ZEMAX光学设计讲义
- 格式:doc
- 大小:1.39 MB
- 文档页数:17
第1章ZEMAX入门ZEMAX是一款使用光线追迹的方法来模拟折射、反射、衍射、偏振的各种序列和非序列光学系统的光学设计和仿真软件。
ZEMAX有3种版本:ZEMAX-SE(标准版)、ZEMAX-XE(扩展版)、ZEMAX-EE(工程版),其中ZEMAX-EE的功能最为全面。
ZEMAX的界面设计得比较简洁方便,稍加练习就能很快地进行交互设计使用。
ZEMAX的大部分功能通过都能选择弹出或下拉式菜单来实现,键盘快捷键可以用来引导或略过菜单,直接运行。
本章将要讲述ZEMAX中的有关约定的解释,界面功能的习惯用法,以及一些常用窗口操作的快捷键。
一旦学会了在整个软件中通用的、简单的习惯用法,ZEMAX用起来就很容易了。
学习目标:(1)了解界面主窗口菜单的各项功能。
(2)熟练运用快捷工具栏。
(3)熟练掌握大量光学行业中约定的解释,如优化、公差分析等。
(4)熟练掌握各对话窗口的操作,如镜头数据、波长数据等。
1.1 ZEMAX的启动与退出安装ZEMAX软件后,系统自动在桌面上产生了ZEMAX快捷图标。
同时,“开始”菜单中也自动添加了ZEMAX命令。
下面讲解ZEMAX的启动与退出。
1.ZEMAX安装成功后,需要启动ZEMAX,才能使用该软件进行设计工作。
ZEMAX 的启动有4种方式。
(1)选择“开始”菜单命令启动。
选择“开始→ZEMAX”命令,启动ZEMAX,如图1-1所示。
(2)选择桌面快捷方式图标。
安装完成,系统会在桌面上自动创建ZEMAX的快捷方式图标,双击图标便可启动ZEMAX,如图1-2所示;右键单击快捷方式图标后单击“打开”也可以启动,如图1-3所示。
如果桌面上没有快捷方式图标,可以从“开始”菜单中找到相应的程序命令发送到桌面快捷方式,如图1-4所示。
2第1章ZEMAX入门图1-1 “开始”菜单命令启动图1-2 桌面快捷方式图标图1-3 右击快捷方式启动图1-4 发送桌面快捷方式(3)选择快速方式启动。
单击任务栏快速方式图标也可以启动ZEMAX。
光学设计软件ZEMAX实验讲义光学设计软件ZEMAX是一款广泛应用于光学设计和仿真的工具。
它通过建立光学系统模型、进行光学分析和优化,来实现光学元件的设计和性能评估。
本实验讲义将介绍使用ZEMAX进行光学系统设计的基本流程和方法,以帮助读者快速上手使用该软件进行实验。
实验目的:1.掌握ZEMAX软件的基本操作方法;2.学习使用ZEMAX进行光学系统的建模和分析;3.能够使用ZEMAX进行光学系统的优化和性能评估。
实验仪器和材料:1.计算机(安装有ZEMAX软件);2.光学元件(例如透镜、棱镜等);3.光源(例如激光器、光纤等);4.探测器(例如光电二极管、CCD等)。
实验步骤:1.启动ZEMAX软件,并加载需要的光学元件模型。
可以通过导入现有的元件文件,也可以自己创建新的模型。
2.在光学系统中定义光源和探测器。
选择合适的光源类型,并设置光源的参数,例如波长、光强等。
同样,选择合适的探测器类型,并设置其参数。
3.在光学系统中添加光学元件。
选择需要的元件类型,例如透镜、棱镜等,并设置其参数,例如焦距、角度等。
4.运行光学分析。
可以选择进行光线追迹分析,用于确定光线在系统中的传播路径和光学性能。
还可以进行波前分析,用于评估系统的像差情况。
5.进行光学系统优化。
根据实际需求,调整光学系统中的参数,例如透镜的位置、曲率等,以优化系统的性能。
可以使用自动优化功能,也可以手动调整参数进行优化。
6.进行光学系统性能评估。
通过分析光线传播路径、像差情况等,评估光学系统的性能。
可以使用图像质量指标,例如MTF(传递函数)和PSF(点扩散函数),来评估系统的成像能力。
7.导出结果。
根据需要,将优化后的光学系统结果导出为文件。
可以导出光学系统的参数、光线路径图、波前图等。
实验注意事项:1.在进行光学系统设计前,需要确保熟悉光学基础知识,并了解所使用的光学元件的特性和性能。
2.在使用ZEMAX软件时,需要注意模型的准确性和合理性。
光学设计软件ZEMAX实验讲义实验目的:1.学会使用ZEMAX进行基本光学系统的设计。
2.学会使用ZEMAX进行光学系统的分析和优化。
3.了解ZEMAX的基本操作和功能。
实验步骤:1.安装和启动ZEMAX软件。
将光学系统转化为数字形式,并进行光束追迹。
2.创建一个新的光学系统。
通过添加透镜和光源,在系统中创建起始点光源。
3.定义光束追踪模式。
选择要模拟的光束类型,如平行光束、点光源或散射光束。
4.设置透镜的参数。
选择所需的透镜类型,如凸透镜、凹透镜或棱镜,并设置其曲率半径和折射率。
5.添加其他光学元件。
根据系统设计的需要,添加其他光学元件,如滤光片、反射镜或光栅。
6.进行光束追踪和射线分析。
使用ZEMAX的射线追踪功能,可以模拟光线在系统中的传播和聚焦情况,并对系统的性能进行分析。
7.优化光学系统。
根据设计需求,使用ZEMAX的优化功能对光学系统进行优化,以改善其性能。
8.分析光学系统性能。
使用ZEMAX的分析工具,可以评估系统的像差、聚焦性能和光学质量等指标。
9.输出结果。
将光学系统的结果输出为图形、表格或文件,以便进一步分析和应用。
注意事项:1.在进行光学设计时,应尽可能符合光学系统的物理和几何规则。
2.在使用ZEMAX进行分析和优化时,应注意各个参数的相互影响,并合理选择优化策略。
3.在进行结果分析时,应根据具体的实际问题和设计目标,选择合适的指标和评估方法。
结论:通过本实验,我们学习了如何使用ZEMAX进行光学设计和分析。
ZEMAX提供了强大的功能和工具,可以帮助光学工程师有效地设计和优化光学系统。
光学设计软件的使用将大大提高光学工程师的工作效率和设计质量。
ZEMAX光学设计讲义导言:光学设计是一门重要的工程学科,它主要研究光学系统的设计、分析和优化。
而ZEMAX是光学设计中常用的一种软件工具,它主要用于模拟和优化光学系统的性能。
本篇讲义将介绍ZEMAX的基本原理、使用方法以及一些常见的光学设计案例。
一、ZEMAX的基本原理1.光线追迹ZEMAX的核心原理是光线追迹。
它通过追踪光线在光学系统中的传播路径,并计算出光线经过每个光学元件后的参数变化,如位置、方向、光强等。
通过光线追踪,可以得到光学系统的传输特性,并进行光学系统的性能优化。
2.光学元件建模为了进行光线追踪,需要对光学元件进行建模。
在ZEMAX中,可以通过输入光学元件的参数来进行建模,如曲率半径、折射率、厚度等。
同时,ZEMAX还提供了一套丰富的光学元件库,包括透镜、棱镜、光阑等。
用户可以根据需要选择相应的光学元件进行系统设计。
3.光学系统优化ZEMAX不仅可以进行光学系统的传输特性计算,还可以进行系统的性能优化。
在ZEMAX中,可以设定一系列的优化目标,并通过调整光学系统的参数来达到这些目标。
优化过程主要包括两个阶段,即初始设计和优化迭代。
在初始设计阶段,需要根据设计要求设置光学系统的初值。
在优化迭代阶段,ZEMAX根据预设的优化目标和约束条件,自动调整光学系统的参数,并不断迭代,直到达到最佳设计。
二、ZEMAX的使用方法1.软件安装与启动2.创建新项目在ZEMAX中,每个光学系统都是一个项目。
创建新项目时,需要设定项目的名字和工作目录。
在新建项目后,可以开始进行光学系统的设计。
3.设计光学系统设计光学系统的过程是通过将光学元件拖拽至光学系统的视图中来完成的。
光学元件可以是来自库中的标准元件,也可以根据实际情况进行自定义。
在拖拽元件至视图中后,可以通过双击元件来设置其具体参数。
4.进行光线追踪设计完成后,可以进行光线追踪。
在ZEMAX中,可以选择单个或多个光线进行追踪,并观察光线的传播路径和参数变化。
注:此版本ZEMAX中文说明由光学在线网友elf提供!目录第1章引第2章用户界面第3章约定和定义第4章教程教程1:单透镜教程2:双透镜教程3:牛顿望远镜教程4:带有非球面矫正器的施密特—卡塞格林系统教程5:多重结构配置的激光束扩大器教程6:折叠反射镜面和坐标断点教程7:消色差单透镜第5章文件菜单 (7)第6章编辑菜单 (14)第7章系统菜单 (31)第8章分析菜单 (44)§导言 (44)§外形图 (44)§特性曲线 (51)§点列图 (54)§调制传递函数MTF (58)§8.5.1 调制传递函数 (58)§8.5.2 离焦的MTF (60)§8.5.3 MTF曲面 (60)§8.5.4 MTF和视场的关系 (61)§8.5.5 几何传递函数 (62)§8.5.6 离焦的MTF (63)§点扩散函数(PSF) (64)§8.6.1 FFT点扩散函数 (64)§8.6.2 惠更斯点扩散函数 (67)§8.6.3 用FFT计算PSF横截面 (69)§波前 (70)§8.7.1 波前图 (70)§8.7.2 干涉图 (71)§均方根 (72)§8.8.1 作为视场函数的均方根 (72)§8.8.2 作为波长函数的RMS (73)§8.8.3 作为离焦量函数的均方根 (74)§包围圆能量 (75)§8.9.1 衍射法 (75)§8.9.2 几何法 (76)§8.9.3 线性/边缘响应 (77)§照度 (78)§8.10.1 相对照度 (78)§8.10.2 渐晕图 (79)§8.10.3 XY方向照度分布 (80)§8.10.4 二维面照度 (82)§像分析 (82)§8.11.1 几何像分析 (82)§8.11.2 衍射像分析 (87)§其他 (91)§8.12.1 场曲和畸变 (91)§8.12.2 网格畸变 (94)§8.12.3 光线痕迹图 (96)§8.12.4 万用图表 (97)§8.12.5 纵向像差 (98)§8.12.6 横向色差 (99)§8.12.7 Y-Y bar图 (99)§8.12.8 焦点色位移 (100)§8.12.9 色散图 (100)§8.12.10 波长和内透过率的关系 (101)§8.12.11 玻璃图 (101)§8.12.10 系统总结图 (101)§计算 (103)§8.13.1 光线追迹 (103)§8.13.2 塞得系数 (104)第九章工具菜单 (108)§优化 (108)§全局优化 (108)§锤形优化 (108)§消除所有变量 (108)§评价函数列表 (109)§公差 (109)§公差列表 (109)§公差汇总表 (109)§套样板 (109)§样板列表 (111)§玻璃库 (112)§镜头库 (112)§编辑镀膜文件 (114)§给所有的面添加膜层参数 (115)§镀膜列表 (115)§变换半口径为环形口径 (115)§变换半口径为浮动口径 (116)§将零件反向排列 (116)§镜头缩放 (116)§生成焦距 (117)§快速调焦 (117)§添另折叠反射镜 (117)§幻像发生器 (118)§系统复杂性测试 (120)§输出IGES文件 (120)第十章报告菜单 (124)§介绍 (124)§表面数据 (124)§系统数据 (125)§规格数据 (125)§ Report Graphics 4/6 (126)第十一章宏指令菜单 (127)§编辑运行ZPL宏指令 (127)§更新宏指令列表 (127)§宏指令名 (127)第十二章扩展命令菜单 (128)§扩展命令 (128)§更新扩展命令列表 (128)§扩展命令名 (128)第十三章表面类型 (130)§简介 (130)§参数数据 (130)§特别数据 (131)§表面类型概要 (131)§13.4.1 用户自定义表面 (131)§13.4.2 内含表面 (132)§标准面 (136)§偶次非球面 (136)§奇次非球面 (137)§近轴表面 (138)§近轴X-Y表面 (138)§环形表面 (139)§双圆锥表面 (139)§环形光栅面 (140)§立方样条表面 (141)§Ⅰ型全息表面 (142)§Ⅱ型全息表面 (143)§坐标断点表面 (143)§多项式表面 (145)§菲涅耳表面 (145)§ ABCD矩阵 (146)§另类面 (146)§衍射光栅表面 (147)§共轭面 (148)§倾斜表面 (149)§不规则表面 (149)§梯度折射率1表面 (150)§梯度折射率2表面 (152)§梯度折射率3表面 (152)§梯度折射率4表面 (153)§梯度折射率5表面 (154)§梯度折射率6表面 (155)§梯度折射率7表面 (156)§梯度折射率表面Gradium TM (157)§梯度折射率9表面 (160)§梯度折射率10表面 (161)§泽尼克边缘矢高表面 (162)第十五章非序列元件 (162)第十七章优化 (228)第十八章全局优化 (290)第十九章公差规定 (298)第二十章多重结构 (338)第二十一章玻璃目录的使用 (345)第二十二章热分析 (363)第二十三章偏振分析 (373)第二十四章ZEMAX程序设计语言 (390)第二十五章ZEMAX扩展 (478)第五章文件菜单新建(New)目的:清除当前的镜头数据。
实验一:单镜头设计(Singlet)实验目的:1、学习如何启用Zemax2、学习如何输入波长(wavelength)、镜头数据(lens data)3、学习如何察看系统性能(optical performance),如ray fan,OPD,点列图(spot diagrams),MTF等。
4、学习如何定义thickness solve以及变量(variables)5、学习如何进行优化设计(optimization)实验仪器:微机、zemax光学设计软件实验步骤:1、设计一个孔径为F/4的单镜头,物在光轴上,其焦距(focal length)为100mm,波长为可见光,用BK7玻璃为材料。
2、首先运行ZEMAX,将出现ZEMAX的主页,然后点击lens data editor(LDE)。
什么是LDE呢?它是你要的工作场所,在LDE的扩展页上,可以输入选用的玻璃,镜片的radius,thickness,大小,位置等。
3、然后输入波长,在主菜单的system下,点击wavelengths,弹出波长数据对话框wavelength data,键入你要的波长,在第一行输入0.486,它是以microns为单位,此为氢原子的F-line光谱。
在第二、三行键入0.587及0.656,然后在primary wavelength上点在0.587的位置,primary wavelength主要是用来计算光学系统在近轴光学近似(paraxial optics,即first-order optics)下的几个主要参数,如focal length,magnification,pupil sizes等。
4、确定透镜的孔径大小。
既然指定要F/4的透镜,所谓的F/#是什么呢?F/#就是光由无限远入射所形成的effective focal length F跟paraxial entrance pupil的直径的比值。
所以现在我们需要的aperture 就是100/4=25(mm)。
于是从system menu上选general data,aperture type里选择entrance pupil,在apervalue上键入25,然后点击ok。
5、回到LDE,可以看到3个不同的surface,依序为OBJ,STO及IMA。
OBJ就是发光物,即光源,STO即孔径光阑aperture stop的意思,STO不一定就是光照过来所遇到的第一个透镜,你在设计一组光学系统时,STO可选在任一透镜上,通常第一面镜就是STO,若不是如此,则可在STO这一栏上按鼠标,可前后加入你要的镜片,于是STO就不是落在第一个透镜上了。
而IMA就是imagine plane,即成像平面。
回到我们的singlet,我们需要4个面(surface),于是点击IMA栏,选取insert,就在STO后面再插入一个镜片,编号为2,通常OBJ为0,STO为1,而IMA为3。
6、输入镜片的材质为BK7。
在STO列中的glass栏上,直接键入BK7即可。
7、孔径的大小为25mm,则第一镜面合理的thickness为4,在STO列中的thickness栏上直接键入4。
Zemax的默认单位是mm8、确定第1及第2镜面的曲率半径,在此分别选为100及-100,凡是圆心在镜面之右边为正值,反之为负值。
再令第2面镜的thickness为100。
9、现在数据已大致输入完毕。
如何检验你的设计是否达到要求呢?选analysis中的fans,然后选择其中的Ray Aberration,将会出现如图1-1所示的TRANSVERSE RAY FAN PLOT。
图1-1其中ray aberration是以chief ray为参考点计算的。
纵轴为EY的,即是在Y方向的aberration,称为tangential或者YZ plane。
同理X方向的aberration称为XZ plane或sagittal。
ray fan在原点处的倾斜说明存在离焦defocus10、Zemax主要的目的,就是帮我们矫正defocus,用solves就可以解决这些问题。
solves是一些函数,它的输入变量为curvatures,thickness,glasses,semi-diameters,conics,以及相关的parameters 等。
parameters是用来描述或补足输入变量solves的型式。
如curvature的型式有chief ray angle,pick up,Marginal ray normal,chief ray normal,Aplanatic,Element power,concentric with surface 等。
而描述chief ray angle solves的parameter即为angle,而补足pick up solves的parameters为surface,scale factor两项,所以parameters本身不是solves,要调整的变量才是solves的对象。
在surface 2栏中的thickness项上点两下,出现solve对话框,把solve type从fixed变成Marginal Ray height,然后OK。
这项调整会把在透镜边缘的光在光轴上的height为0,即paraxial focus。
此时surface 2的厚度自动调整为96mm。
再次update ray fan,将出现图1-2,defocus不见了。
11、但这是最佳化设计吗?再次调整surface 1的radius项从fixed变成variable,依次把surface 2的radius从fixed变成variable,及surface 2中thickness的Marginal Ray height也变成variable。
12、我们再来定义一个Merit function,什么是Merit function呢?Merit function就是把你理想的光学要求规格定为一个标准(如此例中focal length为100mm),然后Zemax会连续调整你输入solves 中的各种variable, 把计算得的值与你订的标准相减就是Merit function值,所以Merit function值愈小愈好,挑出最小值时即完成variable设定,理想的Merit function值为0。
如何设Merit function,Zemax 已经default 一个内建的merit function,它的功能是把RMS wavefront error 减至最低,所以先在editors中选Merit function,进入其中的Tools,再按Default Merit Function 键,再按ok,即我们选用default Merit function ,这还不够,我们还要规定给meritfunction 一个焦距focal length 为100的限制,因为若不给此限制则Zemax会发现focal length为infinit时,wavefront aberration的效果会最好,当然就违反我们的设计要求。
所以在Merit function editor第行中往后插入一行,即显示出第2行,代表surface 2,在此列中的type项上键入EFFL(effective focal length),并回车,同列中的target项键入100,并回车,weight项中定为1,并回车。
跳出Merit function editor,在Tools中选optimization项,按Automatic键,完毕后跳出来,此时你已完成设计最佳化。
重新检验ray fan,将出现图1-3,这时maximum aberration已降至200 microns。
图1-2图1-313、其它检验optical performance还可以用Spot Diagrams及OPD等。
从Analysis中选spot diagram中的standard,则该spot大约为400 microns上下左右交错,与Airy diffraction disk比较而言,后者大约为6 microns交错。
而OPD为optical path difference(跟chief ray作比较),从Analysis中选泽Fans,然后选泽Optical Path,将出现图1-4,其中的aberration大约为20 waves,大都focus,spherical,spherochromatism 及axial color。
Zemax 提供一个确定first order chromatic abberation 的工具,即the chromatic focal shift plot,这是把各种光波的focal length跟用primary wavelength 计算出first order的focal length之间的差异对输出光波的wavelength 作图,图中可指出各光波在paraxial focus上的variation。
从Analysis 中Miscellaneous项的Chromatic Focal Shift即可得出图1-5。
图1-4图1-5实验二:双胶合镜头(doublet)实验目的:1、学习如何画出layouts和field curvature plots2、学习如何定义edge thickness solves, field angles等实验仪器:微机、zemax光学设计软件实验原理:一个双胶合镜头doublet是由两片玻璃组成,通常粘在一起,所以他们有相同的曲率curvature。
利用不同玻璃的色散性质dispersion,色差the chromatic aberration可以矫正到first order,所以剩下的chromatic aberration主要的贡献为second order,于是我们可以期待在看chromatic focal shift plot图时,应该呈现出抛物线parabolic curve的曲线而非一条直线,此乃second order effect的结果(当然其中variation的scale跟first order比起来必然小很多,应该下降一个order)。
实验步骤:1、选用BK7和SF1两种镜片,wavelength和aperture如同实验一所设,既然是doublet,你只要在实验一的LDE上再加入一面镜片即可。
所以调出实验一的LDE,在STO后再插入一个镜片,表示为2,或者你也可以在STO前在插入一面镜片标示为1,然后在该镜片上的surface type上用鼠标按一下,然后选择Make Surface Stop,则此第一面镜就变成STO的位置。