Zemax软件在光学设计_2010
- 格式:ppt
- 大小:11.29 MB
- 文档页数:179
ZEMAX光学设计软件操作说明详解Zemax是一种光学设计软件,它提供了丰富的功能和工具,用于设计和优化光学系统。
以下是对Zemax光学设计软件的操作说明的详细解释。
工具栏是软件的快速访问工具。
其中包含了一些最常用的工具按钮,例如放大、缩小、旋转和平移视图等。
您可以通过单击这些按钮来快速执行相应的操作。
设置和属性面板是对光学系统进行设置和属性调整的地方。
您可以在设置面板中设置光源的参数,例如光强和颜色。
在属性面板中,您可以对每个光学元件的属性进行调整,例如位置、形状和材料属性等。
三维视图是用于可视化整个光学系统的地方。
您可以在这里查看光线的传播路径、光束的参数和各个光学元件的位置。
通过旋转、缩放和平移操作,您可以查看整个系统的不同视角。
在操作Zemax时,您需要先创建或导入光学设计文件。
然后,按照以下步骤进行操作:2.双击光学元件或在属性面板中进行设置,例如位置、孔径、曲率和折射率等。
3.在设置面板中选择光源类型和参数,并将其添加到光学系统中。
4.在光学系统中添加或删除光学元件,例如透镜、镜面和光学器件等。
5.使用光线追迹工具来模拟光线在光学系统中的传播,并分析光线的参数,例如入射角、焦点位置和光强分布等。
6.使用优化工具来调整光学元件的参数,以优化光学系统的性能,例如最小化像差、最大化光束质量和最优化焦点位置等。
7.最后,可以通过三维视图和结果分析面板来查看和评估整个光学系统的性能和效果。
需要注意的是,Zemax是一种强大的光学设计软件,操作较为复杂。
在使用之前,建议您先阅读官方提供的操作手册和教程,熟悉软件的功能和操作方法。
此外,良好的光学基础知识也是操作Zemax的前提。
以上是对Zemax光学设计软件操作说明的详细解释。
希望能帮助您理解和使用这一软件。
在光学设计中,Zemax是一款非常受欢迎的软件,它提供了强大的工具和功能,可以帮助设计师轻松地完成各种光学设计任务。
本文将通过一个具体的例子,向大家展示如何使用Zemax进行光学设计。
一、设计背景我们假设需要设计一款望远镜,需要观察远处的星空。
望远镜的主要性能指标包括放大倍率、像差和亮度。
我们需要通过Zemax软件,找到最佳的光学系统方案,以达到最佳的观察效果。
二、设计步骤1.建立基本光学系统模型:在Zemax中,我们需要建立一个基本的光学系统模型,包括望远镜的主镜和次镜。
可以通过手动输入镜片数据或者使用预设的镜片库来建立模型。
2.调整参数:在Zemax中,我们可以调整各种参数来优化望远镜的性能。
例如,可以通过调整放大倍率和亮度参数来找到最佳的观察效果。
3.检测像差:在调整参数后,我们需要检测望远镜的像差。
Zemax 提供了强大的像差检测功能,可以帮助我们找到镜片上的缺陷和误差。
4.优化镜片:根据检测结果,我们可以对镜片进行优化。
可以通过添加或删除镜片、调整镜片位置和角度等方式来改善望远镜的性能。
5.模拟观察:在完成镜片优化后,我们可以模拟观察望远镜的成像效果。
可以通过调整望远镜的焦距和观察角度来查看不同情况下的成像效果。
6.调整和优化:根据模拟观察结果,我们可以再次调整和优化望远镜的设计。
直到达到满意的观察效果为止。
三、设计结果经过一系列的设计和优化步骤,我们得到了一个满意的光学设计方案。
该方案包括两片反射镜,放大倍率为10倍,像差在可接受范围内,亮度较高。
通过Zemax模拟观察,成像效果清晰、稳定,符合我们的预期。
四、总结通过这个具体的例子,我们展示了如何使用Zemax进行光学设计。
虽然只是一个简单的望远镜设计,但是它涵盖了光学设计的基本步骤和技巧。
在实际应用中,光学设计需要考虑的因素很多,例如环境因素、成本预算、材料选择等。
Zemax提供了丰富的工具和功能,可以帮助设计师轻松应对各种挑战。
光学设计软件ZEMAX实验讲义光学设计软件ZEMAX是一款广泛应用于光学设计和仿真的工具。
它通过建立光学系统模型、进行光学分析和优化,来实现光学元件的设计和性能评估。
本实验讲义将介绍使用ZEMAX进行光学系统设计的基本流程和方法,以帮助读者快速上手使用该软件进行实验。
实验目的:1.掌握ZEMAX软件的基本操作方法;2.学习使用ZEMAX进行光学系统的建模和分析;3.能够使用ZEMAX进行光学系统的优化和性能评估。
实验仪器和材料:1.计算机(安装有ZEMAX软件);2.光学元件(例如透镜、棱镜等);3.光源(例如激光器、光纤等);4.探测器(例如光电二极管、CCD等)。
实验步骤:1.启动ZEMAX软件,并加载需要的光学元件模型。
可以通过导入现有的元件文件,也可以自己创建新的模型。
2.在光学系统中定义光源和探测器。
选择合适的光源类型,并设置光源的参数,例如波长、光强等。
同样,选择合适的探测器类型,并设置其参数。
3.在光学系统中添加光学元件。
选择需要的元件类型,例如透镜、棱镜等,并设置其参数,例如焦距、角度等。
4.运行光学分析。
可以选择进行光线追迹分析,用于确定光线在系统中的传播路径和光学性能。
还可以进行波前分析,用于评估系统的像差情况。
5.进行光学系统优化。
根据实际需求,调整光学系统中的参数,例如透镜的位置、曲率等,以优化系统的性能。
可以使用自动优化功能,也可以手动调整参数进行优化。
6.进行光学系统性能评估。
通过分析光线传播路径、像差情况等,评估光学系统的性能。
可以使用图像质量指标,例如MTF(传递函数)和PSF(点扩散函数),来评估系统的成像能力。
7.导出结果。
根据需要,将优化后的光学系统结果导出为文件。
可以导出光学系统的参数、光线路径图、波前图等。
实验注意事项:1.在进行光学系统设计前,需要确保熟悉光学基础知识,并了解所使用的光学元件的特性和性能。
2.在使用ZEMAX软件时,需要注意模型的准确性和合理性。
ZEMAX光学设计报告一、引言ZEMAX是一种广泛应用于光学设计和仿真的软件工具,它提供了一系列功能强大的工具和算法,可以帮助光学工程师进行光学系统的设计、优化和分析。
本报告将介绍使用ZEMAX进行的光学设计,并详细阐述设计的目的、方法和结果。
二、设计目的本次光学设计的目的是设计一种能够产生高质量成像的透镜系统。
通过使用ZEMAX软件进行光学设计和优化,我们希望能够在保持高分辨率和低畸变的同时,尽可能减小像差和光能损失,实现最佳成像效果。
三、设计方法1.初始设计:根据设计要求和限制条件,我们首先进行了初步的系统设计。
选取了适当的光学元件,如凸透镜、凹透镜、平面镜等,通过摆放和调整位置来搭建初始的光学系统。
2. Ray Tracing:使用ZEMAX的Ray Tracing功能,我们可以模拟光线在光学系统中的传播和反射。
通过调整折射率、半径和曲率等参数,我们可以对光线进行控制和优化,实现所需的成像效果。
3. Aberration Analysis:使用ZEMAX的Aberration Analysis功能,我们可以对系统的像差进行分析。
通过查看球差、色差、像散、畸变等参数,我们可以对光学系统进行调整和优化,以提高成像的质量和准确性。
4. Optimization:在初步设计和光线追迹分析的基础上,我们使用ZEMAX的优化功能来调整光学系统的各个参数,以达到最佳的成像效果。
通过设置目标函数和约束条件,优化算法可以在设计空间中最优解,帮助我们找到最佳的设计方案。
5. Iterative Refinements:根据优化结果,我们进行了反复的调整和优化,以进一步改善光学系统的成像效果。
通过多次迭代,我们逐渐接近最优解,达到了设计要求。
四、设计结果通过使用ZEMAX进行光学设计和优化,我们成功地设计出了一种可以产生高质量成像的透镜系统。
经过多次优化和迭代,我们达到了如下设计目标:1.高分辨率:经过系统优化,我们成功降低了球差和色差等像差,提高了光学系统的分辨率。
第36卷第4期2010年7月 光学技术OPTICAL TECHN IQU E Vol.36No.4J uly 2010 文章编号:100221582(2010)0420495205ZEMAX 与ANSYS 动态数据交换的实现及其在光学设计中的应用研究3姜自波,杨德华,李新南(中国科学院国家天文台南京天文光学技术研究所,江苏南京210042)摘 要:通过对Zemax 动态数据交换技术DDE (Dynamic Data Exchange )通信接口进行研究,实现了ANSYS 2中继软件2Zemax 的DDE 闭环通信,并应用到了望远镜光学系统受环境温度场影响的光学像质评估中,实现了有限元分析和光学像质评价的动态联合。
用ANSYS 建立有限元模型,分析由温度场引起的光学镜面形变。
通过Zernike 多项式拟合,将拟合系数通过ANSYS 2Zemax 的DDE 通信链路传递给Zemax 进行光学系统的像质分析。
反之,像质分析的结果也可以动态地传递给ANSYS ,以便进一步指导机械结构的优化设计。
此有限元系统2光学系统通信链路的实现可大大提高数据的可靠性和设计效率。
关键词:应用光学;动态数据交换;光学设计;有限元分析;计算机辅助设计中图分类号:O439 文献标识码:AImplementation of dynamic data exchange bet w een ZEMAXand ANSYS and its application to optical designJ I ANG Zi 2bo ,Y ANG De 2hua ,LI X in 2nan(Nanjing Institute of Astronomical Optics &technology ,National Astronomical Observatories ,Chinese Academy of Sciences ,Nanjing 210042,Jiangsu ,China )Abstract :The DDE (Dynamic Data Exchange )technology of Zemax communication interface is researched ,and DDE closed 2loop communication between ANSYS 2relay software 2Zemax is realized ,and it is applied to the optical image quali 2ty assessment of telescope optical system affected by environmental temperature field ,the dynamic combination is realized between the Finite Element Analysis and optical image quality evaluation.An finite element model is established by AN 2SYS ,the deformation of optical mirrors caused by temperature field is analyzed.Through the Zernike polynomial fitting ,the coefficients are transfered to Zemax by ANSYS 2Zemax ’s DDE communication link circuit ,and an analysis is made for the optical system image quality.On the contrary ,the consequences of qualitative analysis can also be delivered to AN 2SYS dynamically ,to guide further optimization of the mechanical structure design.The realization of communication links between finite element systems 2optical system can greatly improve the reliability of data and design efficiency.K ey w ords :applied optics ;dynamic data exchange ;optical design ;finite element analysis ;computer 2aided design5943收稿日期:2010201205 E 2m ail :zbjiang @ ;dhyang @ 基金项目:国家自然科学基金(10503007)资助项目作者简介:姜自波(19772),男,河南濮阳人,助理研究员,硕士,主要从事光学检测、光学加工、光学信息处理等方面的研究。
ZEMAX光学设计报告一、引言光学设计是光学工程师进行光学系统设计的重要工作。
在光学设计中使用的软件工具众多,其中一种常用的软件是ZEMAX。
本报告将介绍使用ZEMAX进行光学设计的方法,并通过一个实例来展示其应用。
二、ZEMAX光学设计1.建模在使用ZEMAX进行光学设计之前,首先需要进行系统的物理建模。
在ZEMAX中,通过定义光学元件(如透镜、镜面等)的物理属性和位置来建立光学系统模型。
可以通过输入几何参数、折射率、表面形态等信息来定义各个光学元件,并通过图形界面进行可视化设置。
2.优化光学系统的优化是光学设计的核心任务之一、在ZEMAX中,可以通过调整光学元件的位置、物理参数等来优化系统的性能。
可以设置优化目标,比如最小化像差、最大化能量聚焦等,然后通过ZEMAX的优化算法进行自动求解,得到最优解。
3.分析ZEMAX还提供了各种分析工具,可以对光学系统进行性能评估。
例如,可以通过光线追迹分析来研究几何光学传输过程,可以通过波前分析来评估系统的像差,可以通过MTF(调制传递函数)分析来评估系统的分辨力等。
这些分析工具有助于工程师对设计系统的性能进行评估和改进。
三、实例展示为了更好地展示ZEMAX的应用,我们以光学显微镜的设计为例进行介绍。
1.建模首先,在ZEMAX中建立光学系统模型。
我们可以通过输入光学元件的参数,比如透镜的曲率半径、厚度等来定义系统的物理属性。
然后,使用图形界面将这些光学元件拖拽到适当的位置,形成光学系统的结构。
2.优化接下来,我们可以通过优化光学系统的性能来改进设计。
比如,可以通过调整透镜的位置、厚度等参数来最小化系统的像差、最大化系统的分辨率等。
在ZEMAX中,可以设置优化目标并选择适当的优化算法,然后让软件自动进行求解。
在求解过程中,可以通过ZEMAX提供的分析工具对系统进行实时评估。
3.分析最后,我们可以使用ZEMAX提供的分析工具对设计好的系统进行性能评估。
比如,可以通过光线追迹分析来确定光学系统的传输特性,可以通过MTF分析来评估系统的分辨能力等。
ZEMAX光学设计软件操作说明详解】介绍这一章对本手册的习惯用法和术语进行说明。
ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。
活动结构活动结构是指当前在镜头数据编辑器中显示的结构。
详见“多重结构”这一章。
角放大率像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。
切迹切迹指系统入瞳处照明的均匀性。
默认情况下,入瞳处是照明均匀的。
然而,有时入瞳需要不均匀的照明。
为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。
有三种类型的切迹:均匀分布,高斯型分布和切线分布。
对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。
在“系统菜单”这一章中有关于切迹类型和因子的讨论。
ZEMAX也支持用户定义切迹类型。
这可以用于任意表面。
表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。
对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。
后焦距ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。
如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。
基面基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。
基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。
除焦平面外,所有的基面都对应一对共轭面。
比如,像空间主面与物空间主面相共轭,等等。
如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。
ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。
主光线如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。
注意,没有渐晕和像差时,任何穿过入瞳中央的光线也一定会通过光阑和出瞳的中心。
光学设计软件ZEMAX实验讲义实验目的:1.学会使用ZEMAX进行基本光学系统的设计。
2.学会使用ZEMAX进行光学系统的分析和优化。
3.了解ZEMAX的基本操作和功能。
实验步骤:1.安装和启动ZEMAX软件。
将光学系统转化为数字形式,并进行光束追迹。
2.创建一个新的光学系统。
通过添加透镜和光源,在系统中创建起始点光源。
3.定义光束追踪模式。
选择要模拟的光束类型,如平行光束、点光源或散射光束。
4.设置透镜的参数。
选择所需的透镜类型,如凸透镜、凹透镜或棱镜,并设置其曲率半径和折射率。
5.添加其他光学元件。
根据系统设计的需要,添加其他光学元件,如滤光片、反射镜或光栅。
6.进行光束追踪和射线分析。
使用ZEMAX的射线追踪功能,可以模拟光线在系统中的传播和聚焦情况,并对系统的性能进行分析。
7.优化光学系统。
根据设计需求,使用ZEMAX的优化功能对光学系统进行优化,以改善其性能。
8.分析光学系统性能。
使用ZEMAX的分析工具,可以评估系统的像差、聚焦性能和光学质量等指标。
9.输出结果。
将光学系统的结果输出为图形、表格或文件,以便进一步分析和应用。
注意事项:1.在进行光学设计时,应尽可能符合光学系统的物理和几何规则。
2.在使用ZEMAX进行分析和优化时,应注意各个参数的相互影响,并合理选择优化策略。
3.在进行结果分析时,应根据具体的实际问题和设计目标,选择合适的指标和评估方法。
结论:通过本实验,我们学习了如何使用ZEMAX进行光学设计和分析。
ZEMAX提供了强大的功能和工具,可以帮助光学工程师有效地设计和优化光学系统。
光学设计软件的使用将大大提高光学工程师的工作效率和设计质量。
ZEMAX光学辅助设计简明教程
1.软件界面介绍
结果窗口用于显示设计结果和输出数据。
在设计光学系统后,通过结果窗口可以查看系统的光学性能和仿真结果。
2.光学系统构建
在构建光学系统时,可以选择曲面的类型和属性,并进行位置和尺寸的调整。
对于光源,可以选择不同的光束类型和参数。
检测器可以用于测量光学性能和进行仿真分析。
3.光学系统优化
在完成光学系统构建后,可以使用ZEMAX的优化功能对光学系统进行调整和改进。
优化可以根据设定的指标,自动调整曲面位置和属性。
在菜单栏中选择"Optimize",可以选择优化方法和目标。
常用的优化方法有全局和局部优化,常用的目标有最小均方根波前差和最小图像模糊等。
通过优化,可以不断改进光学系统的性能,使其达到设计要求。
调整参数后,可以通过结果窗口查看优化结果和分析光学性能。
4.其他功能介绍
通过菜单栏中的"Analysis"选项,可以选择不同的分析功能。
例如,通过选择"MTF Plot"可以绘制光学系统的MTF曲线,该曲线可以描述光学系统对不同空间频率的图像细节的传输效率。
此外,ZEMAX还提供了文档和视频教程,帮助用户更好地了解软件的使用方法和功能。
总结:。
Zemax在光学设计中的应用Zemax 在光学设计中的应用进入21世纪,光学,与计算机,电子,自动化等技术融合,形成了光机电一体的综合高新技术,光学已经成为信息科学的信息载体之一。
随着光学的蓬勃发展,各种光学CAD软件层出不穷。
目前,常用的光学设计软件包括Zemax,TracePro,ASAP,LightTools,CODEV,OSLO 等,这些软件功能强大,能够从各个角度分析光学系统从而判断光学系统优劣性,可执行度等,是从事光学设计行业工程师的有力工具。
Zemax由美国华盛顿州贝尔维尤市的Zemax软件开发公司研制发售,它将光学系统的设计概念、优化、分析、公差以及报表集成在一起,形成一套综合性的光学设计仿真软件。
到目前为止,Zemax已经成为当今使用最广泛的光学设计软件之一,市场占有率达到85%。
目前Zemax使用群集中在光学公司,光电研究所,投影仪,望远镜,扫描仪等光学设计公司。
Zemax常常被应用于各种相机镜头,显微镜,望远镜,目镜等光学镜头的设计;各种变焦镜头,手机摄像头的设计;LCD 背光板和LED建模;DVD、VCD 激光读写头;干涉仪、全息光学;各种激光器谐振腔的设计等等。
Zemax有两个等级的版本,包括Zemax-SE(标准版),Zemax-EE(专业版)。
使用序列性与非序列性的方法来模拟成像系统和非成像系统的反射,折射和散射光线追迹。
序列性光线追迹的光线追迹速度快、适合多数面的形状和性质,可以直接优化和进行公差预算,主要针对相机镜头、望远镜镜头、显微镜头等光学系统。
而非序列主要针对非成像系统或者是复杂的形状对象,可以对光线传播进行更细节的分析,包括散射光或部分反射光。
Zemax光学设计软件支持不同类型的光源,包括自定义的光源,同时提供近60种光学曲面面形,以及自定义的面形,包含很多玻璃库,材料库,样板库等。
同时可以进行镀膜分析,热分析,偏振光分析,物理光学分析等。
当设计好一个光学系统之后,可以运用二维或者是三维图来观察系统结构。
ZEMAX光学辅助设计简明教程第一步:软件安装和注册第二步:创建新项目在ZEMAX主界面上,选择“File”菜单中的“New”选项,创建一个新的项目。
第三步:构建光学系统在新项目中,首先需要构建一个光学系统。
可以通过在布局图中拖动和连接元件来构建光学系统,也可以通过在布局图中右键单击并选择“Add Surface”来添加曲面。
在光学系统构建过程中,可以使用“Properties”窗口对元件的属性进行调整,如曲面形状、位置、方向等。
第四步:添加光源在光学系统构建完成后,需要为系统添加光源。
可以通过在布局图中右键单击并选择“Add Source”来添加光源。
在“Properties”窗口中,可以设置光源的参数,如光强度、发散角度、光谱分布等。
第五步:进行光学分析和优化一旦光学系统和光源设置完成,就可以进行光学分析和优化。
ZEMAX 提供丰富的分析和优化工具,如光强分布分析、波前畸变分析、传输函数分析等。
在“Analysis”菜单中,可以选择不同的分析工具,并根据需求进行设置和运行。
分析结果将显示在结果窗口中。
根据分析结果,可以进行光学系统的优化。
在“Optimization”菜单中,可以选择不同的优化算法,并设置参数。
点击“Optimize”按钮,系统将自动运行优化过程。
优化结果将显示在结果窗口中。
第六步:导出结果和生成报告一旦光学系统达到设计要求,就可以导出光学系统的设计结果和生成报告。
可以将结果保存为文本文件、图像文件或光学标准格式文件。
在“File”菜单中,选择“Export...”选项即可导出结果。
在“File”菜单中,选择“Create Report...”选项即可生成报告。
总结:本文介绍了ZEMAX光学辅助设计的基本操作,包括软件安装和注册、创建新项目、构建光学系统、添加光源、进行光学分析和优化、导出结果和生成报告等。
希望通过本文的指导,初学者能够快速掌握ZEMAX软件的基本功能和使用方法,进行光学系统的设计和优化。
ZEMAX光学设计软件操作说明详解介绍这一章对本手册的习惯用法和术语进行说明。
ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。
活动结构活动结构是指当前在镜头数据编辑器中显示的结构。
详见“多重结构”这一章。
角放大率像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。
切迹切迹指系统入瞳处照明的均匀性。
默认情况下,入瞳处是照明均匀的。
然而,有时入瞳需要不均匀的照明。
为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。
有三种类型的切迹:均匀分布,高斯型分布和切线分布。
对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。
在“系统菜单”这一章中有关于切迹类型和因子的讨论。
ZEMAX也支持用户定义切迹类型。
这可以用于任意表面。
表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。
对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。
后焦距ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。
如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。
基面基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。
基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。
除焦平面外,所有的基面都对应一对共轭面。
比如,像空间主面与物空间主面相共轭,等等。
如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。
ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。
主光线如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。
注意,没有渐晕和像差时,任何穿过入瞳中央的光线也一定会通过光阑和出瞳的中心。
光学设计软件简介光学设计软件成像设计:CodeV(ORA 公司产品,USA)Zemax(ZEMAX Development CorporationOSLO( Lambda Research Corporation 公司,USA)照明设计:Lightools(ORA 公司产品)ASAPTraceproODIS光通讯设计软件:OptiWave薄膜设计:TFCalc, Filmstar 等nCodeV(ORA 公司产品,USA)——成像光学设计分析软件CodeV(ORA 公司产品,USA)——功能Zemax(Zemax 公司,USA)——光学设计分析软件Oslo(Lambda Research Corporation 公司,USA)——成像设计分析软件Lightools(ORA 公司产品,USA)——照明光学设计分析软件ASAP(Breault Co.) ——照明光学设计分析软件3) 光学设计应用广泛眼镜照相机、CD、VCD/DVD 、DC、DV等扫描仪、复印机、投影仪等显微镜、内窥镜、X光机等日常照明、汽车车灯等望远镜、瞄准仪、测量仪器激光、卫星等光纤通讯等非成像光学、太阳能利用等Zemax 简介Zemax 公司开发光学设计软件•功能完整(设计、分析、优化、公差分析等)•使用方遍•光线追迹算法—序列光线追迹—非序列光线追迹(蒙特卡罗算法)完整的数据表格式输入,编辑方便多功能分析(MTF 、点列图等)多种优化方式公差分析能力其他CAD 文件格式转换等Zemax 软件特点版本SE:标准版XE:完整版EE:专业版(可算非序列)Zemax 用户界面主要有四种用户界面—Editors: 编辑各种光学面参数或其他参数—Graphic Windows: 显示各种图形数据—Text Windows: 显示各种文本数据—Dialog Boxes: 编辑其他各种Window 的数据或报告错误信息。
1)EditorsLens Data Editor:输入透镜参数Merit Function Editor :优化函数构建Multi-Configuration Editor:多重结构参数定义Tolerance Data Editor :公差分析函数设定Extra Data Editor:附加数据Non-Sequential Components Editor: 非序列光学系统Lens Data EditorMerit Function EditorMulti-Configuration EditorTolerance Data EditorNon-Sequential Component Editor 2)图形窗口Layout生成dxf 文件Ray FanMTF将物分解为各种空间频率的谱,光学系统的光学特性可视为对各种空间频率的传递和反应能力,从而建立光学传递函数的评价方法。
ZEMAX现代光学课程设计一、教学目标通过学习ZEMAX现代光学课程,学生将掌握光学设计的基本原理和方法,能够运用ZEMAX软件进行光学系统设计和分析。
具体目标如下:1.知识目标:•了解光学基本概念和原理,如光线传播、反射、折射等。
•掌握光学系统的组成和功能,如透镜、镜片、光栅等。
•学习ZEMAX软件的基本操作和功能,如建立光学模型、设置参数、分析结果等。
2.技能目标:•能够运用ZEMAX软件进行光学系统设计和优化。
•能够分析光学系统的性能指标,如焦距、成像质量、光斑等。
•能够进行光学系统的故障排查和解决方案设计。
3.情感态度价值观目标:•培养对光学科技的兴趣和热情,提高科学思维和创新能力。
•培养团队合作和沟通能力,提高解决问题的综合能力。
二、教学内容本课程的教学内容主要包括光学基本原理、光学系统和ZEMAX软件操作。
具体安排如下:1.光学基本原理:•光线传播和反射定律。
•折射定律和透镜的焦距。
•光栅和衍射原理。
2.光学系统:•透镜和镜片的设计和应用。
•光学镜头和光路的分析。
•光学系统的性能评估和优化。
3.ZEMAX软件操作:•ZEMAX软件的基本操作和界面熟悉。
•建立光学模型和设置参数的方法。
•分析光学系统性能和优化方案的技巧。
三、教学方法为了提高学生的学习兴趣和主动性,将采用多种教学方法相结合的方式进行教学:1.讲授法:通过讲解光学基本原理和概念,让学生掌握光学基础知识。
2.讨论法:通过小组讨论和互动,培养学生的思考和表达能力。
3.案例分析法:通过分析实际光学设计案例,培养学生解决实际问题的能力。
4.实验法:通过实验操作和数据分析,让学生亲手体验光学现象和设计过程。
四、教学资源为了支持教学内容和教学方法的实施,将准备以下教学资源:1.教材:《现代光学设计》一书,提供光学基本原理和设计方法的学习。
2.参考书:提供光学科技的最新发展和应用案例。
3.多媒体资料:通过PPT、视频等形式,生动展示光学现象和设计过程。