原子发射光谱法要点
- 格式:ppt
- 大小:1.24 MB
- 文档页数:151
原子发射光谱法测定方法原子发射光谱法是一种用于元素分析的传统方法,也是目前最常用的表征原子能级结构的方法。
本文将详细介绍原子发射光谱法的原理、测定方法以及应用。
一、原理原子发射光谱法基于原子能级结构的理论,利用激发源将样品原子激发为激发态,然后通过介质,将这些激发态原子的电子跃迁回到较低的能级,从而实现发射光谱。
每种元素的原子发射光谱是独特的,可以根据这些发射光谱来确定样品中各种元素的含量。
二、测定方法1. 原子发射光谱法的装置原子发射光谱法的装置一般包括以下部分:样品供给装置、激发源、光谱仪、信号放大器和信息处理装置。
2. 样品处理样品处理的重要性不言而喻,因为精确的分析结果必须从准确的样品中获得。
可以通过显微观察或分析其外观和颜色来确定样品中的化学成分和杂质。
灰吸收法和氮化方法常用于消除样品的有机和无机杂质。
3. 激发源激发源是原子发射光谱法中最关键的部分,它负责激发样品原子的电子从基态跃迁到激发态,强制性激发分为热力学激发和非热力学激发。
热力学激发是通过样品表面的火焰或电弧等电离条件来完成的,使原子达到雇员,它们可以受激光量输入并产生较高的激发能量。
非热力学激发则是通过化学气氛或单独的电离源激发,也必须使用高能量输入的激发源。
4. 光谱仪当样品中的原子被激发时,它们将发出放射性,从而产生辐射谱线。
重要的是收集这些发光谱线并将其分解成其组成部分。
这可以通过光谱仪完成,光谱仪利用棱镜或光栅将光谱分离成单色光信号并记录光谱。
光谱准确度与光谱仪精度有关,应选择质量好,精度高的光谱仪。
5. 信号放大器和信息处理信号放大器和信息处理是相互关联的,在信号处理程序中可以调整放大器的控制,以及记录和处理光谱图的算法和软件。
在信号放大器和信息处理的整个过程中,确定计算要素浓度的算法和过程是至关重要的。
三、应用原子发射光谱法在我们的日常工作中有着广泛应用的地方,如石化、机械、金属、环保、农业、医药、食品等各个领域。
第3章原子发射光谱法教学时数:8学时教学要求:1.较好掌握原子光谱的产生原理;掌握原子发射光谱强度的影响因素。
2.基本掌握仪器的各部分基本工作原理、工作流程;掌握ICP形成过程及其特性。
3.较好掌握光谱定性、半定量、定量分析4.了解光谱法的干扰效应及消除方法教学重点与难点1. 原子发射光谱分析法的基本原理:原子发射光谱的产生。
掌握原子发射光谱强度的影响因素;谱线强度与分析元素的关系(塞伯一罗马金公式)。
2.原子发射光谱仪器:激发光源及其选择,光谱仪的结构及组成。
棱镜光谱仪及光栅光谱仪的色散率和分辩率。
感光板及乳剂特性曲线。
3. 光谱定性分析。
灵敏线、最后线、分析线。
半定量分析:谱线黑度比较法和谱线呈现法。
光谱定量分析:基本定量关系式,内标法原理,光谱定量分析方法和工作条件。
3-1 概述一、定义原子发射光谱法(atomic emission spectrometry, AES)是根据待测物质的气态原子被激发时所发射的特征线状光谱的波长及其强度来测定物质的元素组成和含量的一种分析技术,一般简称发射光谱分析或光谱(化学)分析。
二、原子发射光谱的分析过程原子发射光谱是原子的特征,在进行发射光谱分析时,必须经过下列过程。
1、试样蒸发、激发产生辐射首先将试样引入激发光源中,给以足够的能量,使试样中待测成分蒸发、离解成气态原子,再激发气态原子使之产生特征辐射。
蒸发和激发过程是在激发光源中完成的,所需的能量由光源发生器供给。
2、色散分光形成光谱从光源发出的光是包含有多种波长单色光的复合光,需要进行分光才能获得便于观察和测量的光谱.这个过程是通过分光系统完成的,分光系统的主要部件是光栅(或棱镜),其作用就是分光。
3、检测记录光谱,根据光谱进行定性或定量分析三、原子发射光谱法的特点优点:1. 应用范围广2. 具有一定的精密度和准确度3. 检出限低。
4. 样品消耗少5. 多元素同时检出能力。
6. 分析速度快。
7. 选择性好。
原子发射光谱法原理及利用原子发射光谱法(Atomic Emission Spectrometry,AES)是一种常用的材料分析方法,其主要通过对样品中元素产生的光子特征进行检测和分析,进而实现对样品中元素的定性和定量分析。
本文将主要介绍原子发射光谱法在元素分析、化学态分析、表面分析、合金分析和质量检测等方面的原理及应用。
1.元素分析原子发射光谱法在元素分析方面的应用主要体现在对样品中元素的种类进行识别和定量测定。
其基本原理是每种元素都具有独特的原子结构,因此会在特定的能量条件下发射出具有特征波长的光子。
通过对这些光子的检测和分析,可以确定样品中含有的元素种类。
在具体实践中,原子发射光谱法通常与火花、电弧或激光等激发源配合使用,以产生足够的光子用于检测。
该方法可以同时检测多种元素,且具有较高的灵敏度和准确性。
例如,在地质学领域,原子发射光谱法常用于测定岩石、矿物等样品中的常量、微量和痕量元素。
2.化学态分析原子发射光谱法在化学态分析方面的应用主要是通过对元素产生的化学键合状态进行分析,以了解元素的化合物组成和结构等信息。
不同化学态的同一种元素在原子发射光谱法中可能会表现出不同的特征波长,这是因为不同的化学键合状态会导致元素的原子结构发生变化。
例如,在环境科学领域,原子发射光谱法可用于分析水样或土壤样品中的重金属元素及其化学形态,以了解这些元素对环境的污染程度和生物毒性的影响。
3.表面分析原子发射光谱法在表面分析方面的应用主要是通过对样品表面的元素组成和化学状态进行分析,以了解样品的表面形貌、表面化学成分和结构等信息。
原子发射光谱法可以应用于各种材料的表面分析,如金属、合金、陶瓷、高分子材料等。
在具体实践中,原子发射光谱法通常与离子束铣削、等离子体刻蚀等手段结合使用,以制备干净的表面样品并进行深入的分析。
例如,在材料科学领域,原子发射光谱法可用于研究材料的表面氧化、腐蚀等行为,以及表面涂层的质量检测和评估。
原子离子发射光谱原子离子发射光谱法是一种基于原子离子光谱现象的分析方法。
它利用原子离子在受到激发后发出的光来获取信息,以进行物质成分的定性和定量分析。
本文将详细介绍原子离子发射光谱的各个方面。
1.原子光谱原子光谱是原子能级之间的跃迁产生的光谱。
根据量子力学原理,原子具有一系列离散的能级,当原子从一个能级跃迁到另一个能级时,会发出或吸收特定波长的光。
原子光谱线具有高度的线形和稳定性,可用于元素的定性和定量分析。
2.离子光谱离子光谱是离子能级之间的跃迁产生的光谱。
离子能级之间的跃迁与原子能级跃迁类似,但离子光谱的复杂性高于原子光谱,因为离子的能级结构受到电荷、质量、转动和振动等影响。
离子光谱也具有高度的线形和稳定性,可用于元素的定性和定量分析。
3.光谱线强度光谱线强度是指发射或吸收光的强度。
光谱线强度与原子的激发态和基态的能级分布以及跃迁概率有关。
高强度光谱线可用于提高检测灵敏度,而低强度光谱线则可用于研究复杂的能级结构和化学键信息。
4.光谱线波长光谱线波长是发射或吸收光的波长。
不同元素具有不同的特征波长,因此可通过测量光谱线的波长进行元素的定性分析。
同时,通过测量不同波长下的光强,可以进行元素的定量分析。
5.光谱线宽度光谱线宽度是指光谱线的宽度。
它受到多种因素的影响,如自然宽度、温度、压力、磁场、电场等。
通过对光谱线宽度的测量和分析,可以获得关于原子能级结构、激发条件和环境因素的信息。
6.光谱线分裂光谱线分裂是指光谱线在磁场或电场作用下的分离现象。
它反映了原子能级的精细结构以及与外部场的相互作用。
通过对光谱线分裂的测量和分析,可以获得关于元素的磁学和电学性质的信息。
7.光谱线位移光谱线位移是指光谱线的波长在温度、压力、磁场、电场等外部因素影响下的变化现象。
它反映了原子能级随外部条件的变化情况,可用于研究元素的热力学性质和化学反应过程中的能量变化。
8.光谱线猝灭光谱线猝灭是指在高激发条件下,原子从一个激发态跃迁回基态时伴随的光谱线强度的变化现象。