3×1-4×1=-1.10.已知O 是坐标原点,点M 的坐标为(2,1),若点N (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≤2,x ≥12,y ≥x 上的一个动点,则OM →·ON →的最大值是________.解析 依题意,得不等式组对应的平面区域如图中阴影部分所示,其中A ⎝⎛⎭⎫12,12,B ⎝⎛⎭⎫12,32,C (1,1). 设z =OM →·ON →=2x +y ,当目标函数z =2x +y 过点C (1,1)时,z =2x +y 取得最大值3. 答案 311.(一题多解)已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________(答案用区间表示).解析 法一 设2x -3y =a (x +y )+b (x -y ),则由待定系数法可得⎩⎨⎧a +b =2,a -b =-3,解得⎩⎨⎧a =-12,b =52,所以z =-12(x +y )+52(x -y ).又⎩⎨⎧-2<-12(x +y )<12,5<52(x -y )<152,所以两式相加可得z ∈(3,8). 法二 作出不等式组⎩⎨⎧-1<x +y <4,2<x -y <3表示的可行域,如图中阴影部分所示.平移直线2x -3y =0,当相应直线经过x -y =2与x +y =4的交点A (3,1)时,z取得最小值,z min =2×3-3×1=3;当相应直线经过x +y =-1与x -y =3的交点B (1,-2)时,z 取得最大值,z max =2×1+3×2=8.所以z ∈(3,8).12.x ,y 满足约束条件⎩⎨⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为________.解析 如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1. 答案 2或-1B 组 (时间:15分钟)13.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元 B .16万元 C .17万元D .18万元解析 设每天生产甲、乙产品分别为x 吨、y 吨,每天所获利润为z 万元,则有⎩⎨⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示:可得目标函数在点A 处取到最大值.由⎩⎨⎧x +2y =8,3x +2y =12得A (2,3).则z max =3×2+4×3=18(万元). 答案 D14.已知实数x ,y 满足⎩⎨⎧x -2y +1≥0,x <2,x +y -1≥0,z =|2x -2y -1|,则z 的取值范围是()A.⎣⎡⎦⎤53,5B .[0,5)C .[0,5]D.⎣⎡⎭⎫53,5解析 作出可行域如图所示:易求得A ⎝⎛⎭⎫2,32,B ⎝⎛⎭⎫13,23,C (2,-1),令u =2x -2y -1,则y =x -u +12,当直线y =x-u +12过点C (2,-1)时,u 有最大值5,过点B ⎝⎛⎭⎫13,23时,u 有最小值-53,因为可行域不包括x =2的边界,所以z =|2x -2y -1|的取值范围是[0,5).故选B. 答案 B15.已知变量x ,y 满足约束条件⎩⎨⎧x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是________. 解析 画出x ,y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12. 答案 ⎝⎛⎭⎫12,+∞16.已知实数x ,y 满足⎩⎨⎧y ≤ln x ,x -2y -3≤0y +1≥0,,则z =y +1x 的取值范围为________.解析 作出不等式组对应的平面区域,如图阴影部分.z =y +1x 表示区域内的点(x ,y )与A (0,-1)连线的斜率k ,由图可知,k min =0,k max =k AP ,P 为切点,设P (x 0,ln x 0),k AP =1x 0,∴ln x 0+1x 0=1x 0,∴x 0=1,k AP =1,即z =y +1x 的取值范围为[0,1].答案 [0,1]。
线性规划求最大值或最小值linprog2011-09-03 18:43:17| 分类:Matlab | 标签:最优值最优解最大值最小值linprog |字号大中小订阅函数格式:linprog(f,a,b,a1,b1,xstart,xend)f:求解最小函数的表达式系数矩阵是m*1的矩阵a:≤不等式条件约束矩阵其均为形式b:a对应不等式右边的常数项a1:=等式条件约束矩阵b1:a1对应不等式右边的常数项xstart:x的取值范围的最小值的系数矩阵为n*1的矩阵xend:x的取值范围的最大值的系数矩阵为n*1的矩阵函数说明:不存在的项填写[]即可函数功能:线性规划求最优值.例子1:求f=3*x1+6*x2+2*x3的最大值满足的条件是3*x1+4*x2+x3≤2x1+3*x2+2*x3≤1且x1、x2、x3均大于等于0Matlab求解如下a =[ 3 4 11 32 ]b =[ 21 ]f=[ -3-6-2 ]%这里为什么会是负数,因为Matlab求的是f的最小值,要求最大值则取要求系数的相反数即可. x=[ 00 ]linprog(f,a,b,[],[],x,[])%执行的matlab命令后输出的如下内容.注意这里的[]表示那一项不存在.当然最后那一个[]也可以不要即linprog(f,a,b,[],[],x)Optimization terminated.ans =0.40000.20000.0000%即x1=0.4,x2=0.2,x3=0为最优解.带回原式我可以知道f的最大值=3*0.4+6*0.2=2.4例子2:求f=-2*x1-3*x2-x3的最小值满足的条件是x1+x2+x3≤3x1+4*x2+7*x3+x4=9且x1、x2、x3、x4均大于等于0Matlab求解如下原题等价于求f=-2*x1-3*x2-x3+0*x4的最小值其条件等价于x1+x2+x3+0*x4≤3x1+4*x2+7*x3+x4=9则在Matlab输入如下内容a=[1 1 1 0]b=[3]a1=[1 4 7 1]b1=[9]x=[ 00]f=[ -2-3-10]linprog(f,a,b,a1,b1,x)%执行命令或者输入linprog(f,a,b,a1,b1,x,[])Optimization terminated.ans =1.00002.00000.00000.0000%说明x1=1,x2=2,x3=0,x4=0取得最小值说明:任何线性规划问题都可以转化为上面的问题求解.细节问题请Google线性规划标准形式1、当目标函数求最大值时,例如求f=a1*x1+a2*x2+……+an*xn的最大值时这个时候等价于求f=-a1*x1-a2*x2-……-an*xn的最小值2、当约束条件为a1*x1+a2*x2+……+an*xn≥b这种形式的时候其约束等价于a1*x1+a2*x2+……+an*xn-xnn=b即多了一个xnn(xnn≥0)变量3、当一个变量比如x1是无约束的变量时,其实等价于x1=x2-x3即把一个变量x1分解成2个变量x2与x3之差(x2、x3≥0)把是x1的地方替换为(x2-x3)即可求解线性规划问题:线性规划问题其中,f, x, b, beq, lb, ub为向量, A, Aeq为矩阵。
线性规划求最值线性规划(Linear Programming)是一种优化问题的数学方法,通过建立线性模型来求解最大或最小值。
线性规划的目标是在给定的限制条件下,找到一个最优解,使得目标函数取得最大(或最小)值。
线性规划的数学模型可以表示为:目标函数:max(min)Z = c₁x₁ + c₂x₂ + … + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + … + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + … + a₂ₙxₙ ≤ b₂…aₙ₁x₁ + aₙ₂x₂ + … + aₙₙxₙ ≤ bₙ其中x₁, x₂, …, xₙ为决策变量,c₁, c₂, …, cₙ为目标函数的系数,a₁₁, a₁₂, …, a₈ₙ为约束条件中的系数,b₁, b₂, …,bₙ为约束条件的常数。
解线性规划问题的过程可以分为以下几个步骤:1. 建立数学模型:根据实际问题,确定目标函数以及约束条件。
2. 线性规划的几何表示:将目标函数和约束条件用图形表示,目标函数是一个线性函数,而约束条件则是一组线性不等式。
3. 求解可行解:通过图形方法,找到目标函数与所有约束条件的交点,得到一组可行解。
4. 求解最优解:在可行解中,通过计算目标函数在每个可行解点的函数值,找到使目标函数取得最大(或最小)值的可行解,即为最优解。
5. 检验最优解的可行性:将最优解代入到原始线性规划问题中,检验是否满足所有约束条件。
如果不满足,则需要重新调整模型。
线性规划在实际应用中广泛使用,例如生产计划、资源分配、运输调度等领域。
通过线性规划,可以有效地进行决策,并找到最优解,提高效率,节约资源。
然而,线性规划也有一些局限性,如对问题的要求较高,不能解决非线性的问题等。
总之,线性规划是一种数学方法,通过建立线性模型,在给定的约束条件下求解最大或最小值,可以在各种实际问题中应用,并得到最优解。
通过线性规划,可以优化决策,提高效率,实现最大化利益。
目标函数系数的取值范围1. 取值范围为正实数当目标函数系数的取值范围为正实数时,表示对目标的增加有正向的促进作用。
换言之,增加目标函数系数的值将使得问题的目标得到更好的实现。
例如,在生产计划中,如果目标函数系数代表利润,那么增加目标函数系数的值将使得企业的利润更大。
因此,当目标函数系数的取值范围为正实数时,问题的解将趋向于使目标函数值最大化。
2. 取值范围为负实数与正实数相反,当目标函数系数的取值范围为负实数时,表示对目标的增加有负向的阻碍作用。
换言之,增加目标函数系数的值将使得问题的目标实现变得更困难。
例如,在资源分配中,如果目标函数系数代表成本,那么增加目标函数系数的值将使得资源分配的成本更高。
因此,当目标函数系数的取值范围为负实数时,问题的解将趋向于使目标函数值最小化。
3. 取值范围为零当目标函数系数的取值范围为零时,表示目标函数系数对目标的实现没有影响。
换言之,无论目标函数系数取多少,问题的目标实现都不会受到任何影响。
例如,在线性回归中,如果目标函数系数代表特征的重要性,那么目标函数系数为零可能表示该特征对目标变量的影响不显著。
因此,当目标函数系数的取值范围为零时,问题的解可以不受目标函数系数的影响而得出。
4. 取值范围为整数当目标函数系数的取值范围为整数时,表示目标的优化需要整数解。
换言之,问题的解必须是整数值才能满足目标函数的要求。
例如,在生产调度中,如果目标函数系数代表生产数量,那么目标函数系数为整数可能表示生产数量必须为整数值。
因此,当目标函数系数的取值范围为整数时,问题的解必须满足整数约束条件。
5. 取值范围为任意实数当目标函数系数的取值范围为任意实数时,表示目标的优化没有特定的限制。
换言之,问题的解可以是任意实数值,没有特定的优化方向和程度。
例如,在线性规划中,如果目标函数系数代表某个指标的权重,那么目标函数系数为任意实数可以表示对该指标的优化没有特定的要求。
因此,当目标函数系数的取值范围为任意实数时,问题的解可以是任意实数值。
使用Pythonscipylinprog线性规划求最大值或最小值(使用Python学习数学Python的scipy库中的linprog函数可以用于求解线性规划问题。
线性规划是一种数学优化问题,旨在找到使得线性目标函数在一组线性约束条件下最大或最小的变量值。
首先,我们需要导入必要的库和函数:```pythonfrom scipy.optimize import linprog```linprog函数的基本语法如下:```pythonlinprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simplex', callback=None, options=None) ```其中,参数c是目标函数的系数,说明了我们希望最大化或最小化的变量。
系数向量的长度就是变量的个数。
参数A_ub和b_ub是不等式约束条件,表示一个或多个线性不等式约束条件。
A_ub是一个矩阵,每一行表示一个不等式约束,而b_ub是一个向量,表示不等式约束的右边界。
参数A_eq和b_eq是等式约束条件,用于表示一个或多个线性等式约束条件。
A_eq是一个矩阵,每一行表示一个等式约束条件,而b_eq是一个向量,表示等式约束的右边界。
参数bounds用于指定变量的上下界限制。
参数method指定求解器的类型,默认为simplex,还可以选择revised simplex(改进型单纯形法)、interior-point(内点法)等。
让我们来看一个简单的线性规划问题结局具体的使用方法。
假设我们想要最大化目标函数z=3x+4y,同时满足以下两个不等式约束条件:x>=0、y>=2,以及以下两个等式约束条件:x+y=4、2x+y<=9:```pythonc=[-3,-4]A_ub = [[-1, 0], [0, -1], [-2, -1]]b_ub = [0, -2, -9]A_eq = [[1, 1]]b_eq = [4]bounds = [(None, None), (2, None)]```然后,我们调用linprog函数来求解问题:```pythonresult = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=bounds)```最后,我们可以打印结果:```pythonprint(result)```完整代码如下:```pythonfrom scipy.optimize import linprogc=[-3,-4]A_ub = [[-1, 0], [0, -1], [-2, -1]]b_ub = [0, -2, -9]A_eq = [[1, 1]]b_eq = [4]bounds = [(None, None), (2, None)]result = linprog(c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=bounds)print(result)```运行这段代码,我们将得到以下输出:```con: array([0.])fun: -10.0message: 'Optimization terminated successfully.'nit: 4slack: array([2., 0., 5.])status: 0success: Truex: array([2., 2.])```结果中包含了最优解、目标函数的最优值、限制条件的松弛变量等信息。
目标函数系数的取值范围目标函数是数学规划中的一个重要概念,它用于描述问题的目标或者利益。
在线性规划中,目标函数是一个线性表达式,其中每个变量的系数决定了在优化过程中该变量的重要性。
本文将讨论目标函数系数的取值范围,并解释不同取值范围对优化结果的影响。
1. 系数取值为正数:如果目标函数系数都为正数,那么最优解将会在约束条件允许的范围内最大化目标函数的值。
这种情况常见于追求最大收益、最大利润、最大效益等问题。
例如,一个企业希望最大化其销售额,那么目标函数中的销售额系数应为正数,以确保在满足其他约束条件的前提下,销售额能够最大化。
2. 系数取值为负数:与系数取值为正数相反,如果目标函数系数都为负数,那么最优解将会在约束条件允许的范围内最小化目标函数的值。
这种情况常见于成本最小化、风险最小化、损失最小化等问题。
例如,一个企业希望最小化其生产成本,那么目标函数中的成本系数应为负数,以确保在满足其他约束条件的前提下,成本能够最小化。
3. 系数取值为零:如果目标函数中某个变量的系数为零,那么该变量在优化过程中将不会对目标函数的值产生影响。
这种情况常见于某些变量与目标函数之间不存在直接的关联关系,或者该变量在实际问题中并不需要被优化。
例如,一个企业的目标是最大化销售额,而目标函数中的某些变量与销售额无关,那么这些变量的系数可以设为零。
4. 系数取值范围为正负数:在实际问题中,目标函数系数的取值范围往往是正负数都有可能。
这种情况下,最优解将会在约束条件允许的范围内使得目标函数的值最大或最小。
例如,一个企业希望在给定的资源约束下最大化利润,那么目标函数中的利润系数可以是正数,表示追求最大利润,也可以是负数,表示追求最小成本。
需要注意的是,目标函数系数的取值范围只是影响优化结果的一个因素,还有其他因素如约束条件、变量的取值范围等也会对优化结果产生影响。
在实际问题中,我们需要综合考虑这些因素,选择合适的目标函数系数取值范围,以获得最优解。
简单的线性规划问题[学习目标]1。
了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念。
2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题.知识点一线性规划中的基本概念名称意义约束条件关于变量x,y的一次不等式(组)线性约束条件关于x,y的一次不等式(组)目标函数欲求最大值或最小值的关于变量x,y的函数解析式线性目标函数关于变量x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域由所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题知识点二线性规划问题1.目标函数的最值线性目标函数z=ax+by (b≠0)对应的斜截式直线方程是y=-错误!x+错误!,在y轴上的截距是错误!,当z变化时,方程表示一组互相平行的直线.当b〉0,截距最大时,z取得最大值,截距最小时,z取得最小值;当b〈0,截距最大时,z取得最小值,截距最小时,z取得最大值.2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值.(4)答:写出答案.知识点三简单线性规划问题的实际应用1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小.常见问题有:①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小?②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A、B、C三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大?③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小?2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一求线性目标函数的最值例1已知变量x,y满足约束条件错误!则z=3x+y的最大值为()A.12 B.11C.3 D.-1答案 B解析首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y=-3x+z经过点A时,z取得最大值.由错误!⇒错误!此时z=3x+y=11。
线性规划问题的标准型线性规划是运筹学中的一种数学优化方法,用于在给定约束条件下寻找一个线性目标函数的最大值或最小值。
线性规划问题通常可以表示为标准型,即包含一组线性不等式约束条件和一个线性目标函数的数学模型。
首先,我们来定义线性规划问题的标准型。
一个线性规划问题的标准型可以表示为:\[\max_{x} c^Tx\]\[s.t. Ax \leq b\]\[x \geq 0\]其中,\(x\) 是一个 \(n\) 维向量,表示问题的决策变量;\(c\) 是一个 \(n\) 维向量,表示目标函数的系数;\(A\) 是一个 \(m \times n\) 的矩阵,表示约束条件的系数;\(b\) 是一个 \(m\) 维向量,表示约束条件的右端常数。
在这个模型中,我们的目标是找到一个 \(x\) 的取值,使得目标函数 \(c^Tx\) 的值最大,同时满足约束条件 \(Ax \leq b\) 和 \(x \geq 0\)。
接下来,我们来详细讨论线性规划问题的标准型中的各个要素。
首先是目标函数 \(c^Tx\)。
目标函数通常表示了我们希望最大化或最小化的目标。
在线性规划中,目标函数是一个线性函数,由决策变量\(x\) 的线性组合构成。
我们希望通过调整 \(x\) 的取值,使得目标函数的值达到最大或最小。
其次是约束条件 \(Ax \leq b\)。
约束条件表示了问题的限制条件,限制了决策变量 \(x\) 的取值范围。
在标准型中,约束条件通常表示为一组线性不等式。
这些不等式可以用矩阵 \(A\) 和向量 \(b\) 来表示,它们限制了决策变量 \(x\) 的取值范围。
最后是非负约束 \(x \geq 0\)。
非负约束表示了决策变量 \(x\) 的取值必须大于等于零。
这个约束条件在很多实际问题中是合理的,因为很多决策变量都有非负的物理意义。
总结一下,线性规划问题的标准型包括一个线性目标函数和一组线性不等式约束条件,以及决策变量的非负约束条件。
简单的线性规划问题【知识梳理】线性规划的有关概念题型一、求线性目标函数的最值【例1】 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( )A.⎣⎡⎦⎤-32,6 B.⎣⎡⎦⎤-32,-1 C .[-1,6]D .⎣⎡⎦⎤-6,32 [解析] 约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1所表示的平面区域如图阴影部分,直线y =3x -z 斜率为3.由图象知当直线y =3x -z 经过A (2,0)时,z 取最大值6,当直线y =3x -z 经过B ⎝⎛⎭⎫12,3时,z 取最小值-32,∴z =3x -y 的取值范围为⎣⎡⎦⎤-32,6,故选A. [答案] A 【类题通法】解线性规划问题的关键是准确地作出可行域,正确理解z 的几何意义,对一个封闭图形而言,最优解一般在可行域的边界上取得.在解题中也可由此快速找到最大值点或最小值点.【对点训练】1.设z =2x +y ,变量x 、y 满足条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,求z 的最大值和最小值.[解] 作出不等式组表示的平面区域,即可行域,如图所示.把z =2x +y 变形为y =-2x +z ,则得到斜率为-2,在y 轴上的截距为z ,且随z 变化的一组平行直线.由图可以看出,当直线z =2x +y 经过可行域上的点A 时,截距z 最大,经过点B 时,截距z 最小.解方程组⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,得A 点坐标为(5,2),解方程组⎩⎪⎨⎪⎧x =1,x -4y +3=0,得B 点坐标为(1,1),∴z 最大值=2×5+2=12,z 最小值=2×1+1=3.题型二、求非线性目标函数的最值【例2】 设x ,y 满足条件⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3.(1)求u =x 2+y 2的最大值与最小值; (2)求v =yx -5的最大值与最小值.[解] 画出满足条件的可行域如图所示,(1)x 2+y 2=u 表示一组同心圆(圆心为原点O ),且对同一圆上的点x 2+y 2的值都相等,由图可知:当(x ,y )在可行域内取值时,当且仅当圆O 过C 点时,u 最大,过(0,0)时,u 最小.又C (3,8),所以u 最大值=73,u 最小值=0.(2)v =yx -5表示可行域内的点P (x ,y )到定点D (5,0)的斜率,由图可知,k BD 最大,k CD 最小,又C (3,8),B (3,-3),所以v 最大值=-33-5=32,v 最小值=83-5=-4.【类题通法】非线性目标函数最值问题的求解方法(1)非线性目标函数最值问题,要充分理解非线性目标函数的几何意义,诸如两点间的距离(或平方),点到直线的距离,过已知两点的直线斜率等,充分利用数形结合知识解题,能起到事半功倍的效果.(2)常见代数式的几何意义主要有: ①x 2+y 2表示点(x ,y )与原点(0,0)的距离;(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离.②yx 表示点(x ,y )与原点(0,0)连线的斜率;y -b x -a表示点(x ,y )与点(a ,b )连线的斜率.这些代数式的几何意义能使所求问题得以转化,往往是解决问题的关键.【对点训练】2.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≤0,x ≥1,x +y -7≤0.则yx的最大值是________,最小值是________.[解析] 由约束条件作出可行域(如图所示),目标函数z =yx 表示坐标(x ,y )与原点(0,0)连线的斜率.由图可知,点C 与O 连线斜率最大;B 与O 连线斜率最小,又B 点坐标为(52,92),C 点坐标为(1,6),所以k OB=95,k OC =6. 故y x 的最大值为6,最小值为95. [答案] 6 95题型三、已知目标函数的最值求参数【例3】 若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -a ≥0,目标函数t =x -2y 的最大值为2,则实数a 的值是________. [解析] 如右图,由⎩⎪⎨⎪⎧x =2,x +2y -a =0. 得⎩⎪⎨⎪⎧x =2,y =a -22,代入x -2y =2中,解得a =2. [答案] 2 【类题通法】求约束条件或目标函数中的参数的取值范围问题解答此类问题必须明确线性目标函数的最值一般在可行域的顶点或边界取得,运用数形结合的思想、方法求解.同时要搞清目标函数的几何意义.【对点训练】3.已知x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y +k ≥0.且z =2x +4y 的最小值为-6,则常数k =( )A .2B .9C .310D .0[解析] 选D 由题意知,当直线z =2x +4y 经过直线x =3与x +y +k =0的交点(3,-3-k )时,z 最小,所以-6=2×3+4×(-3-k ),解得k =0.题型四、简单的线性规划问题的实际应用【例4】 某公司计划在甲、乙两个电视台做总时间不超过300 分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,假定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?[解] 设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,总收益为z 元,由题意得⎩⎪⎨⎪⎧x +y ≤300,500x +200y ≤90 000,x ≥0,y ≥0.目标函数为z =3 000x +2 000y .二元一次不等式组等价于⎩⎪⎨⎪⎧x +y ≤300,5x +2y ≤900,x ≥0,y ≥0.作出二元一次不等式组所表示的平面区域,即可行域,如图.作直线l :3 000x +2 000y =0, 即3x +2y =0.平移直线l ,从图中可知,当直线l 过M 点时,目标函数取得最大值.联立⎩⎪⎨⎪⎧x +y =300,5x +2y =900,解得x =100,y =200.∴点M 的坐标为(100,200).∴z 最大值=3 000x +2 000y =700 000(元).因此,该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.【类题通法】利用线性规划解决实际问题的步骤是:①设出未知数(当数据较多时,可以列表格来分析数据);②列出约束条件,确立目标函数;③作出可行域;④利用图解法求出最优解;⑤得出结论.【对点训练】4.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如下表:某冶炼厂至少要生产1.9(万吨)铁,若要求CO 2的排放量不超过2(万吨),则购买铁矿石的最少费用为________(百万元).解析:可设需购买A 矿石x 万吨,B 矿石y 万吨,则根据题意得到约束条件为:⎩⎪⎨⎪⎧x ≥0,y ≥0,0.5x +0.7y ≥1.9,x +0.5y ≤2,目标函数为z =3x +6y ,当目标函数经过(1,2)点时目标函数取最小值,最小值为:z 最小值=3×1+6×2=15.答案:15【练习反馈】1.z =x -y 在⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x +y ≤1的线性约束条件下,取得最大值的可行解为( )A .(0,1)B .(-1,-1)C .(1,0)D .⎝⎛⎭⎫12,12解析:选C 可以验证这四个点均是可行解,当x =0,y =1时,z =-1;当x =-1,y =-1时,z =0;当x =1,y =0时,z =1;当x =12,y =12时,z =0.排除选项A ,B ,D ,故选C.2.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,x -y ≤1,x +1≥0,则z =x +2y 的最小值为( )A .3B .1C .-5D .-6解析:选C 由约束条件作出可行域如图:由z =x +2y 得y =-12x +z 2,z2的几何意义为直线在y 轴上的截距,当直线y =-12x +z2过直线x =-1和x -y =1的交点A (-1,-2)时,z 最小,最小值为-5,故选C.3.已知实数x 、y 满足⎩⎪⎨⎪⎧y ≤2x ,y ≥-2x ,x ≤3,则目标函数z =x -2y 的最小值是________.解析:不等式组表示的平面区域如下图中阴影部分所示.目标函数可化为y =12x -12z ,作直线y =12x 及其平行线,知当此直线经过点A 时,-12z 的值最大,即z 的值最小.又A 点坐标为(3,6),所以z 的最小值为3-2×6=-9.答案:-94.已知点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,点O 为坐标原点,那么|PO |的最小值等于________,最大值等于________.解析:点P (x ,y )满足的可行域为△ABC 区域,A (1,1),C (1,3).由图可得,|PO |最小值=|AO |=2;|PO |最大值=|CO |=10.答案:2105.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥32x -3y ≤3,求z =x +2y 的最小值.解:作出不等式组⎩⎪⎨⎪⎧x +y ≥32x -3y ≤3的可行域,如图所示.画出直线l 0:x +2y =0,平移直线l 0到直线l 的位置,使l 过可行域内某点,且可行域内其他点都在l 的不包含直线l 0的另外一侧,该点到直线l 0的距离最小,则这一点使z =x +2y 取最小值.显然,点A 满足上述条件,解⎩⎪⎨⎪⎧x +y =32x -3y =3得点A ⎝⎛⎭⎫125,35, ∴z 最小值=125+2×35=185.。
简单的线性(整数)规划问题
一.知识要点:
1.线性规划的基础概念
(1)线性约束条件
约束条件都是关于x, y的一次整式不等式.
(2)目标函数
待求最值(最大值或最小值)的函数.
(3)线性目标函数
目标函数是关于变量x, y的一次解析式(整式).
(4)线性规划
在线性约束条件下求线性目标函数的最大值或最小值的问题, 其中在限定变量为整数的时候, 对应的线性规划问题, 也称为整数规划问题.
(5)可行解
满足全部约束条件的解(x, y).
(6)可行域
全部可行解构成的集合称为线性规划问题的可行域.
(7)最优解
使目标函数取到最大值或最小值的可行解.
注意:
①线性约束条件即可用二元一次不等式表示, 也可以用二元一次方程表示.
②最优解如果存在(当然, 最优解有不存在的情况), 其个数并不一定是唯一的, 可能有多个最优解, 也可能存在无数个最优解.
③目标函数z ax by
=+取到最优解(最大或最小值)的点, 往往出现在可行域的顶点或边界上.
④对于整数规划问题(,
x y
ゥ), 最优解未必在边界或顶点处取
∈∈
得, 往往要在可行域的顶点或边界附近寻找.
⑤寻找最优解的前提是尽量准确画出可行域的草图, 从而有助于我们发现最优解.
二. 解题思路:
解决线性规划问题, 先要准确作出可行域, 且明白目标函数表示的几何意义, 通过数形结合找到目标函数取到最值时可行域的顶点(或边界上的点). 而对于整数规划问题, 则应该进一步验证解决, 边界点或顶点可能不在是最优点, 而是在它们的临近区域的整点.
三.求解步骤
①在平面直角坐标系中画出可行域(对于应用问题, 则要先正确写出
规划模型及满足的约束条件, 再画出可行域).
②结合目标函数的几何意义, 将目标函数变形写成直线的方程形式或写成一次函数的形式.
③确定最优点: 在可行域平行移动目标函数变形后的直线, 从而找到最优点.
④ 将最优点的坐标代入目标函数即可求出最大值或最小值.
四. 高考题演练
1. (新课标全国高考) 设x , y 满足约束条件1010,3x y x y x -+≥⎧⎪
+-≥⎨⎪≤⎩
则23z x y =-的
最小值是( ) 提示1 A. 7- B. 6- C. 5- D. 3-
2. (高考) 若变量x , y 满足约束条件210x y x y +≤⎧⎪
≥⎨⎪≥⎩
, 则2z x y =+的最大值和
最小值分别为( ). 提示2 A. 43和 B. 4和2 C. 3和2 D. 2和0 3. (高考) 某旅行社租用A 、B 两种型号的客车安排900名客人旅行, A 、
B 两种车辆的载客量分别为36人和60人, 租金分别为1600元/
辆和2400元/辆, 旅行社要求租车的总数不超过21辆, 且B 型车不多于A 型车7辆. 则租金最小为( ). 提示3 A. 31200元 B. 36000元 C. 36800元 D. 38400元 4. (高考) 若变量x , y
满足约束条件211y x
x y y ≤⎧⎪
+≤⎨⎪≥-⎩
, 则2x y +的最大值为
( ). 提示4 A. 52
- B. 0 C. 53
D.
52
5. (天津高考) 设变量,x y满足约束条件
360,
20,
30
x y
x y
y
+-≥
⎧
⎪
--≤
⎨
⎪-≤
⎩
则目标函数
2
z y x
=-的最小值为( ) 提示5
A. 7-
B. 4-
C.1
D. 2
6. (高考) 若点(x, y)位于曲线y x
=与2
y=所围成的封闭区域, 则2x y
-的最小值是( ). 提示6
A. 6-
B. 2-
C.0
D. 2
7. (高考) 若变量,x y满足约束条件
8,
24
,
x y
y x
x
y
+≤
⎧
⎪-≤
⎪
⎨
≥
⎪
⎪≥
⎩
且目标函数5
z y x
=-的
最大值为a, 最小值为b, 则a b-的值是( ) 提示7
A. 48
B. 30
C.24
D. 16
参考答案:
提示1:不等式组表示的平面区域如图1中阴 影部分所示, 其顶点A , B , C 的面积可直接算 出, 待求面积为
1144
(4)1.2233
ABC S AC h =
⋅=⨯-⨯=V 图1
提示2:不等式组10,
10,10x y x ax y +-≥⎧⎪
-≤⎨⎪-+≥⎩
所围成的平面区域如图2中阴影部分所
示, 面积为2, 则12114352
AC AC a a or =⋅⇒=+=⇒=-其中-5舍
去.
图2 图3
提示3: 已知可求出,.3
OA OB π
〈〉=u u u r u u u r 可设(2,0),(1,3),(,),OA OB OP x y ===u u u r u u u r u u u r 则
1(22x x y λλμμ⎧=⎪+=⎧⎪⎪⇒⎨=⎪=⎪⎩
,
由12y y λμ+≤⇒-+≤ 可行域参考图3,
所求面积1
242
S =⨯⨯=
可行域由如下四个子区域拼接而成:
①
002y y
y y y y y ≥≥≥⇔≥⎨⎨⎪-+≤≤+⎩②
002y
y y y y y y ≥≥≤⇔≤⎨⎨⎪--≤⎪≥-⎪⎩
③
0233y
y y y y y y x ≤≤≥⇔≥⎨⎨⎪⎪++≤⎩⎪≤+⎪⎩
④
002y y y y y y y ≤≤≤⇔≤⎨⎨⎪⎪+-≤≥-⎩⎩
提示4:已知0,0,a b ≥≥且当0,
0,1x y x y ≥⎧⎪
≥⎨⎪+≤⎩
时, 恒有1ax by +≤⇒
当0110 1.x y by b b =⇒=⇒=≤⇒≤≤同理, 当0110 1.y x ax a a =⇒=⇒=≤⇒≤≤
不等式组
01
01
a
b
≤≤
⎧
⎨
≤≤
⎩
所围成的平面区域参考图4, 其面积为1.
图4 图5
提示5: 由不等式组直接作出平面区域见图5, 注意直线20
kx y
-+=过
定点(0, 2). 由平面区域面积为4, 可知122241 3.
2
k k or
⨯⨯+=⇒=-
其中-3舍去.
提示6:换元法
平面区域{}
(,)(,)
B x y x y x y A
=+-∈, 可令2,
2
m n
x
m x y
n x y m n
y
+
⎧
=
⎪
=+
⎧⎪
⇒
⎨⎨
=--
⎩⎪=
⎪⎩
再根据条件,
1
221
(,)00,
2
2
m n m n
m
m n
x y A m n
m n
m n
+-
⎧
+≤
⎪
≤
⎧
⎪
+
⎪⎪
∈⇔≥⇔+≥
⎨⎨
⎪⎪-≥
⎩
-
⎪
≥
⎪⎩
由此不等式组确定的平面区域即为{}
(,)(,)
B x y x y x y A
=+-∈确定的平面区域, 见图6, 其面积
为112 1.
2
⨯⨯=
图6 图7
提示7: 平面区域D见上图7阴影部分所示, 直线1
y kx
=+过定点(0, 1)根据平面几何知识可知, 若直线1
y kx
=+将区域D分成面积相等的两
部分, 则直线1
y kx
=+只需过AB的中点即可. 易求中点坐标
33 (,)
22
. 再
代入到直线1
y kx
=+, 可求
1
.
3 k=。