数学竞赛资料大全(收藏) (1)
- 格式:pdf
- 大小:98.68 KB
- 文档页数:5
数学竞赛知识点总结归纳数学竞赛是广泛开展的一种竞赛性学科竞赛活动,在全国范围内得到了广泛的推广和支持。
数学竞赛知识点涉及范围广泛,内容丰富,包括数论、代数、几何、概率统计等多个方面的知识。
本文将对数学竞赛的一些重要知识点进行总结和归纳,以帮助竞赛选手更好地掌握相关知识,提高竞赛表现。
一、数论1.1 整数的性质整数的性质是数论中的基本知识。
其中包括奇数、偶数、素数、合数等概念。
奇数是指不能被2整除的数,偶数是指可以被2整除的数,素数是指除了1和本身外没有其他因数的数,合数是指除了1和本身外还有其他因数的数。
1.2 除法算法除法算法包括整除算法和余数算法。
整除算法是指对两个整数进行除法运算,结果是一个整数,没有余数。
余数算法是指对两个整数进行除法运算,结果是一个整数和一个余数。
1.3 最大公约数和最小公倍数最大公约数是指两个或多个整数中最大的公约数,最小公倍数是指两个或多个整数中最小的公倍数。
最大公约数和最小公倍数是数论中基本的概念,应用广泛。
1.4 质因数分解任何一个正整数必能由几个素数相乘而得。
这几个素数叫做这个正整数的质因数,并且这几个质因数只有一种顺序。
数学中叫做质因数分解定理。
1.5 同余定理同余定理是数论中的重要定理。
同余定理是指对于任意整数a、b、m,如果a与b对模m同余,那么a与b相减之后得到的差也对模m同余。
1.6 途中数途中数指一个数只有1和它本身两个因素,这个数称为素数。
途中数包括2、3、5、7、11、13等,它们被称为素数。
二、代数2.1 一元二次方程一元二次方程是代数中的重要概念。
一般形式为ax^2+bx+c=0,求解一元二次方程的方法有配方法、因式分解、求和差、公式法等多种。
2.2 因式分解因式分解是指将多项式分解成比较简单的乘积的过程。
因式分解是代数中常见的求解方法。
2.3 多项式的运算多项式包括加法、减法、乘法、除法等运算。
多项式的运算是代数中的基本知识,是解决多项式问题的重要方法。
初中数学竞赛知识点归纳一、数的整除(一)如果整数A除以整数B(B≠0)所得的商A/B是整数,那么叫做A被B整除. 0能被所有非零的整数整除.①抹去个位数②减去原个位数的2倍③其差能被7整除。
如1001100-2=98(能被7整除)又如7007700-14=686,68-12=56(能被7整除)能被11整除的数的特征:①抹去个位数②减去原个位数③其差能被11整除如1001100-1=99(能11整除)又如102851028-5=1023102-3=99(能11整除)二、倍数.约数1 两个整数A和B(B≠0),如果B能整除A(记作B|A),那么A叫做B的倍数,B叫做A的约数。
例如3|15,15是3的倍数,3是15的约数。
2 因为0除以非0的任何数都得0,所以0被非0整数整除。
0是任何非0整数的倍数,非0整数都是0的约数。
如0是7的倍数,7是0的约数。
3 整数A(A≠0)的倍数有无数多个,并且以互为相反数成对出现,0,±A,±2A,……都是A的倍数,例如5的倍数有±5,±10,……。
4 整数A(A≠0)的约数是有限个的,并且也是以互为相反数成对出现的,其中必包括±1和±A。
例如6的约数是±1,±2,±3,±6。
5 通常我们在正整数集合里研究公倍数和公约数,几正整数有最小的公倍数和最犬的公约数。
6 公约数只有1的两个正整数叫做互质数(例如15与28互质)。
7 在有余数的除法中,被除数=除数×商数+余数若用字母表示可记作:A=BQ+R,当A,B,Q,R都是整数且B≠0时,A-R能被B整除例如23=3×7+2则23-2能被3整除。
三、质数.合数1正整数的一种分类:质数的定义:如果一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质数(质数也称素数)。
合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正整数叫做合数。
第1讲 实数(一)【知识梳理】一、非负数:正数和零统称为非负数 1、几种常见的非负数(1)实数的绝对值是非负数,即|a |≥0在数轴上,表示实数a 的点到原点的距离叫做实数a 的绝对值,用|a |来表示设a 为实数,则⎪⎩⎪⎨⎧<-=>=0)0(0)0(||a a a a a a绝对值的性质:①绝对值最小的实数是0②若a 与b 互为相反数,则|a |=|b |;若|a |=|b |,则a =±b ③对任意实数a ,则|a |≥a , |a |≥-a ④|a ·b |=|a |·|b |,||||||b a b a =(b ≠0) ⑤||a |-|b ||≤|a ±b |≤|a |+|b | (2)实数的偶次幂是非负数如果a 为任意实数,则n a 2≥0(n 为自然数),当n =1时,2a ≥0 (3)算术平方根是非负数,即a ≥0,其中a ≥0.算术平方根的性质:()a a =2(a ≥0)||2a a ==⎪⎩⎪⎨⎧<-=>0)0(0)0(a a a a a2、非负数的性质(1)有限个非负数的和、积、商(除数不为零)是非负数 (2)若干个非负数的和等于零,则每个加数都为零 (3)若非负数不大于零,则此非负数必为零 34a =5、利用配方法来解题:开平方或开立方时,将被开方数配成完全平方式或完全立方。
【例题精讲】◆专题一:利用非负数的性质解题: 【例1】已知实数x 、y 、z 满足0241||212=+++-+-z y z z y x ,求x +y +z 的平方根。
【巩固】1、已知2(6)0x y ++=,则x y -的值为______________;0)a ≥ 的应用 【例2】已知x 、y 是实数,且=+-+-=y x x x y 则,32112 ;a =a =的化简及应用常用方法:利用配方法将被开方数配成完全平方式或者立方式 【例4】化简:961222+-++-=x x x x y例5】若实数x 满足方程11x x -=+ = ;【巩固】1、若92=a ,42=b ,且a b b a -=-2)(,则=+2)(b a ;2、已知实数a 满足a +332a a +=0,那么11a a -++= ;第2讲 实数(二)【知识梳理】 一、实数的性质1、设x 为有理数,y 为无理数,则x +y ,x -y 都为无理数;当x ≠0时,xy ,yxx y ,都是无理数;当x =0时,xy ,yx就是有理数了; 2、若x 、y 都是有理数,m 是无理数,则要使m y x +=0成立,须使x =y =0; 3、若x 、y 、m 、n 都是有理数,n m ,都是无理数,则要使n y m x ±=±成立,须使x =y ,m =n二、实数大小的比较常用方法:直接法、利用数轴比较、平方法、同次根式下比较被开方数法、作差法、作商法 三、证明一个数是有理数的方法:证明这个数是一个有限小数或无限循环小数,或可表示成几个有理数的和、差、积、商的形式。
文档类资料(非纸质,全部是电子版):
H28.《名牌大学学科营与自主招生考试绿卡·物理真题篇(第2版)》超清晰可打印版+流畅版
H27.《名牌大学学科营与自主招生考试绿卡·数学真题篇(第2版)》超清晰可打印版+流畅版
H26.《多功能题典·高中数学竞赛》WORD可编辑(单墫熊斌)
H25.《中等数学增刊2-2018年》高清晰版+流畅版+纯试题版
H24.《高中数学联赛模拟试题精选2018》协作体培训教材+24套高联模拟卷高清晰版+流畅版+纯试题版H23.《中等数学增刊2-2016年》高清晰版+流畅版+纯试题版
H22-《中等数学增刊1-2018年》高清晰版+流畅版+纯试题版
H21-《高中奥数专题讲座》协作体培训用书+24套高联模拟卷高清晰版+流畅版+纯试题版
H20-《全国高中数学联赛模拟试题精选》24套模拟卷+7套真题高清晰版+流畅版+纯试题版
H19-《中等数学增刊2-2017年》高清晰版+流畅版+纯试题版
H18-《2018年高中数学联赛备考手册》高清晰版+流畅版+纯试题版,方便独立测试,
H17-《中等数学增刊1》2011、2012、2014、2016、2017高清晰版+流畅版+纯试题版
物理、化学竞赛(自招)视频资料以及语文视频网课可以加QQ购买。
初中数学竞赛知识点归纳一、数的整除(一)如果整数A除以整数B(B≠0)所得的商A/B是整数,那么叫做A被B整除. 0能被所有非零的整数整除.①抹去个位数②减去原个位数的2倍③其差能被7整除。
如1001100-2=98(能被7整除)又如7007700-14=686,68-12=56(能被7整除)能被11整除的数的特征:①抹去个位数②减去原个位数③其差能被11整除如1001100-1=99(能11整除)又如102851028-5=1023102-3=99(能11整除)二、倍数.约数1 两个整数A和B(B≠0),如果B能整除A(记作B|A),那么A叫做B的倍数,B叫做A的约数。
例如3|15,15是3的倍数,3是15的约数。
2 因为0除以非0的任何数都得0,所以0被非0整数整除。
0是任何非0整数的倍数,非0整数都是0的约数。
如0是7的倍数,7是0的约数。
3 整数A(A≠0)的倍数有无数多个,并且以互为相反数成对出现,0,±A,±2A,……都是A的倍数,例如5的倍数有±5,±10,……。
4 整数A(A≠0)的约数是有限个的,并且也是以互为相反数成对出现的,其中必包括±1和±A。
例如6的约数是±1,±2,±3,±6。
5 通常我们在正整数集合里研究公倍数和公约数,几正整数有最小的公倍数和最犬的公约数。
6 公约数只有1的两个正整数叫做互质数(例如15与28互质)。
7 在有余数的除法中,被除数=除数×商数+余数若用字母表示可记作:A=BQ+R,当A,B,Q,R都是整数且B≠0时,A-R能被B整除例如23=3×7+2则23-2能被3整除。
三、质数.合数1正整数的一种分类:质数的定义:如果一个大于1的正整数,只能被1和它本身整除,那么这个正整数叫做质数(质数也称素数)。
合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正整数叫做合数。
数论例题( 2x^3 - 6x^2 + 11x - 6) ÷(x - 1)解:Image:MathEquation.GIF被除数:被除数的未知数应是降幂排列,抽取系数用以计算,但若题目的被除数出现,降幂次数中没有3,则在演算的过程中在该系数的位置上补上0,然后如常计算。
除数:除数中的未知数前的系数有时并不一定会是1,当出现别的系数时,如:3x – 2中的3,我们会把它变做3 (x - 2/3) ,同样以 - 来计算,但当得出结果的时候除余式外全部除以该系数。
∴答:商式Q = 2x^2 - 4x + 7余式R = 1注意:演算时,须紧记末项是余式之系数,即原被除式末项文字之系数。
商式之首项文字必较原被除式之首项文字次数少1,余依齐次式类推。
编辑本段综合除法与因式分解综合除法的依据是因式定理即若(x-a)能整除某一多项式,则(x-a)是这一多项式的一个因式。
用x-b除有理整式f(x)=A0+A1x+A2x^2+…+An-1x^n-1+AnX^n所得的余数为f(b)=a0b+a1b+a2b+…+an-1b+an(余数定理),若f(b)=0时,f(x)有x-b的因式.用综合除法找出多项式的因式,从而分解因式的方法.例分解因式3x^3-4x^2-13x-6∴原式=(x-3)(3x+2)(x+1).说明:(1)用综合除法试商时,要由常数项和最高次项系数来决定.常数项的因数除以最高次项系数的因数的正负值都可能是除的整除商.上例中常数项是6,最高次项系数是3它们的因式可能是x±1,x±2,x±3,x±6,3x±1,3x±2.试除时先从简单的入手.(2)因式可能重复.编辑本段综合除法的办法另外告诉你一下有关综合除法的计算对这个很有帮助比如(3x^4-6x^3+4x^2-1)÷(x-1)将x-1的常数项-1做除数将被除式的每一项的系数列下来由高幂到低幂排列缺项的系数用零代替将最高项的系数落下来,用除数-1乘以落下的3,得-3,写在第二项-6下,用-6减-3写在横线下(补:若是用x-1=0的解即取x=1作为除数则是用加),再用-1乘以-3的3写在第三项4下,用4减3得1写在横线下一直除...直到最后一项得0所以就有(3x^3-6x^2+4x-1)÷(x-1)=3x^2-3x+1 0横线下的就是商式的每一项系数,而最后的一个就是余式这里商式是3x^2-3x+1,余式是0-1┃3 -6 4 -1 (用1 1┃3 -6 4 -1(-)┃ -3 3 -1 做除数(+ ) ┃ 3 -3 1┗━━━━━ ┗━━━━━3 -3 1 |0 -3 1 |0又如(4x^3-3x^2-4x-1)÷(x+1)1┃4 -3 -4 -1┃ 4 -7 3┗━━━━━4 -7 3|-4所以(4x^3-3x^2-4x-1)÷(x+1)=4x^2-7x+3……-4商式是4x^2-7x+3,余式是-4注意!!这个方法仅用于除式为x-a的形式的多项式除法约数个数法将此数分解质因数,如20=2*2*5就是分解成2、5两个质数的乘积20的约数就有1、2、2*2=4、2*5=10、5、20约数和=(1+2+2*2)*(1+5)=4221的约数和=(1+3)*(1*7)=2824的约数和=(1+2+2*2+2*2*2)*(1+3)对于一个自然数,按照一个数字约数的个数可以将自然数分为质数、合数和1,现在研究的是合数的情况。
常用公式由于是讲竞赛,这里就不再重复过于根底的东西,例如六种三角函数之间的转换,两角和与差的三角函数,二倍角公式等等。
但是由于如今的教材中常用公式删得太多,有些还是不能不写。
先从最根底的开始〔这些必须纯熟掌握〕: 半角公式2cos 12sinαα-±= 2cos 12cos αα+±= αααααααcos 1sin sin cos 1cos 1cos 12tan +=-=+-±=积化和差()()[]βαβαβα-++=sin sin 21cos sin ()()[]βαβαβα--+=sin sin 21sin cos ()()[]βαβαβα-++=cos cos 21cos cos ()()[]βαβαβα--+-=cos cos 21sin sin和差化积2cos2sin2sin sin βαβαβα-+=+ 2sin2cos2sin sin βαβαβα-+=-2cos 2cos 2cos cos βαβαβα-+=+ 2sin2sin 2cos cos βαβαβα-+-=- 万能公式ααα2tan 1tan 22sin += ααα22tan 1tan 12cos +-= ααα2tan 1tan 22tan -=三倍角公式()()αααααα+-=-= 60sin sin 60sin 4sin 4sin 33sin 3 ()()αααααα+-=-= 60cos cos 60cos 4cos 3cos 43cos 3二、某些特殊角的三角函数值三、三角函数求值给出一个复杂的式子,要求化简。
这样的题目经常考,而且一般化出来都是一个详细值。
要纯熟应用上面的常用式子,个人认为和差化积、积化和差是竞赛中最常用的,假设看到一些不常用的角,应当考虑用和差化积、积化和差,一般情况下直接使用不了的时候,可以考虑先乘一个三角函数,然后利用积化和差化简,最后再把这个三角函数除下去 举个例子求值:76cos74cos 72cosπππ++ 提示:乘以72sin 2π,化简后再除下去。
数学竞赛知识点总结一、数论1. 质数:质数是指只能被1和自身整除的自然数。
质数有许多特殊的性质,如朗格朗日四平方和定理、费马小定理等。
2. 素数:素数是指只有1和自身两个因数的自然数。
素数具有很多独特的性质,如欧拉公式、狄利克雷定理等。
3. 因数分解:对一个自然数进行因数分解可以得到其所有的素因数,进而可以得到其正因数的性质。
因数分解在解决二元一次方程、求最大公约数、求最小公倍数等问题中有很大的应用。
4. 同余:同余是指两个数的差能够被一个自然数整除。
同余理论是数论中重要的一部分,具有很多重要的性质和推论。
5. 约数和倍数:对一个自然数进行约数的求解可以得到其所有的因数,对一个自然数进行倍数的求解可以得到其所有的倍数。
约数和倍数在编程、数学证明等方面具有广泛的应用。
6. 最大公约数和最小公倍数:最大公约数是指两个数的公因数中最大的一个,最小公倍数是指两个数的公倍数中最小的一个。
最大公约数和最小公倍数在化简分数、约分、求解方程等方面有很多应用。
7. 质因数:一个合数可以通过质因数分解得到其所有的质因数。
质因数具有很多独特的性质,如欧拉函数、莫比乌斯函数等。
8. 模运算:模运算是指把数除以一个正整数后所得的余数。
模运算在密码学、编程等领域有很多应用。
9. 循环小数和无理数:循环小数是一类特殊的无限小数,无理数是指不能写成两个整数的比的数。
循环小数和无理数在解决方程、化简分数等方面有一定的应用。
10. 素数定理和哥德巴赫猜想:素数定理是指素数的分布规律,哥德巴赫猜想是指任何一个大于2的偶数可以被写成两个素数的和。
二、代数1. 多项式:多项式是由若干个单项式相加或相乘而成。
多项式在解方程、插值、二次函数等方面有广泛的应用。
2. 代数方程:代数方程是指含有未知数的等式。
代数方程的求解在计算机、数学证明等领域有很多应用。
3. 进制转换:进制转换是指将一个数从一种进制转换为另一种进制。
进制转换在计算机、密码学等领域有广泛的应用。
上海市初中数学竞赛知识点整理*1.3组合恒等式*6.图论一.正整数A 的p 进制表示:012211a pa pa pa Am mm m,其中1,,2,1},1,,2,1,0{mi p a i且01ma 。
而m 仍然为十进制数字,简记为p mm a a a A)(021。
二.整除在数学竞赛中如果不加特殊说明,我们所涉及的数都是整数,所采用的字母也表示整数。
定义:设b a ,是给定的数,0b,若存在整数c ,使得bc a则称b 整除a ,记作a b |,并称b 是a 的一个约数(因子),称a 是b 的一个倍数,如果不存在上述c ,则称b 不能整除a记作ba 。
由整除的定义,容易推出以下性质:(1)若c b |且a c |,则a b |(传递性质);(2)若a b |且c b |,则)(|c a b 即为某一整数倍数的整数之集关于加、减运算封闭。
若反复运用这一性质,易知a b |及c b |,则对于任意的整数v u ,有)(|cv aub 。
更一般,若n a a a ,,,21都是b 的倍数,则)(|21n a a a b 。
或着i b a |,则ni i i b c a 1|其中n i Z c i,,2,1,;(3)若a b |,则或者0a,或者||||b a ,因此若a b |且b a |,则b a;(4)b a ,互质,若c b c a |,|,则c ab |;(5)p 是质数,若n a a a p 21|,则p 能整除n a a a ,,,21中的某一个;特别地,若p 是质数,若na p |,则a p |;(6)(带余除法)设b a ,为整数,0b,则存在整数q 和r ,使得r bqa,其中b r,并且q 和r 由上述条件唯一确定;整数q 被称为a 被b 除得的(不完全)商,数r称为a 被b 除得的余数。
注意:r 共有b 种可能的取值:0,1, (1)。
若0r,即为a 被b 整除的情形;易知,带余除法中的商实际上为ba (不超过ba 的最大整数),而带余除法的核心是关于余数r 的不等式:b r。
【高中数学竞赛专题大全】竞赛专题1 集合 (50题竞赛真题强化训练)一、单选题1.(2018·天津·高三竞赛)如果集合{}1,2,3,,10A =,{}1,2,3,4B =,C 是A 的子集,且C B ≠∅,则这样的子集C 有( )个.A .256B .959C .960D .961【答案】C 【解析】 【详解】满足C B ⋂=∅的子集C 有62个,所以满足C B ⋂≠∅的子集C 有10622960-=个. 故答案为C2.(2020·浙江温州·高一竞赛)已知集合{}{}2|2,230A x x B x x x =>=--<∣,则A B =( ).A .{23}xx <<∣ B .{12}xx -<<∣ C .{21xx -<<-∣或2}x > D .{2∣<-xx 或3}x > 【答案】A 【解析】 【详解】(,2)(2,)A =-∞-+∞,又223(3)(1)0(1,3)x x x x B --=-+<⇒=-, 所以(2,3)A B =. 故选:A.3.(2018·黑龙江·高三竞赛)已知集合(){}2,60A x y x a y =++=,集合()(){},2320B x y a x ay a =-++=.若AB =∅,则a 的值是( ).A .3或-1B .0C .-1D .0或-1【答案】D 【解析】 【详解】A B ⋂=∅,即直线21:60l x a y ++=与()2:2320l a x ay a -++=平行.令()2132a a a ⨯=-,解得0a =或-14.(2019·全国·高三竞赛)已知{}1,2,,216,S A S =⋅⋅⋅⊆.若集合A 中任两个元素的和都不能被6整除,则集合A 中元素的个数最多为( ). A .36 B .52 C .74 D .90【答案】C 【解析】 【详解】记{}()6,0,1,,5k S x S x n k n N k =∈=+∈=⋅⋅⋅,且50k k S S ==⋃.易知()36k card S =.则集合A 中既不能同时有1S 与5S 或2S 与4S 中元素,也不能有6S 中两个元素、3S 中两个元素.要使A 中元素最多,可选1S 与2S 中全部元素,0S 与3S 中各一个元素.故最多共有36361174+++=个元素. 故答案为C5.(2019·吉林·高三竞赛)集合A ={2,0,1,3},集合B ={x |-x ∈A ,2-x 2∉A },则集合B 中所有元素的和为 A .4- B .5- C .6- D .7-【答案】B 【解析】 【详解】由题意可得B ={-2,-3},则集合B 中所有元素的和为-5. 故选:B. 二、填空题6.(2018·四川·高三竞赛)设集合{}1,2,3,4,5,6,7,8I =,若I 的非空子集AB 、满足A B =∅,就称有序集合对(),A B 为I 的“隔离集合对”,则集合I 的“隔离集合对”的个数为______.(用具体数字作答) 【答案】6050 【解析】 【详解】设A 为I 的()17k k ≤≤元子集,则B 为I 的补集的非空子集.所以,“隔离集合对”的个数为()()()()7778880880808898888888111212122223216050k kk kk k k k CC C C C C C --===-=-=+-+---=-+=∑∑∑. 故答案为6050.7.(2018·湖南·高三竞赛)设集合2{|},{31021|}01A x x x B x m x m =-≤=+≤≤--,若A B B =,则实数m 的取值范围为__________. 【答案】3m ≤ 【解析】 【详解】由A B B ⋂=知,B A ⊆,而2{|3100}{|25}A x x x x x =--≤=-≤≤.当B =∅时,121m m +>-,即2m <,此时B A ⊆成立. 当B ≠∅时,121m m +≤-,即2m ≥,由B A ⊆,得21,21 5.m m -≤+⎧⎨-≤⎩ 解得33m -≤≤.又2m ≥,故得23m ≤≤. 综上,有3m ≤. 故答案为3m ≤8.(2021·全国·高三竞赛)已知,a b ∈R ,集合{}2{1,,},,M a b N a ab ==,若N M ⊆,则a b+的值为_________. 【答案】1- 【解析】 【分析】 【详解】依题意,1,0,1,a a b b a ≠≠≠≠.若21a =,则1,{1,1,},{1,}a M b N b =-=-=-,所以,0b b b -==. 若2a a =,则0a =或1,矛盾.若2a b =,则{}{}2231,,,,M a a N a a ==,于是31a =或a ,得0a =或±1,舍去.综上所述,1a b +=-. 故答案为:1-.9.(2018·山东·高三竞赛)集合A 、B 满足{}1,2,3,,10A B =,A B =∅,若A 中的元素个数不是A 中的元素,B 中的元素个数不是B 中的元素,则满足条件的所有不同的集合A 的个数为______. 【答案】186 【解析】 【详解】设A 中元素个数为()1,2,,9k k =,则B 中元素个数为10k -,依题意k A ∉,441122m k m ⎛⎫⎛⎫-<<+ ⎪ ⎪⎝⎭⎝⎭.10k B -∉,10k A -∈,此时满足题设要求的A 的个数为1102k C --.其中,当5k =时,不满足题意,故5k ≠.所以A 的个数为018484888882186C C C C C +++-=-=.10.(2018·福建·高三竞赛)将正偶数集合{}2,4,6,从小到大按第n 组有32n -个数进行分组:{}2,{}4,6,8,10,{}12,14,16,18,20,22,24,…,则2018位于第______组. 【答案】27 【解析】 【详解】设2018在第n 组,由2018为第1009个正偶数,根据题意得()()11132100932n ni i i i -==-<≤-∑∑,即()()223113100922n n n n ----<≤.解得正整数27n =.所以2018位于第27组.11.(2021·全国·高三竞赛)在{1,2,,12}的非空真子集中,满足最大元素与最小元素之和为13的集合个数为___________. 【答案】1364 【解析】 【详解】考虑1,12;2,11;3,10;4,9;5,8;6,7这5组数,每一组可作为集合的最大元素和最小元素,故所求集合的个数为()10864221222211364-+++++=,故答案为:136412.(2021·全国·高三竞赛)已知集合{1,2,3,,1995}M =,A 是M 的子集,当x A ∈时,19x A ∉,则集合A 元素个数的最大值为_______. 【答案】1895 【解析】 【详解】解析:先构造抽屉:{6,114},{7,133},,{105,1995},{1,2,3,4,5,106,107,,1994}.使前100个抽屉中恰均只有2个数,且只有1个数属于A ,可从集合M 中去掉前100个抽屉中的数,剩下199510021795-⨯=个数,作为第101个抽屉.现从第1至100个抽屉中取较大的数,和第101个抽屉中的数,组成集合A ,于是{1,2,3,4,5,106,107,,1995}A =,满足A 包含于M ,且当x A ∈时,19x A ∉. 所以card()A 的最大值为199********-=. 故答案为:1895.13.(2021·全国·高三竞赛)设111,,,23100X ⎧⎫=⎨⎬⎩⎭,子集G X ⊆之积数定义为G 中所有元素之乘积(空集的积数为零),求X 中所有偶数个元素之子集的积数的总和是_________. 【答案】4851200##5124200【解析】 【详解】解:设X 中所有偶数个元素之子集的积数的总和是A ,X 中所有奇数个元素之子集的积数之和是B ,则111991*********A B ⎛⎫⎛⎫⎛⎫+=+++-=⎪⎪⎪⎝⎭⎝⎭⎝⎭,11199111123100100A B ⎛⎫⎛⎫⎛⎫-=----=- ⎪⎪⎪⎝⎭⎝⎭⎝⎭. 解得4851200A =. 故答案为:485120014.(2020·江苏·高三竞赛)设*n N ∈,欧拉函数()n ϕ表示在正整数1,2,3,…,n 中与n 互质的数的个数,例如1,3都与4互质,2,4与4不互质,所以()42ϕ=,则()2020ϕ=__________.【答案】800 【解析】 【详解】解析:法一:因为2202025101=⨯⨯,故能被2整除的数有1010个,能被5整除的数有404个, 能被101整除的数有20个,既能被2整除又能被5整除的数有202个, 既能被2整除又能被101整除的数有10个, 既能被5整除又能被101整除的数有4个, 既能被2整除又能被5和101整除的数有2个.故与2020不互质的有10104042020210421220++---+=,则()2020800ϕ=. 故答案为:800.法二:()()()()2202025101=800ϕϕϕϕ=⨯⨯.故答案为:800.15.(2021·浙江·高二竞赛)给定实数集合A ,B ,定义运算{},,A B x x ab a b a A b B ⊗==++∈∈.设{}0,2,4,,18A =⋅⋅⋅,{}98,99,100B =,则A B ⊗中的所有元素之和为______. 【答案】29970 【解析】 【分析】【详解】由(1)(1)1x a b =++-, 则可知所有元素之和为(1319)30031029970+++⨯-⨯=.故答案为:29970.16.(2021·全国·高三竞赛)从自然数中删去所有的完全平方数与立方数,剩下的数从小到大排成一个数列{}n a ,则2020a =_________. 【答案】2074 【解析】 【分析】 【详解】注意到23366452025,121728,132197,3729,44096=====,我们考虑1到2025中n a 出现的次数.这里有45个平方数,12个立方数,3个6次方数, 所以n a 出现的次数为2025451231971--+=, 接下来直至2197前都没有平方数和立方数, 所以20202020197120252074a =-+=.17.(2021·全国·高三竞赛)设正整数m 、n ,集合{1,2,,}A n =,{1,2,,}B m =,{(,),}S u v u A v B ⊆∈∈,满足对任意的(,),(,)a b S x y S ∈∈,均有:()()0a x b y --≤,则max ||S =________.【答案】1n m +- 【解析】 【分析】 【详解】首先对S 中任意两个不同元素(,),(,)a b x y ,必有b a y x -≠-.事实上,若b a y x -=-,则b y ≠(否则a x =,这与(,)(,)a b x y ≠矛盾). 若b y <,则a x <,则()()0a x b y -->,这与题意矛盾, 同理,b y >亦与题意矛盾.这样S 中任意元素(,),a b b a -各不相同, 而{1,2,,0,1,,1}b a m m n -∈----共1n m +-种情形,则||1S n m ≤+-.再令{(,)S x y y m ==且1x n ≤≤,或x n =且1}y m ≤≤,此时||1S n m =+-. 故答案为:1n m +-.18.(2021·全国·高三竞赛)已知A 与B 是集合1,2,3,{},100的两个子集,满足:A 与B 的元素个数相同,且A B 为空集.若当n A ∈时总有22n B +∈,则集合A B 的元素个数最多为_______. 【答案】66 【解析】 【分析】 【详解】先证||66A B ≤,只须证33A ≤, 为此只须证若A 是{}1,2,,49的任一个34元子集,则必存在n A ∈,使得22n A +∈.证明如下: 将{}1,2,,49分成如下33个集合:{}{}{}{}1,4,3,8,5,12,,23,48共12个;{}{}{}{}2,6,10,22,14,30,18,38共4个;{}{}{}{}25,27,29,,49共13个;{}{}{}{}26,34,42,46共4个.由于A 是{}1,2,,49的34元子集,从而由抽屉原理可知上述33个集合中至少有一个2元集合中的数均属于A , 即存在n A ∈,使得22n A +∈. 如取{}1,3,5,,23,2,10,14,18,25,27,29,,49,26,34,42,46A =,22{|}B n n A =+∈,则A 、B 满足题设且||66A B =. 故答案为:66.19.(2021·全国·高三竞赛)设集合{1,2,3,,10},{(,,),,S A x y z x y z S ==∈∣,且()}3339x y z ++∣,则A 有_______个元素.【答案】243 【解析】 【分析】 【详解】将S 中元素按3x 模9余数分类得:123{1,4,7,10},{2,5,8},{3,6,9}S S S ===. 对每个(),,x y z A ∈,有,,x y z 分别属于123,,S S S ,或,,x y z 均属于3S .因此A 中共有()33!4333243⨯⨯⨯+=个元素.故答案为:243.20.(2021·全国·高三竞赛)设S 为集合{}0,1,2,,9的子集,若存在正整数N ,使得对任意整数n N >,总能找到正实数a b 、,满足a b n +=,且a b 、在十进制表示下的所有数字(不包括开头的0)都属于集合S ,则||S 的最小值为___(||S 表示集合S 的元素个数). 【答案】5 【解析】 【分析】 【详解】第一步,证明4S ≥,若4S =,则其中两数(可相同)相加共10个值(4个2i x 加上24C 6=个i j x x +),而n 的个位数由这10个值的个位数产生,因此,这10个值的个位数不能重复; 在0、1、2、…、9中有五个奇数,五个偶数, 若四个元中0或4个奇数,不能加出奇数; 若四个元中有1个奇数,只能产生3个奇数; 若四个元中有2个奇数,只能产生4个奇数; 若四个元中有3个奇数,只能产生3个奇数; 因此||4S >.第二步,构造一个五元组满足条件,稍加实验可得下表上表表明,0、1、2、…、9中的每个数字,都可以由{}0,1,2,3,6中的两个相加得到,则对任意正整数n ,从个位数开始依次向高位遍历,将每位数都按表格中表示分解为两个数,赋值给a b 、对应的位置,遍历完毕后自然得到a b 、. 综上min ||5S =. 故答案为:5.21.(2019·江西·高三竞赛)将集合{1,2,……,19}中每两个互异的数作乘积,所有这种乘积的和为_________ . 【答案】16815 【解析】 【详解】所求的和为()22221(1219)12192⎡⎤+++-+++⎣⎦1(361002470)2=-16815=.故答案为:16815.22.(2019·河南·高二竞赛)称{1,2,3,4,5,6,7,8,9}的某非空子集为奇子集:如果其中所有数之和为奇数,则奇子集的个数为____________ . 【答案】256 【解析】 【详解】全集{1,2,3,…,9}中含有5个奇数、4个偶数.根据奇子集的定义知,奇子集中只能含有1个奇数、3个奇数、5个奇数,而偶数的个数为0、1、2、3、4都有可能. 所以,奇子集共有:()()()101401450144444435454445C C C C C C C C C C C C +++++++++++()()135014555444C C C C C C =+++++()451012256=++⨯=个.故答案为:256.23.(2019·广西·高三竞赛)已知yz ≠0,且集合{2x ,3z ,xy }也可以表示为{y ,2x 2,3xz },则x =____________.【答案】1 【解析】 【详解】易知xyz ≠0,由两集合各元素之积得2366,1x yz x yz x ==. 经验证,x =1符合题意. 故答案为:1.24.(2019·山东·高三竞赛)已知(){}23|log 21,(,](,)A x x x B a b =-=-∞⋃+∞其中a <b ,如果A ∪B =R ,那么a -b 的最小值是_______ . 【答案】1- 【解析】 【详解】由已知得[1,0)(2,3]A =-⋃,故b -a ≤1,于是1a b --. 故答案为:1-.25.(2019·重庆·高三竞赛)设A 为三元集合(三个不同实数组成的集合),集合B ={x +y |x ,y ∈A ,x ≠y },若{}222log 6,log 10,log 15B =,则集合A =_______ . 【答案】{}221,log 3,log 5 【解析】 【详解】设{}222log ,log ,log A a b c =,其中0<a <b <c .则ab =6,ac =10,bc =15. 解得a =2,b =3,c =5,从而{}221,log 3,log 5A =. 故答案为:{}221,log 3,log 5.26.(2018·河北·高二竞赛)已知集合{},,A x xy x y =+,{}0,,B x y =且A=B ,那么20182018x y +=_______.【答案】2 【解析】 【详解】由B 中有三个元素知,0x ≠且0y ≠,故A 中0x y +=,即有x y =-,又{}{},,x xy x y =若x x xy y ⎧=⎨=⎩,则11x y =⎧⎨=-⎩.此时{}{}1,1,0,0,1,1A B =-=-. 若x t x xy =⎧⎨=⎩,则00x y =⎧⎨=⎩,或11x y =-⎧⎨=-⎩,或11x y =⎧⎨=⎩,不满足互异性,舍去.故1x =,1y =-,所以201820182x y +=. 27.(2019·全国·高三竞赛)集合{}1,2,,100S =,对于正整数m ,集合S 的任一m 元子集中必有一个数为另外m-1个数乘积的约数.则m 的最小可能值为__________. 【答案】26 【解析】 【详解】所有不大于100的素数共有25个,记其构成的组合为T={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97}.注意到,集合T 中每一个元素均不能被T 中其余24个元素之积整除. 故2526m T m >=⇒≥.另一方面,用反证法证明:对于集合S 的任一26元子集,其中必有一个数为另外25个数乘积的约数.为叙述方便,对于素数p 和正整数x ,记()p x α表示x 中缩含p 的幂指数.若存在集合S 的某个26元子集A ,对每个x A ∈,x 均不整除集合A 中其余25个数乘积,则对每个x A ∈,存在x 的素因子p ,使得(){}\p p x A x x z αα∈⎛⎫> ⎪ ⎪⎝⎭∏,称这样的素数p 为x 的特异素因子,这种特异素因子不是唯一的.由于26A =,且所有特异素因子均属于集合S ,而集合S 中只有25个素数,故必有集合A 的两个不同元素x 、y 具有同一个特异素因子p. 由特异性及{}\y A x ∈,知(){}{}\p p p z A x x z y ααα∈⎛⎫>≥ ⎪⎪⎝⎭∏.类似地,(){}()\p p p z A y y z x ααα∈⎛⎫>≥⎪ ⎪⎝⎭∏,矛盾. 综上,m 的最小可能值为26.28.(2018·全国·高三竞赛)若实数集合{}2,3A x y =与{}6,B xy =恰有一个公共元素,则A B 中的所有元素之积为__________. 【答案】0 【解析】 【详解】将集合A 、B 的唯一公共元素记为a . 若0a ≠,则集合A 、B 的另一个元素均为6xya,矛盾. 进而,A B ⋃中的所有元素之积为0.29.(2021·全国·高三竞赛)已知非空集合{1,2,,2019,2020}X M ⊆=,用()f X 表示集合X中最大数和最小数的和,则所有这样的()f X 的和为_____. 【答案】()2020202121⋅-【解析】 【分析】 【详解】将M 中的非空子集两两进行配对,对每个非空子集X M ⊆,令{2021}X xx X '=-∈∣, 对M 的任意两个子集1X 和2X ,若12X X ≠时,12X X ''≠.则所有非空集合X 可以分成X X '≠和X X '=两类. 当X X '=时,必有()2021f X =,当X X '≠时,必有()()202124042f X f X +'=⨯=.又M 的非空子集共有202021-个,故所有这样的()f X 的和为()2020202121⋅-.故答案为:()2020202121⋅-.30.(2019·浙江·高三竞赛)在复平面上,任取方程10010z -=的三个不同的根为顶点组成三角形,则不同的锐角三角形的数目为____________.【答案】39200 【解析】 【详解】易知10010z -=的根在单位圆上,且相邻两根之间弧长相等,都为2100π,即将单位圆均匀分成100段小弧.首先选取任意一点A 为三角形的顶点,共有100种取法.按顺时针方向依次取顶点B 和顶点C ,设AB 弧有x 段小弧,CB 弧有y 段小弧,AC 弧有z 段小弧,则△ABC 为锐角三角形的等价条件为:1001,,49x y z x y z ++=⎧⎨⎩970,,48x y z x y z ++=⎧⇒⎨⎩ ① 计算方程组①的整数解个数,记1{|97,49}P x x y z x =++=,2{|97,49}P y x y z y =++=,3{|97,49}P z x y z z =++=,{(,,)|97,,,0}S x y z x y z x y z =++=,则123123||P P P S P P P ⋂⋂=-⋃⋃2991231C |i j i j P P P P P P <⎛=-++-∑⋂+ ⎝)23|P P ⋂⋂229950C 3C 1176=-=. 由于重复计算3次,所以所求锐角三角形个数为1001176392003⨯=. 故答案为:39200.31.(2019·浙江·高三竞赛)已知集合A ={k +1,k +2,…,k +n },k 、n 为正整数,若集合A 中所有元素之和为2019,则当n 取最大值时,集合A =________. 【答案】{334,335,336,337,338,339} 【解析】 【详解】由已知2136732k n n ++⨯=⨯. 当n =2m 时,得到(221)36733,6,333k m m m n k ++=⨯⇒===; 当n =2m +1时,得到(1)(21)36731,3k m m m n +++=⨯⇒==. 所以n 的最大值为6,此时集合{334,335,336,337,338,339}A =. 故答案为:{334,335,336,337,338,339} .32.(2021·全国·高三竞赛)设集合{1,2,3,4,5,6,7,8,9,10}A =,满足下列性质的集合称为“翔集合”:集合至少含有两个元素,且集合内任意两个元素之差的绝对值大于2.则A 的子集中有___________个“翔集合”. 【答案】49 【解析】 【分析】 设出集合{1,2,3,,}n 中满足题设性质的子集个数为n a ,写出2340,1a a a ===,在4n >时,要分情况把n a 的递推公式写出来,进而得到10a ,即答案. 【详解】 设集合{1,2,3,,}n 中满足题设性质的子集个数为n a ,则2340,1a a a ===.当4n >时,可将满足题设性质的子集分为如下两类:一类是含有n 的子集,去掉n 后剩下小于2n -的单元子集或者是{1,2,3,,3}n -满足题设性质的子集,前者有3n -个,后者有3n a -个;另一类是不含有n 的子集,此时恰好是{1,2,3,,1}n -满足题设性质的子集,有1n a -个.于是,31(3)n n n a n a a --=-++.又2340,1a a a ===,所以56789103,6,11,19,31,49a a a a a a ======.故答案为:49 【点睛】本题的难点是用数列的思想来考虑,设集合{1,2,3,,}n 中满足题设性质的子集个数为n a ,写出n a 的递推公式,再代入求值即可. 三、解答题33.(2021·全国·高三竞赛)已知非空正实数有限集合A ,定义集合{},,,x B x y A C xy x y A y ⎧⎫=∈=∈⎨⎬⎩⎭,证明:2A B C ⋅≤.【答案】证明见解析 【解析】 【详解】以集合B 作为突破口,取b B ∈,并设有()n b 个数对(),(1,2,,())i i x y i n b =满足:,,ii i ix b x y A y =∈. 由条件知,()i i ax ay C a A ∈∈,考虑集合(){}(),,1,2,,()i i X b ax ay a A i n b =∈=⋅⋅⋅,有()()(),(),X b A X b X b b B b b ''=∅∈'≥≠.于是,2||C ≥U ()b BX b ∈=b B∈∑|()|X b ≥||||B A ⋅得证. 34.(2021·浙江·高二竞赛)设数集{}12,,,m P a a a =,它的平均数12mp a a a C m+++=.现将{1,2,,}S n =分成两个非空且不相交子集A ,B ,求A B C C -的最大值,并讨论取到最大值时不同的有序数对(),A B 的数目. 【答案】最大值2n,数目为22n -.【解析】 【分析】不妨设A B C C >,记{}12,,,p A a a a =,12p T a a a =+++,可以得到A B C C -=12n T n n p p ⎛⎫+- ⎪-⎝⎭,考虑T 最大的情况是取最大的p 个数,此时可以发现A B C C -的结果正好是与p 无关的定值,从而也就得到了A B C C -的最大值,然后考察p 的可能的值,得到A B C C >时(),A B 的组数,并利用对称性得到A B C C <时(),A B 具有与之相等的组数,从而得到所有可能的(),A B 的组数. 【详解】 不妨设A B C C >, 记{}12,,,p A a a a =,12p T a a a =+++,所以(1)2A B A Bn n TT C C C C p n p+--=-=-- 11(1)12()2n n n T n T p n p n p n p p ⎛⎫⎛⎫++=+-=- ⎪ ⎪---⎝⎭⎝⎭,又有(21)(1)(2)2p n p T n p n p n -+≤-++-+++=,所以211222A B n n p n nC C n p -++⎛⎫-≤-= ⎪-⎝⎭当且仅当(21)2p n p T -+=时,取到等号,所以A B C C -的最大值2n.此时{1,,}A n p n =-+,由,A B 非空,可知1p =,2,…,1n -,有1n -种情况, 利用对称性得到A B C C <时(),A B 具有与之相等的组数, 由于A B C C -的最大值2n不可能有A B C C =的情况,所以有序数对(),A B 的数目为22n -. 35.(2020·全国·高三竞赛)设集合{1,2,,19}A =.是否存在集合A 的非空子集12,S S ,满足(1)1212,S S S S A ⋂=∅⋃=; (2)12,S S 都至少有4个元素;(3)1S 的所有元素的和等于2S 的所有元素的乘积?证明你的结论. 【答案】证明见解析. 【解析】 【分析】不妨设21,2,,,219S x y x y =<<≤,由条件可得2187xy x y ++=,即(21)(21)3751525x y ++==⨯,根据219x y <<≤,,x y N ∈,可得出其一组解,可证明.【详解】解:答案是肯定的.不妨设21,2,,,219S x y x y =<<≤,,x y N ∈ 则1219122x y xy +++----=,所以2187xy x y ++=,故(21)(21)3751525x y ++==⨯, 所以7,12x y ==是一组解故取13,4,5,6,7,8,10,11,13,14,15,16,17,18,19S =,21,2,7,12S =,则这样的12,S S 满足条件 36.(2021·全国·高三竞赛)设n 是正整数,我们说集合{1,2,,2}n 的一个排列()122,,,n x x x 具有性质P ,是指在{1,2,,21}n -当中至少有一个i ,使得1i i x x n +-=.求证:对于任何n ,具有性质P 的排列比不具有性质P 的排列的个数多. 【答案】证明见解析 【解析】 【详解】设A 为不具有性质P 的排列的集合,B 为具有性质P 的排列的集合,显然||||(2)!A B n +=.为了证明||||A B <,只要得到1||(2)!2B n >就够了.设()122,,,n x x x 中,k 与k n +相邻的排列的集合为,1,2,,k A k n =.则22(21)!,2(22)!,1k k j A n A A n k j n =⋅-=⋅-≤<≤,由容斥原理得121||||2(21)!4(22)||!k k kj n n k j nB A A A n nC n =≤<≤≥-=⋅⋅--⋅⋅-∑∑(2)!2(1)(22)!n n n n =--⋅- 2(22)!n n n =⋅⋅-212(22)!2n n n ->⋅⋅- 1(2)!2n = 37.(2021·全国·高三竞赛)平面上有一个(3)n n ≥阶完全图,对其边进行三染色,且每种颜色至少染一条边.现假设在完全图中至多选出k 条边,且把这k 条边的颜色全部变为给定三色中的某种颜色后,此图同时也可以被该种颜色的边连通.若无论初始如何染色,都可以达到目的,求k 的最小值. 【答案】3n ⎡⎤⎢⎥⎣⎦【解析】 【详解】先证明:3n k ⎡⎤≥⎢⎥⎣⎦.(这里3n ⎡⎤⎢⎥⎣⎦表示不超过3n 的最大的整数).假设三种颜色为1、2、3,n 阶完全图的n 个点分成三个点集A 、B 、C , 且||||3n A B ⎡⎤==⎢⎥⎣⎦.做如下染色:集合A 中的点之间连的边染1,集合B 中的点之间连的边染2,集合C 中的点之间连的边染3,集合A 与B 间的点连的边染2,集合B 与C 间的点连的边染3,集合C 与A 间的点连的边染1.从而,若变色后最终得到染1的颜色的边形成的连通图,由于集合B 中的点出发的边均染的是2或3,于是,变色边数不小于||3n B ⎡⎤=⎢⎥⎣⎦.类似地,若变色后最终得到染2或3的颜色的边形成的连通图,则变色边数不小于||A (或C )3n ⎡⎤≥⎢⎥⎣⎦.故3n k ⎡⎤≥⎢⎥⎣⎦.再证明:3n k ⎡⎤≤⎢⎥⎣⎦.对n 用数学归纳法. 当3n =时,结论成立.假设1(4)n n -≥时,结论成立.则n 个点时: (1)若完全图中由某点出发的边有三种不同颜色,由归纳假设,可通过改变其中13n -⎡⎤⎢⎥⎣⎦条边的颜色得到同色连通图.(2)若完全图中由所有点出发的边均最多两种不同颜色, 记A 为所有出发的边均染1或2的点组成的集合, 记B 为所有出发的边均染2或3的点组成的集合, 记C 为所有出发的边均染3或1的点组成的集合. 如果某些点连出的边都染颜色1,则把它归入集合A ; 如果某些点连出的边都染颜色2,则把它归入集合B ; 如果某些点连出的边都染颜色3,则把它归入集合C .不失一般性,不妨设||||A B C≤≤∣.则||3n A ⎡⎤≤⎢⎥⎣⎦.若B ≠∅,则C ≠∅,集合B 中的点连向集合C 中的点的边均染3.故B C ⋃由颜色3可以连通. 此时,任选集合B 中一点,集合A 中每个点与该点的连线的边颜色均变成3, 由||3n A ⎡⎤≤⎢⎥⎣⎦知成立.若B =∅,则A =∅,于是,完全图的边均染的是1或3. 这与条件“每种颜色至少染一条边”不符. 所以由归纳法知原结论成立.38.(2022·全国·高三专题练习)班级里共有()3n n ≥名学生,其中有A ,B ,C .已知A ,B ,C 中任意两人均为朋友,且三人中每人均与班级里中超过一半的学生为朋友.若对于某三个人,他们当中任意两人均为朋友,则称他们组成一个“朋友圈”. (1)求班级里朋友圈个数的最大值()F n . (2)求班级里朋友圈个数的最小值()G n .【答案】(1)()()126n n n --;(2)()4,41,6,,21,2n nn n G n n n =⎧⎪⎪+≥=⎨⎪-⎪⎩为偶数为奇数 【解析】 【分析】(1)利用组合数可求()F n ; (2)利用容斥原理可求()G n . 【详解】(1)当班级中的任意3人中,任意两个人都是朋友时,班级里朋友圈个数的最大,此时()()()3126n n n n F n C --==.(2)当3n =时,()31G =,当4n =时,A ,B ,C 中的每个人都至少与班级的3个同学是好朋友,故4人彼此是好朋友,故()44G =,当5n ≥时,记a P 为班级中除去,,A B C 且与A 是朋友的同学的集合,b P 为班级中除去,,A B C 且与B 是朋友的同学的集合,Pc 为班级中除去,,A B C 且与C 是朋友的同学的集合,若2(3)n k k =≥,由题设可知,a P 、b P 、Pc 中的元素的个数不小于1k -,余下同学记为:452,,,k Y Y Y ,集合M 中元素的个数记为M ,因为余下人数为23k -,由容斥原理可得23a b c k P P P -≥a b c ab ac bc abc P P P P P P P P P P P P =++---+, 所以2333a b a c b c abc k k P P P P P P P P P -≥----+,即ab ac b c abc P P P P P P P P P k ++-≥,故此时()1G n k ≥+, 考虑一种特殊情况:{}{}4+2+22,,,,,a k c b k k P Y Y P P Y Y ===, 此时朋友圈个数为1111k k -++=+,故()112nG n k =+=+. 若21(2)n k k =+≥,由题设可知,a P 、b P 、Pc 中的元素的个数不小于1k -,余下同学记为:4521,,,k Y Y Y +,集合M 中元素的个数记为M ,因为余下人数为22k -,由容斥原理可得22a b c k P P P -≥a b c ab ac bc abc P P P P P P P P P P P P =++---+, 所以2233a b a c b c abc k k P P P P P P P P P -≥----+,即1ab ac b c abc P P P P P P P P P k ++-≥-,故此时()G n k ≥,考虑一种特殊情况:{}{}{}4+2+22+321,,,,,,,,a k b k k c k k P Y Y P Y Y P Y Y +===, 此时朋友圈个数为112k k ++-=,故()12n G n k -==. 综上,()4,41,6,,21,2n nn n G n n n =⎧⎪⎪+≥=⎨⎪-⎪⎩为偶数为奇数.39.(2021·浙江·高三竞赛)某班有10名同学计划在暑假举行若干次聚会,要求每名同学至多参加三次聚会,并且任意两名同学至少在一次聚会中相遇.求最大的正整数m ,使得无论如何安排符合上述要求的聚会,都一定存在某次聚会有至少m 名同学参加. 【答案】最大正整数m 是5 【解析】 【分析】 【详解】解:设有n 次聚会,聚会人数分别为1x ,2x ,…,n x (均为正整数).我们有: 1210330n x x x +++≤⨯=1210452222n x x x ⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+≥= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭记11n S x x =+⋅⋅⋅+,2221n S x x =+⋅⋅⋅+,则2190S S -≥可知214S S ≥,即{}22111max ,,4nn nx x x x x x +⋅⋅⋅+⋅⋅⋅≥≥+⋅⋅⋅+若上式等号成立,则必须14n x x =⋅⋅⋅==,并且1130n S x x =+⋅⋅⋅+=,这样可得7.5n =导致矛盾.所以我们有{}1max ,,5n x x ⋅⋅⋅≥,即一定存在某次聚会有至少5名同学参加,即5m =满足题意.另一方面,我们给出10名同学参加聚会的一种安排方式:共A ,B ,C ,D ,E ,F 六次聚会,每次聚会恰好有5名同学参加,下面的10个三元子集分别表示10名同学各参加哪三次聚会:{}ABC ,{}CDE ,{}AEF ,{}BDF ,{}ABD ,{}ADE ,{}BCE ,{}BEF ,{}CDF ,{}ACF .易知在所有6203⎛⎫= ⎪⎝⎭个三元子集中,互补的两个三元子集在上式中恰好出现一个.这保证了上面的10个三元子集中每两个都相交,即任意两名同学至少在一次聚会中相遇.此外,A ,B ,C ,D ,E ,F 中的每一个在上式的10个三元子集中恰好出现五次,即每次聚会都恰好有5名同学参加,这意味着6m ≥不符合题意. 因此所求的最大正整数m 是5.另一种构造:{}ABC ,{}ABC ,{}BEF ,{}BEF ,{}CDF ,{}CDF ,{}ABD ,{}AEF ,{}ADE ,{}CDE .40.(2021·全国·高三竞赛)设2n ≥为正数,122,,,n A A A 为1,2,{},n 的所有子集的任一个排列.求2111nii ii i A A A A ++=⋅∑的最大值,其中121n A A +=.【答案】()2222n n n -+-【解析】 【分析】 【详解】 先证两个引理. 引理1 设122,,,n A A A 是集合1,2,{},n 的所有子集,则存在122,,,n A A A 的一个排列122,,,n B B B ,使得对任意的1,2,,2n i =均满足i B 、1i B +中的一个是另一个的子集,且元素个数差1,其中约定121n B B +=. 引理1的证明:对n 用归纳法.当2n =时,集合{1,2}的4个子集排列为∅、{1}、{1,2}、{2}便满足要求. 假设当n k =时存在排列122,,,k B B B 满足要求,则当1n k =+时,考虑下面的排列:12211222,,,,{1},{1},,{1},{1}k kk B B B B k B k B k B k -⋅⋅⋅++⋅⋅⋅++,这显然是集合{1,2,,1}k ⋅⋅⋅+的所有子集满足要求的一个排列.引理1证毕. 引理2 设A 、B 是任意两个不同的有限集,则2221A B A B A B ⋅≤+-,(1) 当A 、B 中一个为另一个的子集,且元素个数差1时等号成立. 引理2的证明:设\,\,A B x B A y A B z ===.因为A B ≠,故x 、y 不能同时为0,于是x 、y 中至少有一个大于等于1. (1)22222()()()11x y z z x z y z x y ⇔++≤+++-⇔+≥,(2) 显然成立.又当A 、B 中一个为另一个的子集且元素个数差1时,x 、y 中有一个为0,一个为1.(2)中取等号,从而(1)也取等号.引理2证毕.回到原题.由引理2可得()22222211111111122nnnn ii i i i i i i i i AA A A A AB -+++===≤+-=-∑∑∑ ()212211C 222n k n n n n k k n n ---==-=+-∑ ()2222n n n -=+-.又如果将{1,2,,}n ⋅⋅⋅的所有子集按照引理1中的排法便知上式等号成立.故所求的最大值为()2222n n n -+-.41.(2021·全国·高三竞赛)设{}()1,2,3,,2,m M n m n +=⋅∈N 是连续2m n ⋅个正整数组成的集合,求最小的正整数k ,使得M 的任何k 元子集中都存在1m +个数121,,,m a a a +满足1(1,2,,)i i a a i m +=.【答案】21m n n ⋅-+. 【解析】 【分析】 【详解】 记{1,2,3,,}A n =,任何一个以i 为首项,2为公比的等比数列与A 的交集设为i A .一方面,由于M 中2m n n ⋅-个元的子集{}1,2,,2m n n n ++⋅中不存在题设的1m +个数,否则12112mm n a a a n ++≤<<<≤⋅,而1212m m nn a n ⋅+≤≤=,矛盾.故21m k n n ≥⋅-+.另一方面,21m k n n =⋅-+时,题设满足.若非如此,考虑以1212n i i -⎛⎫+≤ ⎪⎝⎭为首项,以2为公比的等比数列.其与M 的交集的元素个数为21i A m ++个.设M 任何k 元子集为T ,则上述等比数列与M 的交集中至少有21i A +个元素不在T 中,而i j ≠时,2121i j A A ++=∅.注意到21112||,i n iA A +-=所以21112|\|||ii n M T A A n +-≥==,可得2m T M n n n ≤⋅=⋅-与21mT k n n ==⋅-+矛盾.综上,所求k 为21m n n ⋅-+.42.(2021·全国·高三竞赛)对两个不全等的矩形A 、B ,称A B >,若A 的长不小于B 的长,且A 的宽也不小于B 的宽.现在若对任意的n 个两两不全等的,长和宽均为不超过2020的正整数的矩形,都必存在其中3个矩形A 、B 、C ,使得A B C >>,求n 的最小值. 【答案】2021 【解析】 【分析】 【详解】一方面,当2021n =时,若不存在满足要求的3个矩形,我们把所有的矩形如下分类: 对一个矩形A ,若在剩下2020个矩形中,存在一个矩形B ,使得A B >,则称A 为“父矩形”,否则称A 为“子矩形”.由抽屉原理,其中必有一类至少含有1011个矩形,设它们的宽为121011x x x ≤≤⋯≤. 但易知所有的“父矩形”之间两两不能比较大小,所有的“子矩形”之间也两两不能比较大小,于是必有121011x x x <<<且相应的它们的长121011y y y >>>,合在一起即121011*********x x x y y y <<<≤<<<,与它们均为不超过2020的正整数矛盾.另一方面,当2020n ≤时,考虑所有长宽满足要求的,周长为4040的矩形,共1010个,及周长为4042的矩形,也共1010个.由于周长相等的两个矩形无法比大小,因此这2020个矩形中不存在满足要求的3个矩形. 综上,n 的最小值为2021.43.(2021·全国·高三竞赛)已知X 是一个有限集.110110,X A A X B B =⋃⋃=⋃⋃是满足如下性质的两个分划:若,110i j A B i j ⋂=∅≤≤≤,则10i j A B ⋃≥.求X 的最小值. 【答案】50 【解析】 【分析】 【详解】X 的最小值为50.我们先证明||50X ≥. 考虑集合110110,,,,,A A B B 中元素个数最少的集合,不妨设为1A .记1A a =,则1A 至多与110,,B B 中a 个集合相交.不妨设1,1,,i A B i k ⋂≠∅=且1,1,,10i A B i k ⋂=∅=+,其中k a ≤.故110,1,,10i A B i k ⋃≥=+.从而对1i k ∀≥+有11010Bi A a ≥-=-. 由1A 的最小性知1,,k B B 的元素个数均不小于a .从而1101110||k k X B B B B B B +=⋃⋃=++++(10)(10)502(5)(5)k a k a k a ≥⋅+--=+--.(1)若5a ≤,则5k ≤,此时由上式知||50X ≥; (2)若5a >,由1A 是110,,A A 中元素个数最少的集合知||1050X a ≥>.故||50X ≥.另一方面,||X 能取到50,例如, 取11221010{1,2,3,4,5},{6,7,8,9,10},,{46,47,48,49,50}A B A B A B ======.显然它们满足条件,这时{}1,2,,50X =⋯.44.(2021·全国·高三竞赛)设集合S 是由平面上任意三点不共线的4039个点构成的集合,且其中2019个点为红色,2020个点为蓝色;在平面上画出一组直线,可以将平面分成若干区域,若一组直线对于点集S 满足下述两个条件,称这是一个“好直线组”: (1)这些直线不经过该点集S 中的任何一个点; (2)每个区域中均不会同时出现两种颜色的点.求k 的最小值,使得对于任意的点集S ,均存在由k 条直线构成的“好直线组”. 【答案】2019. 【解析】 【分析】 【详解】 先证明2019k ≥:在一个圆周上顺次交替标记2019个红点和2019个蓝点,在平面上另外任取一点染为蓝色,这个圆周就被分成了4038段弧,则每一段的两个端点均染了不同的颜色; 若要满足题目的要求,则每一段弧均与某条画出的直线相交; 因为每条直线和圆周至多有两个交点,所以,至少要有403820192=条直线. 再证明:用2019条直线可以满足要求.对于任意两个同色点AB 、,均可用两条直线将它们与其他的点分离. 作法:在直线AB 的两侧作两条与AB 平行的直线,只要它们足够接近AB ,它们之间的带状区域里就会只有A 和B 这两个染色点. 设P 是所有染色点的凸包,有以下两种情形:(1)假设P 有一个红色顶点,不妨记为A .则可作一条直线,将点A 和所有其他的染色点分离,这样,余下的2018个红点可以组成1009对,每对可以用两条平行直线将它们与所有其他的染色点分离.所以,总共用2019条直线可以达到要求.(2)假设P 的所有顶点均为蓝色.考虑P 上的两个相邻顶点,不妨记为AB 、.则用一条直线就可以将这两个点与所有其他染色点分离.这样,余下的2018个蓝点可以组成1009对,每对可以用两条直线将它们与所有其他染色点分离. 所以,总共也用了2019条直线可以达到要求. 综上:k 的最小值为2019.45.(2021·全国·高三竞赛)设函数:f ++→Z Z 满足对于每个n +∈Z ,均存在一个k +∈Z ,使得2()k f n n k =+,其中,m f 是f 复合m 次.设n k 是满足上述条件的k 中的最小值,证明:数列12,,k k 无界.【答案】证明见解析. 【解析】 【分析】 【详解】设{}21,(1),(1),S f f =,对于每个正整数n S ∈,存在正整数k ,使得2()kfn n k S =+∈.因此,集合S 是无界的,且函数f 将S 映射到S .此外,函数f 在集合S 上是单射. 事实上,若(1)(1)()i j f f i j =≠,则m f (1)从某个值开始周期性地进行重复.于是,集合S 是有界的,矛盾.定义:g S S →为2()()n kn g n f n n k ==+.首先证明:g 也是单射.假设()()()g a g b a b =<,则22()()a b k ka b a k f a f b b k +===+,于是,>a b k k .因为函数f 在集合S 上是单射,所以()()2()a b k k a b fa b a k k -==+-.又0a b a k k k <-<,与a k 的最小性矛盾.设T 是集合S 中非形如()()g n n S ∈的元素构成的集合.由于对每个n S ∈,均有()g n n >,则1T ∈.于是,T 是非空集合.对每个t T ∈,记{}2,(),(),t C t g t g t =,且称tC 为从t 开始的“链”.因为g 是单射,所以,不同的链不交.对每个n S T ∈,均有()n g n =',其中,n n '<,n S '∈.重复上述过程,知存在t T ∈,使得t n C ∈,从而,集合S 是链t C 的并.若(1)n f 是从(1)i nt f =开始的链t C 中的元素,则122t j n n a a =+++,其中,()()()()112221(1)(1)(1)(1)jj i t ta a a n n n n j j f g f ff f f fa a -===+++.故(1)(1)22t n nt tn n n n f f t --=+=+. ① 其次证明:集合T 是无限的.假设集合T 中只有有限个元素则只有有限个链()1212,,,t t t t t C C C t t t <<<.固定N .若(1)(1)n f n N ≤≤是链t C 中的元素,则由式①知:(1)22nt r n n Nf t t -=+≤+. 由于1N +个不同的正整数1,(1),,(1)N f f 均不超过2r N t +,则12r NN t +≤+. 当N 足够大时,这是不可能的.因此,集合,T 是无限的.选取任意正整数k ,考虑从集合T 中前1k +个数开始的1k +个链.设t 是这1k +个数中最大的一个.则每个链中均包含一个元素不超过t ,且至少有一个链中不含1,2,,t t t k +++中的任何一个数.于是,在这个链中存在一个元素n ,使得()g n n k ->,即n k k >.。
数学知识竞赛知识点总结一、代数1. 一元一次方程和一元一次不等式一元一次方程和一元一次不等式是基础的代数知识点,在数学知识竞赛中经常出现。
解一元一次方程和一元一次不等式需要掌握方程式的移项变形、因式分解、等式的性质等基本技巧。
2. 一元二次方程和一元二次不等式一元二次方程和一元二次不等式是代数中的重要内容。
解一元二次方程和一元二次不等式需要掌握配方法、公式法、图像法等多种解法,并且要理解方程有实根的条件和二次不等式的性质。
3. 多项式多项式是代数中的一个基本概念,掌握多项式的加减乘除、多项式的因式分解、多项式的性质和应用都是数学知识竞赛中的考查点。
4. 分式分式的加减乘除、分式方程的解法、分式不等式的解法等都是代数中的重要内容,也是数学知识竞赛的考查重点。
5. 线性方程组线性方程组的解法有高斯消元法、矩阵法、克拉默法则等,理解线性方程组的解的存在唯一性和解的结构是解决线性方程组问题的关键。
6. 不定方程不定方程的解法主要是化归法、代数法、整数解的条件等,掌握不定方程问题的解法能够应对数学知识竞赛中的各种问题。
7. 数列等差数列、等比数列和通项公式等数列的性质和基本问题都是代数中的重要内容,对于数学知识竞赛来说,还要掌握一些不常见的数列问题的解法。
8. 绝对值绝对值问题在数学知识竞赛中常常出现,解绝对值方程和不等式需要区分绝对值的几何意义和符号函数的性质。
二、几何1. 三角形三角形的基本要素包括边长、角度、面积等,掌握三角形的几何性质,特别是角平分线、中位线、高线、中心、外心和内心等点的性质,对于解决数学知识竞赛中的三角形问题非常重要。
2. 圆圆的性质和圆的相关线段的长度、面积等问题是几何中的基础知识点,解决圆的问题需要掌握圆的基本性质、弧长和扇形面积等公式,以及与圆相关的其他几何概念。
3. 直角三角形直角三角形是数学竞赛中常见的一个几何图形,解决直角三角形的问题需要掌握勾股定理、正弦定理、余弦定理等基本原理,并能够灵活运用这些定理解决问题。
高三数学总复习竞赛复习科目:数学 高中数学竞赛总复习(一)复习内容:高中数学第三章-数列 编写时间:2005-5修订时间:总计第一次 2005-5一、数列专题(一)数列常见题型形式.一、以极限为载体,考查等比数列中q1)q (1a lim n 1n --∞→当q >1时,等比数列极限不存在. 当q <1时,等比数列极限存在. 若等比数列和的极限存在,则一定有q <1. 当数列{}n a 的极限存在是A a n n =∞→lim ,则A a n n =+∞→1lim .1. 设{}n a 为等差数列,{}n b 为等比数列,且233222211,,a b a b a b ===(a 1<a 2),又22)(lim 21+=++++∞→n n b b b ,试求{}n a 的首项与公差.2. 数列{}n x 由下列条件确定:++∈⎪⎪⎭⎫⎝⎛+==N n x a x x a x n n n ,21,011 . 若数列{}n x 的极限存在,且大于零,求n n x ∞→lim 的值.二、以对数为载体,充分考虑比例分数的合比与分比定理.例: 等比数列3log ,3log ,3log 842+++a a a 的公比是 .三、求参数最值通常考虑判别式法.1. 各项为实数的等差数列的公差为4,其首项的平方与其余各项之和不超过100,这样的数列至多有 项.四、若以集合形式出现,常常题目要隐藏其集合的包含与被包含关系.1. 若n A 和n B 分别表示数列{}n a 和{}n b 前n 项和,对任意正整数n ,n A B n a n n n 13124,232=-+-=.设集合{}{}++∈==∈==N n b y y Y N n a x x X n n ,4,,2.若等差数列{}n C 的任一项1,C Y X C n ∈是Y X 中的最大数,且265-<10C <125-,求{}n C 的通项公式.(二)求常见数列的方法. 一、求数列的通项.I. 形如)(1n f a a n n +=+的一阶递归式,其通项求法为∑∑-=-=++=-+=1111111)()(n k n k k k n k f a a aa a .II. 形如n n a n f a )(1=+的递归式,其通项求法为123121-⋅⋅=n n n a a a a a a a a )2)(1()2()1(1≥-⋅=n n f f f a . 注意:①形如r a n f a n n +=+)(1当数字特殊时可考虑转化为))((1x a n f x a n n +'=+-的形式,再叠乘可求出通项.②形如11)()(-++=n n n a n g a n f a 常需要转化为))((11-+-=-n n n n a a n q a a 或r a n Pq a n q n n +=++)()1(1.例如:n n n a n a n a )2()3(12+-+=++有n n n n n n n b n a a n b a a b )1())(1(,1111+=-+=-=-+++有121!)1(b n b n n nb b n n n ⋅==⋅-⋅==-- 有∑-=+⋅=1111!n k n ab k a .1. 数列{}n a na n n a a n n 12,011++=+ 确定,求通项n a .2. 在数列{}n a 中,11=a ,且12336241+++-=+n a n n a n n ,求n a .III. 形如)1(1≠+=+p r pa a n n 的递归式,有方法一r pa a r pa a n n n n +=+=-+11,,两式相减得)(11-+-=-n n n n a a p a a ,故{}n n a a -+1是首项为12a a -,且公比为p 的等比数列,先求出n n a a -+1,再求出n a .有方法二转化等比:1)(11-=⇒-+=⇒+=+++P rx x Px Pa a x a P x a n n n n .有方法三:迭代法=++=+=--r r Pa P r Pa a n n n )(21…=r r P a Pn n +++⋅+--Pr 211⇒有公式121-+=n n P c c a ,21,c c 由21,a a 确定. 有方法四:特征根方法.IV . 形如)1)((1≠+=+p n q pa a n n 的递推式,有方法一两边同除以1+n p ,得111)(++++=n nn n n pn q pa pa ,令n nn b pa =,则11)(+++=n n n p n q b b ,仿2求得n b ,再求n a . 有方法二递推法. 例如:当)(n g 为一次函数时b kn Pa a n n ++=+1与b n k Pa a n n +-+=-)1(1相减有k a P a n n =+-+)1(1仿III. 可求出n a .1. 已知数列{}n a ,{}n b 中,q b p a ==11,且⎩⎨⎧+==---111,n n n n n rb qa b pa a )0,2( r p n ≥(1)求n b ; (2)求22limnnn n ba b +∞→.V . 形如)0,0(1 n q n n a p pa a =+或......1sn r n m n a Pa a -+⋅=的递推式,方法一两边取对数有p a q a n n lg lg lg 1+=+,令n n a b lg =,则p qb b n n lg 1+=+,仿4求得n b ,再求n a . 方法二有q q qq qqg qq q q qq qq q q q n q n n n nnn nn apq a p a a a p p p p p a p pa a ----+++++++--⋅=⋅=⋅⋅⋅⋅==⋅==--111111111121212212)(1. 在数列{}n a 中,101=a ,且n n a a 21=+,求n a2. 数列{}n a 满足n n a a a 10,1011==+,求通项n a .VI. 高阶等差数列:形如任意两项之差成等差数列不如比等差数列为{}n a ,则我们可用构造新数列{}n b 使d n a a b b n n n )1(11-+==-+,最后1211-++=-n n a a a b b .高阶等差数列:给定一个数列{}n a ,令n n n a a b -=+1,则称数列{}n b 为{}n a 的一阶差数列,而{}n b 的一阶差数列称为{}n a 的二阶差数列,递推地,可以定义{}n a 的p 阶差数列.如果数列{}n a 的p 阶差数列是一非零常数列,则称数列{}n a 是p 阶等差数列.p =1时,数列{}n a 就是我们通常所说的等差数列,2≥p 时,数列{}n a 称为高阶等差数列. 数列{}n a 是p 阶等差数列的充要条件是:数列{}n a 的通项是关于n 的p 次多项式. 例如:数列2、4、7、11、16……经观察发现{}n n a a -+1成等差,故令{}{}n n n a a b -=+1.n n b b n +=⋅-+=11)1(1进而有1212112)1(1211++=⇒-+-=-⇒+=-+n n a n n n a a n a a n n n n . 1. 求数列{}n a :1,3,8,20,43,81,…的一个通项表达式.VII. 不动点法:设数列{}n a 满足),0(,11ad bc a baa dca a a a n n n ≠≠++==+.①若bax dcx x f ++=)(有两个不相等的不动点βα,,则数列⎭⎬⎫⎩⎨⎧--βαn n a a 是等比数列,可用βα--=n n n a a bβα--=+++111n n n a a b 来求. ②若b ax dcx x f ++=)(有两个相等的不动点βα=,则数列⎭⎬⎫⎩⎨⎧-αn a 1是等差数列,公差d可用α-=n n a b 1,α-=++111n n a b 来求. 注:形如b aa d ca a n n n ++=+21亦可用不动点法.证明:令dx c b x a x +⋅+⋅=,即()02=--+b x a d cx ,令此方程的两个根为x 1,x 2,若x 1=x 2,则有p x a x a n n +-=-+11111其中k 可以用待定系数法求解,然后再利用等差数列通项公式求解。
第一篇一元一次方程的讨论第一部分基本方法1. 方程的解的定义:能使方程左右两边的值相等的未知数的值叫做方程的解。
一元方程的解也叫做根。
例如:方程 2*+6=0, *(*-1)=0, |*|=6, 0*=0, 0*=2的解分别是: *=-3, *=0或*=1, *=±6, 所有的数,无解。
2. 关于*的一元一次方程的解(根)的情况:化为最简方程a*=b 后,讨论它的解:当a ≠0时,有唯一的解 *=ab ; 当a =0且b ≠0时,无解;当a =0且b =0时,有无数多解。
(∵不论*取什么值,0*=0都成立)3. 求方程a*=b (a ≠0)的整数解、正整数解、正数解当a |b 时,方程有整数解;当a |b ,且a 、b 同号时,方程有正整数解;当a 、b 同号时,方程的解是正数。
综上所述,讨论一元一次方程的解,一般应先化为最简方程a*=b第二部分典例精析例1 a 取什么值时,方程a (a -2)*=4(a -2)①有唯一的解?②无解?③有无数多解?④是正数解?例2 k 取什么整数值时,方程①k (*+1)=k -2(*-2)的解是整数?②(1-*)k =6的解是负整数?例3 己知方程a (*-2)=b (*+1)-2a 无解。
问a 和b 应满足什么关系?例4a 、b 取什么值时,方程(3*-2)a +(2*-3)b =8*-7有无数多解?第三部分典题精练1. 根据方程的解的定义,写出下列方程的解:① (*+1)=0, ②*2=9,③|*|=9, ④|*|=-3, ⑤3*+1=3*-1,⑥*+2=2+*2. 关于*的方程a*=*+2无解,则a __________3. 在方程a (a -3)*=a 中,当a 取值为____时,有唯一的解; 当a ___时无解;当a _____时,有无数多解; 当a ____时,解是负数。
4. k 取什么整数值时,下列等式中的*是整数?① *=k4②*=16-k ③*=k k 32+④*=123+-k k 5. k 取什么值时,方程*-k =6*的解是①正数?②是非负数?6. m 取什么值时,方程3(m +*)=2m -1的解①是零?②是正数?7. 己知方程221463+=+-a x 的根是正数,则a 、b 应满足什么关系? 8. m 取什么整数值时,方程m m x 321)13(-=-的解是整数" 9. 己知方程ax x b 231)1(2=++有无数多解,求a 、b 的值。
竞赛考试知识点总结数学一、代数1. 多项式(1) 基本概念:项、系数、次数、首项、末项、同类项等(2) 多项式的加减、乘除、整式的化简等运算法则(3) 多项式的因式分解和求根(4) 余式定理、因式定理、多项式方程的解法2. 分式与方程(1) 分式的基本概念与运算(2) 一元一次方程、一元一次不等式的解法(3) 一元二次方程的解法(4) 二元一次方程组的解3. 函数(1) 函数的概念与性质:定义域、值域、奇偶性、周期性等(2) 初等函数的性质和图像(3) 函数的运算与复合函数(4) 反函数与反比例函数4. 数列(1) 等差数列、等比数列的通项公式及性质(2) 数列的前n项和与通项和(3) 等差、等比中项和应用5. 不等式(1) 一元一次不等式与一元二次不等式的解法(2) 不等式组(3) 绝对值不等式的解法6. 复数(1) 复数的概念与性质(2) 复数的四则运算(3) 复数方程的解法7. 排列组合与二项式定理(1) 排列组合的基本概念与性质(2) 排列组合的运算法则(3) 二项式定理及其应用二、数论1. 整数的性质(1) 整数的基本概念与性质(2) 整数的分解与约数(3) 整数的最大公因数与最小公倍数(4) 整数的质因数分解2. 算术基本定理(1) 算术基本定理的表述与应用(2) 算术基本定理的拓展与应用3. 同余与模运算(1) 同余的概念与性质(2) 模运算的基本性质(3) 同余方程的解法4. 素数与整除(1) 素数的概念与性质(2) 整除的概念与性质(3) 整除定理及其应用5. 整数方程的解法(1) 一次不定方程的整数解法(2) 二次同余方程的解法(3) 整数方程组的解法三、几何1. 平面几何(1) 平面几何的基本公设(2) 角的性质与运算(比较大小、加减乘除)(3) 三角形与四边形的性质与判定定理(4) 圆的性质与切线定理(5) 相似三角形与全等三角形(6) 弧与弦(7) 圆锥曲线的基本性质2. 立体几何(1) 空间几何的基本概念(2) 空间图形的性质与分类(3) 空间几何体的体积、表面积与图形投影(4) 空间向量的基本概念与运算(5) 空间解析几何中的直线与平面3. 三角函数与三角恒等式(1) 三角函数的概念与性质(2) 三角函数的图像、性质及其应用(3) 三角恒等式的证明与应用4. 解析几何(1) 平面直角坐标系下的距离公式与中点定理(2) 切线、法线与倾斜角的性质(3) 平面直角坐标系中的直线和圆(4) 平面曲线的方程与性质四、概率统计1. 概率(1) 概率的定义与性质(2) 概率的基本概念与运算法则(3) 事件的互斥与独立(4) 概率模型的建立与应用2. 统计(1) 统计的基本概念与性质(2) 统计图表的绘制与解读(3) 样本调查与抽样调查(4) 统计参数的估计与检验以上是竞赛考试数学知识点的主要内容,考生在备考时要充分掌握上述知识点,并通过大量练习来巩固理解和掌握。
初中竞赛知识点总结一、数学竞赛知识点总结数学竞赛是一项对学生数学基础知识和解题能力的考验。
主要包括数学常识、基本技能、解题能力、数学思维等方面的考察。
下面我们来总结一下初中数学竞赛的重要知识点。
1.数与代数1)数的性质及运算法则例如:相反数、倒数、乘方、乘法分配律、加法交换律、结合律等。
2)整数的性质及大小比较例如:绝对值、大小比较、整数的加减法、乘除法等。
3)分数的性质及运算法则例如:分数的大小比较、四则运算、分数的化简等。
4)方程的解及应用例如:一元一次方程、一元二次方程等。
5)式的展开与因式分解例如:整式的展开、因式分解等。
2.几何与空间1)图形的性质和计算例如:三角形的性质、四边形的性质、圆的性质等。
2)几何变换例如:平移、旋转、对称等。
3)空间图形的计算例如:长方体、正方体、圆柱、球体等的计算。
3.函数与方程1)函数概念及性质例如:函数的解析式、函数的图像、奇偶性、单调性等。
2)一次函数与二次函数例如:一次函数的性质、二次函数的性质、函数的图像等。
4.数据与统计1)数据的图表表示例如:柱状图、线性图、饼状图等。
2)数据的分析及概率例如:频率、概率、样本调查、基本统计量等。
5.数学思维1)问题解决思路例如:问题的分析、解题的方法、问题的拓展等。
2)证明方法例如:数学归纳法、反证法、推理法等。
二、物理竞赛知识点总结物理竞赛考察学生对物理知识的理解和应用能力。
主要内容包括力学、热学、光学、电磁学等方面的知识。
下面我们来总结一下初中物理竞赛的重要知识点。
1.力学1)质点的运动例如:匀速直线运动、变速直线运动、曲线运动等。
2)牛顿运动定律例如:牛顿第一定律、牛顿第二定律、牛顿第三定律等。
3)物体的平衡例如:受力平衡、力的合成、力的分解等。
4)功与能量例如:功的计算、机械能守恒等。
2.热学1)热量的传递例如:热传导、对流、辐射等。
2)热量的计算例如:热量的传递、热量的计算等。
3)状态变化例如:固液气相变化、热力学定律等。
数学竞赛知识数学竞赛是许多数学爱好者所热衷的一个活动。
数学竞赛不仅可以锻炼人的数学思维,还可以培养人的创新能力和解决问题的能力。
本文将介绍一些数学竞赛中常用的知识点和技巧。
一、初等数论初等数论是数学竞赛中经常出现的一个领域。
在初等数论中,常见的问题包括质数、同余、数表达式与因数分解问题。
质数是一个非常基础的数论概念。
它们在数学竞赛中很可能被用于同余、费马小定理以及欧拉定理中。
同余通常表示为a≡b(mod m),其中a和b为整数,m为自然数,并且a和b对m取余数相等。
二、初等几何初等几何作为数学竞赛中另一个常见的领域,主要是关于平面几何的一些基础概念、定理和技巧。
初等几何中的一些基本概念包括平行、垂直、三角形、四边形、圆的概念和性质。
其中,平行和垂直是指线段之间的关系,三角形和四边形如构造、分类及性质等,圆的一些重要的性质是在数学竞赛中必须掌握的知识点。
三、组合数学组合数学是数学竞赛中的一重要分支,它是一种一种数学方法,涉及到函数、统计和集合乘积等方面的知识。
组合数学中最常用的是排列、组合和二项式定理。
排列指的是对一组元素进行重新排列,而组合是从一组元素中选出部分元素的方式。
二项式定理是组合数学中的一个基本定理,表达式为(a+b)^n=a^n+b^n+2*C(n,1)*a^(n-1)*b+2^C(n,2)*a^(n-2)*b^2+......+C(n,k)*a^(n-k)*b^k+...+b^n,在数学竞赛中已经成为热门问题。
四、概率论概率论是应用广泛的一门学科,它是探究随机事件和概率分布的一门学科。
在数学竞赛中,概率学习中的知识包括了随机变量,概率分布,条件概率,期望等等。
在进行概率问题的解决时,常见的技巧是通过画树状图或建立概率矩阵等方式来解答问题。
五、数学推理在数学竞赛中,数学推理能力是非常关键的。
数学推理涉及到对数学问题的分析、推出合适的结论。
数学推理常见的技巧包括归纳法、反证法和构造法等等,这充分体现了数学思维中的抽象推理和逻辑思维过程。
文档类资料(非纸质,全部是电子版):
H32.《2009-2017》全国高中数学联赛专题分类资料,纯word版可编辑
H31.《清北学堂高中数学联赛模拟题》word高清打印版
H30.《上海新星培训讲义》word高清打印版,寒春暑
H29.《走向IMO2018》高清打印版
H28.《名牌大学学科营与自主招生考试绿卡·物理真题篇(第2版)》超清晰可打印版+流畅版
H27.《名牌大学学科营与自主招生考试绿卡·数学真题篇(第2版)》超清晰可打印版+流畅版
H26.《多功能题典·高中数学竞赛》WORD可编辑(单墫熊斌)
H25.《中等数学增刊2-2018年》高清晰版+流畅版+纯试题版
H24.《高中数学联赛模拟试题精选2018》协作体培训教材+24套高联模拟卷高清晰版+流畅版+纯试题版H23.《中等数学增刊2-2016年》高清晰版+流畅版+纯试题版
H22-《中等数学增刊1-2018年》高清晰版+流畅版+纯试题版
H21-《高中奥数专题讲座》协作体培训用书+24套高联模拟卷高清晰版+流畅版+纯试题版
H20-《全国高中数学联赛模拟试题精选》24套模拟卷+7套真题高清晰版+流畅版+纯试题版
H19-《中等数学增刊2-2017年》高清晰版+流畅版+纯试题版
H18-《2018年高中数学联赛备考手册》高清晰版+流畅版+纯试题版,方便独立测试,
H17-《中等数学增刊1》2011、2012、2014、2016、2017高清晰版+流畅版+纯试题版
H16-《走向IMO》2011、2013、2016
H15.《多功能题典·初中数学》WORD可编辑(带几何画板,超级棒)
H14.《2017年爱尖子广东中学生夏令营讲义》高清打印版
H13.《高考数学压轴题的通性通法》付彬编著(非常实用)
物理、化学竞赛(自招)视频资料以及语文视频网课可以加QQ购买:1694115470。