最简单调幅电路原理图解
- 格式:doc
- 大小:25.50 KB
- 文档页数:3
调幅原理用调制信号去控制高频载波的振幅、使载波的振幅按调制信号的规律变化,便可得到调幅波。
这一过程中,载波、调制波和已调波的波形如图Z0901(补图)所示。
由图可见,连接已调波幅值各点所形成的包络线,反映了调制波的特点。
显然,已调波已经不是纯粹的正弦波了,这表明已调波的获得是一个频率变换过程,只有通过非线性元件才能实现。
图Z0902是调幅的原理电路,它由非线性器件二极管和谐振频率为ω0的LC并联谐振回路组成。
uC 为载波电压,um为调制电压。
由于二极管的伏安特性可以近似地用一个n次多项式来表示,即:io =a0+a1u+a2u2+a3u3+…,系数a0、a1、a2、a3等的大小和符号取决于二极管伏安特性的特点。
而该多项式的项数取决于信号u的大小和对分析结果所要求的精确度,信号愈大或者所要求的精确度愈高,所取的项数就应愈多。
通常,取前三项就足以反映出二极管的非线形特点,即:io = u+a1u +a2u2 (式中iO即iD)GS0901 若:uC = Ucmcosω0tum = UmmcosΩt则作用于电路的总电压u(即ua)为:u = uC + um= Ucmcosω0t + UmmcosΩt代入式GS0901可得:io = a0+a1(Ucmcosω0t+ UmmcosΩt)+a2(Ucmcosω0t+UmmcosΩt)2 GS0902将GS0902式展开,可得:显然,当ω0 >>Ω 时,只有ω0 及ω0±Ω这三种频率的信号才能在固有频率为ω0的LC并联谐振回路上产生较大的压降,于是LC回路两端的电压为:式中Z0表示谐振回路的谐振阻抗。
利用三角函数关系式不难将式GS0904变换为:式GS0905就是已调波的数学表达式它表明已调波的振幅为,是按调制波的特点而变化的,已调波的重复频率等于载波频率ω0,ma称为调幅系数,又叫调幅度。
由式GS0907可知,它与调制电压的幅度成正比,是一个反映调幅程度的量。
现在的年轻人一上车就是拿起手机,跟远方的好友通话,还真是有天涯若比邻的感觉。
在四十年前那个没有手机的年代,所有无线电通讯器都是属于管制品,只有一种玩具型的低功率调幅对讲机,虽然只有两三百公尺的有限通话距离,却也是当时美国小孩子最喜欢的玩具,更曾经是销美电子产品的热门。
最近很难得我在网络上找到类似电路,虽然只是简单的四石电路(四个三极管),电路的功能却是很复杂,希望在解析其动作之后,能给读者有若干启发性。
电路中的Q1在发射状态时,担任射频振荡以及音频信号调变功能,在接收状态则是Reflexive回复式起振及检波音频输出功能。
回复式电路时利用天线接收的射频信号,予以放大后利用二极管特性检波出音频信号。
Q2的功能为音频信号放大,Q3与Q4功能为音频信号功率放大。
这个电路由9伏特电池供电,有四组开关同步切换发射T与接收R的功能。
图中的喇叭是动圈式磁铁,接收时为喇叭功能,在发射状况则是由音压压缩纸盆,使喇叭线圈产生感应电流,相当于麦克风的功能。
天线接收射频信号,经由天线匹配电感器到15pF与2turns线圈谐振,过滤出27MHz 信号,并经由线圈耦合至次级9turns线圈,再经由基极接地的Q1射频放大至射级输出,并利用射级与基极间的二极管检波特性,解调出音频信号。
射级的音频信号电流再经由Q1集电极(原文为集级)输出。
经过9turns线圈,开关R点,0.47uF电容,音量控制VR,39n 电容,到Q2音频放大,再经Q3、Q4音频放大,再经过变压器阻抗转换以推动喇叭负载。
在发射状况下,Q1基极(原文为集级)至射级经由33pF电容的正回授,产生振荡而以基极的27MHz振荡水晶为谐振网络。
喇叭作为麦克风使用的声音信号,同样经过Q2、Q3、Q4的放大电路,此时Q1极的电源是由电池经过声音变压器提供,也因而产生音频对Q1射频的调幅调变。
调幅射频经由射频变压器转换低阻以匹配天线输出。
Q1射级电路的390电阻与10nF电容,提供射频旁路以及检波音频的射级负载。
§6.3调幅电路根据调幅电路的输出功率,调幅电路可分为: ①高电平调幅将调制和功放合二为一,调制后的信号无需放大可直接发射。
这种调制是在高频功率放大器中进行的。
高电平调幅主要用于产生AM 信号。
原理框图②低电平调幅调制在低电平级进行,得到调幅波后再经过高频放大和功率放大。
先调制,再放大。
多用于DSB 和SSB 信号的产生。
§6.3.1高电平调幅电路用调制信号去控制高频功率放大器输出电压的幅值,从而实现高电平调制。
根据调制信号控制的电极不同,调制方法可分为:集电极调制(Collector AM ):用)(t u 控制集电极电源电压)(t u C 实现AM 。
基极调制(Base AM ):用)(t u 控制基极电源电压)(t u B ,实现AM 。
高电平调幅器广泛采用高效率的丙类谐振功率放大器,需要说明的是:高电平调幅电路可以产生且只能产生普通调幅波。
谐振功率放大器电路一、 集电极调幅电路 1 电路图6.3.2 集电极调幅电路 (a )实际调幅电路 (b )原理电路 课本P128 图6.3.1 原理图 电路分析:(i)等幅载波通过变压器1T 输入到放大器的晶体管T V 的基极。
(ii)调制信号)(t u Ω经由低频变压器2T 加到集电极回路。
调制信号与集电极电源0C C V 串联:即0()()C C C C V t V u t Ω=+。
集电极有效电源电压()C C V t 随调制信号线性变化。
(iii)c b C C ,为高频旁路电容,对)(t u Ω呈现高阻,断路。
b R 为基极自给偏压电阻,基极余弦脉冲的平均直流分量bo i 由下而上流过b R 产生负值电压加在晶体管be 结上(课本P62)使放大器工作于丙类工作状态。
集电极调幅电路与丙类谐振功率放大电路的区别就在于: 其集电极有效电压不是恒定的,而是随调制信号变化的。
(iv)根据课本P58 图3.2.10(b )可知:为了实现不失真的调制,功放必须工作在过压区,使之成为集电极电源受调制信号控制的丙类谐振功放,其集电极输出电压幅值随集电极有效电压()C C V t 线性变化。
第一章、差动放大器调幅电路的设计理论1.1、差分对放大器调幅原理电路单端输出的差分对放大器调幅原理图如下根据差分对放大器的电流方程,有:31(1)22c c c T i u i th U =+其中,Ut 为热电压。
对电流源进行分析可得到:()33EE BE on c E EU U u i i R Ω≈=-+代入上式得:()()11(1)(1)(1)222222EE BE on c EE BE on c c c E T E T E TU U u u U U u u i th th th u R U R U R U ΩΩ-+-=+=+++0()()I t g t u Ω=+1.2、差分对放大器及基本参数取Ucm=0.1V ,载波频率为5MHZ ,调制信号振幅为2V ,频率为100KHZ ,择由012f LCπ=可以选择L=1.3uH ,C=800pF ,令Re=2K Ω,构建差分对放大器电路图如下由波形可知放大器增益A=0.972/0.1=9.72,差模输入电阻R=0.1*10^6/(1.41*74.23)=955.4Ω第二章、差分对放大器调幅电路具体设计2.1、实现无失真线性时变电路调幅电路图如下:图中L1=1.3uH,C1=800pF,Re=2KΩ,载波频率为5MHZ,调制信号频率为100KHZ。
调节载波振幅为0.1V,调制信号振幅为2V,得到基本无失真调幅波形:输出已调波的频谱:2.2、不同工作状态下电路的分析(1)当Ucm<Ut 时,差动放大器工作在线性区,双曲正切函数近似为其自变量:22c cT T u uthU U取Ucm=20mV,此时输出已调波电压波形图为:频谱为:由上图可以发现,已调波的频谱在5MHZ 处为载频信号,5.1MHZ 和4.9MHZ 处为调制信号。
(2)当Ucm>4Ut 时,差动放大器工作在开关状态,双曲正切函数的取值为1或–1,即1214()(1)cos(21)2(21)n c c c n T u th k w t n w t U n π∞-=≈=---∑取Ucm=0.2V,此时的输出已调波波形图为:频谱图为:由上图可见,已调波中包含频率为5MHZ、5.1MHZ、4.9MHZ、(2n-1)*5MHZ、(2n-1)*5±0.1MHZ(n=1,2,3....)等的载频分量和上下变频分量。
调幅调制、高频功率放大器与倍频器任务引入无线电发射装置为什么要进行调制?虽然可以象有线话筒那样将声音直接变换为音频电信号通过电缆传输给远处的接收方,但衰减大,传输效率低,干扰也大。
所以普通非平衡连接卡拉OK有线话筒电缆不超过20米,而专业平衡连接有线话筒电缆也不宜超过100米。
此外,若像农村有线广播那样,把信号一次传输给许多接收方,就需要建设大量的传输线路,这是很不经济的(特别在山区)。
因此,为了把声音信号等传输给远处的许多接收方,最好如图2.2-1那样以空间作为传输介质。
现在大部分广播都采用无线传输。
图2.2-1信号的调制与无线传输由电磁波理论知道,交变的电振荡可由天线向空中辐射出去。
但天线的尺寸必须足够长(天线振子的长度与电振荡的波长可以比拟),才能有效地把电振荡辐射出去。
例如,被传送的信号是语言、声音信号的频率范围为2OHz-2OkHz,其相应波长是15x103—15x106m,若通过天线发射到空中,需要制作几十公里长的发射天线!显然,制造这样的大尺寸的天线不仅困难,而且造价奇高,发射效率很低。
电磁波辐射有个特性,就是它的频率越高,辐射能力越强。
只有频率在几百kHZ以上的高频电流所转换成的无线电磁波效率高,辐射作用足够强。
那么,能否利用容易辐射的高频振荡波驮载所要传递的信息(如音频、视频等较低频率的信号)呢?答案是肯定的,即如示意图2.2-1那样用某种方法把声音信号载于频率比声音信号高,适合于在空中发射的电信号上,就可以传输声音信号。
此过程称为调制。
所谓调制就是发送方(即发端)将所要传送的信息“装载”到高频振荡波上,再由天线发射出去。
在这里,高频振荡波就是携带信息(信号)的运输工具,所以叫做载波信号,在上个课题中已学习的各种振荡电路可提供载波信号。
经过调制以后的高频振荡波叫做已调信号,能够完成调制作用的电路叫做调制电路。
例如,我们熟悉的中央人民广播电台一套节目发送的电波频率639kHz就是该电台的载波频率,93.9 M Hz为广东人民广播电台音乐台载波频率。
最简单调幅电路原理图解调幅电路是把调制信号和载波信号同时加在一个非线性元件上(例如晶体二极管或三极管)经非线性变换成新的频率分量,再利用谐振回路选出所需的频率成分。
调幅电路分为二极管调幅电路和晶体管基极调幅、发射极调幅及集电极调幅电路等。
通常,多采用三极管调幅电路,被调放大器如果使用小功率小信号调谐放大器,称为低电平调幅;反之,如果使用大功率大信号调谐放大器,称为高电平调幅。
在实际中,多采用高电平调幅,对它的要求是:(1)要求调制特性(调制电压与输出幅度的关系特性)的线性良好;(2)集电极效率高;(3)要求低放级电路简单。
1、基极调幅电路图1是晶体管基极调幅电路,载波信号经过高频变压器T1加到BG的基极上,低频调制信号通过一个电感线圈L与高频载波串联,C2为高频旁路电容器,C1为低频旁路电容器,R1与R2为偏置的分压器,由于晶体管的ic=f(ube)关系曲线的非线性作用,集电极电流ic含有各种谐波分量,通过集电极调谐回路把其中调幅波选取出来,基极调幅电路的优点是要求低频调制信号功率小,因而低频放大器比较简单。
其缺点是工作于欠压状态,集电极效率较低,不能充分利用直流电源的能量。
2、发射极调幅电路图2是发射极调幅电路,其原理与基极调幅类似,因为加到基极和发射极之间的电压为1伏左右,而集电极电源电压有十几伏至几十伏,调制电压对集电极电路的影响可忽略不计,因此射极调幅与基极调幅的工作原理和特性相似。
3、集电极调幅电路图3是集电极调幅电路,低频调制信号从集电极引入,由于它工作于过压状态下,故效率较高但调制特性的非线性失真较严重,为了改善调制特性,可在电路中引入非线性补尝措施,使输入端激励电压随集电极电源电压而变化,例如当集电极电源电压降低时,激励电压幅度随之减小,不会进入强压状态;反之,当集电极电源电压提高时,它又随之增加,不会进入欠压区,因此,调幅器始终工作在弱过压或临界状态,既可以改善调制特性,又可以有较高的效率,实现这一措施的电路称为双重集电极调幅电路。
最简单调幅电路原理图解
调幅电路是把调制信号和载波信号同时加在一个非线性元件上(例如晶体二极管或三极管)经非线性变换成新的频率分量,再利用谐振回路选出所需的频率成分。
调幅电路分为二极管调幅电路和晶体管基极调幅、发射极调幅及集电极调幅电路等。
通常,多采用三极管调幅电路,被调放大器如果使用小功率小信号调谐放大器,称为低电平调幅;反之,如果使用大功率大信号调谐放大器,称为高电平调幅。
在实际中,多采用高电平调幅,对它的要求是:(1)要求调制特性(调制电压与输出幅度的关系特性)的线性良好;(2)集电极效率高;(3)要求低放级电路简单。
1、基极调幅电路
图1是晶体管基极调幅电路,载波信号经过高频变压器T1加到BG的基极上,低频调制信号通过一个电感线圈L与高频载波串联,C2为高频旁路电容器,C1为低频旁路电容器,R1与R2为偏置的分压器,由于晶体管的ic=f(ube)关系曲线的非线性作用,集电极电流ic含有各种谐波分量,通过集电极调谐回路把其中调幅波选取出来,基极调幅电路的优点是要求低频调制信号功率小,因而低频放大
器比较简单。
其缺点是工作于欠压状态,集电极效率较低,不能充分利用直流电源的能量。
2、发射极调幅电路
图2是发射极调幅电路,其原理与基极调幅类似,因为加到基极和发射极之间的电压为1伏左右,而集电极电源电压有十几伏至几十伏,调制电压对集电极电路的影响可忽略不计,因此射极调幅与基极调幅的工作原理和特性相似。
3、集电极调幅电路
图3是集电极调幅电路,低频调制信号从集电极引入,由于它工作于过压状态下,故效率较高但调制特性的非线性失真较严重,为了改善调制特性,可在电路中引入非线性补尝措施,使输入端激励电压随集电极电源电压而变化,例如当集电极电源电压降低时,激励电压幅度随之减小,不会进入强压状态;反之,当集电极电源电压提高时,它又随之增加,不会进入欠压区,因此,调幅器始终工作在弱过压或临界状态,既可以改善调制特性,又可以有较高的效率,实现这一措施的电路称为双重集电极调幅电路。
采用图4的集电极、发射极双重调幅电路也可以改善调制特性。
注意变压器的同名端,在调制信号正半波时,虽然集电极电源电压提高,但同时基极偏压也随之变正,这就防止了进入欠压工作状态;在调制信号负半波时,虽然集电极电压降低,但基极度偏压也随之变负,不致进入强过压区,从而保持在临界、弱过压状态下工作。
图一、基极调幅电路
图二、发射极调幅电路
图三、集电极调幅电路
图四、双重调幅电路。