树人学校七年级数学入学测试题
- 格式:doc
- 大小:108.67 KB
- 文档页数:3
南京师范大学附中树人学校数学新初一分班试卷含答案一、选择题1.精密零件图纸上的比例尺,一般都写成后项是1的比,表示把实际长度扩大若干倍以后画在图纸上.例如,在一张精密零件图纸上,用1cm 表示实际长度1mm ,这张精密零件图纸的比例尺就是( ).A .10:1B .1:10C .100:1D .1:100 2.下图是用8个小方块拼成的,如果拿走1个小方块,它的表面积比原来( )A .小了B .大了C .没有变化3.修路队修一段路,第一天修了全程的,第二天修了240米,完成了全部修路任务,第一天修了多少米?正确的算式是( )A .240÷( 1-)B .240÷( 1- )×C .240÷( 1+ ) 4.三角形的一个内角是30°,其余两个内角的比为2∶3,那么这个三角形是( )。
A .直角三角形 B .锐角三角形 C .钝角三角形D .无法判断5.有红色、黄色两条彩带,红色彩带剪去35,黄色彩带剪去35米,两条彩带都剩下35米。
比较原来两根彩带的长短,结果是( )。
A .红色彩带长B .黄色彩带长C .一样长D .无法比较 6.如图是一个正方体的平面展开图。
每个面上都填有一个数,且满足相对的两个面上的数互为倒数,那么mn =( )。
A .12B .16C .13D .327.下列关于“统计与概率”的知识,说法错误的是( )。
A .要描述小陈从一年级到六年级的平均体重变化情况,用折线统计图比较合适B .45,73,47,45,68,这五个数的平均数是68C .扇形统计图可以清楚地表示出各部分与总数之间的关系D .掷一枚硬币,连续8次都正面朝上,第9次掷出后,可能是反面朝上8.m 是一个偶数,n 是一个奇数,下面的算式中,结果是奇数的是( )。
A .()2+⨯m n B . m +2n C .2m n + D .3×m×n9.某市规定每户每月用水量不超过6吨时,每吨价格为2.5元;当用水量超过6吨时,超过的部分每吨价格为3元。
重点中学小升初数学模拟试题一、直接写出下列各题的得数。
(共6分)= 1.25×8= 0.25+0.75= = 4505÷5= 24.3-8.87-0.13= =二、填空。
(16分)1、由1、2、3这三个数字能组成的三位数一共有( )个,它们的和是( )。
2、一道除式,商是22,余数是6,被除数与除数的和是259,这道除式的除数是( ),被除数是( )。
3、甲乙两数的最小公倍数是78,最大公约数是13,已知甲数是26,乙数是( )。
4、小明有15本故事书,比小英的3倍多a本,小英有( )本故事书。
5、两个数相除的商是7.83,如果把被除数和除数的小数点同时向右移动一位,商是( )。
6、一个比例的两个内项互为倒数,它的一个外项是0.8,另一个外项是( )。
7、单独完成同一件工作,甲要4天,乙要5天,甲的工作效率是乙的( )%。
8、一个带小数的整数部分与小数部分的值相差88.11,整数部分的值恰好是小数部分的100倍,这个数是( )。
三、选择正确答案的序号填在题中的括号里。
(20分)1、圆有( )对称轴.A.1条B.2条C.4条D.无数条2、5米增加它的后,再减少米,结果是( )A. B.C.5米D.7米3、气象台表示一天中气温变化的情况,采用( )最合适。
A.统计表B.条形统计图C.扇形统计图D.折线统计图4、五年级同学参加科技小组的有23人,比参加书法小组人数的2倍多5人,如果设书法小组有x人,则正确的方程是( )A.2( x+5)=23B.2x+5=23C.2x=23-5D.2x-5=235、一根钢管,截去部分是剩下部分的,剩下部分是原钢管长的( )%。
A.75B.400C.80D.256、等底等体积的圆柱和圆锥,圆锥高是9米,圆柱高是( )A.9米B.18米C.6米D.3米7、一个长方体的长、宽、高分别是a米、b米和h米,如果高增加3米,体积增加( )立方米。
A.3abB.3abhC.ab(h+3)D.3bh8、把24分解质因数是( )A.24=3×8B.24=2×3×4C.24=2×2×2×3D.24=6×4×19、乙数比甲数少40%,甲数和乙数的比是( )A.2:3B.3:2C.3:5D.5,310、甲把自己的钱的给乙以后,甲、乙两人钱数相等,甲、乙原有钱数的比是( )A.2:3B.3:2C.3:5D.5:3四、用递等式计算(12分)1042-384÷16×13 4.1-2.56÷(0.18+0.62) 3.14×43+7.2×31.4-150×0.314五、解答题。
一、选择题1.若12a=,3b=,且0ab<,则+a b的值为()A.52B.52-C.25±D.52±2.13-的倒数的绝对值()A.-3 B.13-C.3 D.133.若,则化简|-2|+|1-|的结果是()A.-1 B.1 C.+1 D.-34.若一个数的绝对值的相反数是17-,则这个数是()A.17-B.17+C.17±D.7±5.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,36.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|7.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多108.若|x|=7|y|=5x+y>0,,且,那么x-y的值是()A.2或12 B.2或-12 C.-2或12 D.-2或-129.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是()A.1℃~3℃B.3℃~5℃C.5℃~8℃D.1℃~8℃10.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是()A.18 B.1-C.18-D.211.某市11月4日至7日天气预报的最高气温与最低气温如表:日期11月4日11月5日11月6日11月7日最高气温(℃) 19 12 20 9 最低气温(℃) 43-45其中温差最大的一天是( ) A .11月4日B .11月5日C .11月6日D .11月7日12.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a+b <0B .a+b >0C .a ﹣b <0D .ab >0二、填空题13.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件所有x 的值是___.14.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1) =[________]+1.2 =________+1.2 =____;(2)32.5+46+(-22.5) =[____]+46 =_____+46 =____.15.把35.89543精确到百分位所得到的近似数为________. 16.计算:3122--=__________;︱-9︱-5=______. 17.计算-32+5-8×(-2)时,应该先算_____,再算_____,最后算_____.正确的结果为_____.18.下列说法正确的是________.(填序号)①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1ba=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.19.阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a 3•a 4=(a•a•a )•(a•a•a•a )=__; (2)归纳、概括:a m •a n =__;(3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =__. 20.若m ﹣1的相反数是3,那么﹣m =__.三、解答题21.计算(1)21145()5-÷⨯- (2)21(2)8(2)()2--÷-⨯-.22.已知: b 是最小的正整数,且a 、b 满足(c -5)2+|a + b |= 0请回答问题: (1)请直接写出a 、b 、c 的值: a = ,b = ,c = ,(2)数轴上a , b , c 所对应的点分别为A ,B ,C ,则 B ,C 两点间的距离为 ; (3)在(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动了t 秒,①此时A 表示的数为 ;此时B 表示的数为 ;此时C 表示的数为 ;②若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC - AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.23.计算:-32+2×(-1)3-(-9)÷213⎛⎫⎪⎝⎭24.某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表: 与标准质量的偏差(单位:克)10-5- 0 5+10+15+袋数15 5531(2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克? 25.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负) 星期 一二三四五六日增减5+ 2- 4- 13+ 10- 16+ 9-(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元? 26.计算:(1)9-(-14)+(-7)-15; (2)12×(-5)-(-3)÷374(3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9]【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据ab 判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】∵0ab< ∴a 和b 异号 又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b =故选D . 【点睛】本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据ab判断出a 和b 异号. 2.C解析:C 【分析】首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】13-的倒数为-3,-3绝对值是3, 故答案为:C . 【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.3.B解析:B 【解析】 【分析】绝对值的化简求值主要需要判断绝对值里面的正负,从而去掉绝对值,再对式子进行计算进而得到答案. 【详解】 ∵∴a-2<0,1-a<0∴|-2|+|1-|= -(a-2)-(1-a )=-a+2-1+a=1,因此答案选择B. 【点睛】本题考查的是绝对值的化简求值,注意一个正数的绝对值等于它本身,一个负数的绝对值等于它的相反数,0的绝对值还是0.4.C解析:C 【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可. 【详解】 ∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C. 【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.5.A解析:A 【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30, 30+4×3=42,故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.6.D解析:D 【分析】根据绝对值的定义进行分析即可得出正确结论. 【详解】选项A 、B 、C 中,a 与b 的关系还有可能互为相反数,故选项A 、B 、C 不一定成立, D.若a =﹣b ,则|a|=|b|,正确, 故选D . 【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.7.D解析:D 【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10. 故选D .8.A解析:A 【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可. 【详解】由x 7=可得x=±7,由y 5=可得y=±5, 由x+y>0可知:当x=7时,y=5;当x=7时,y=-5, 则x y 75122-=±=或, 故选A 【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.9.B解析:B 【解析】 【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解. 【详解】解:设温度为x ℃,根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩解得35x ≤≤. 故选:B . 【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.10.C解析:C 【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解. 【详解】∵一个数比10的相反数大2, ∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意; 故选:C . 【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.11.C解析:C 【分析】运用减法算出每一天的温差,再进行比较即可. 【详解】11月4日的温差为19415-=(℃); 11月5日的温差为12(3)15--=(℃); 11月6日的温差为20416-=(℃); 11月7日的温差为19514-=(℃). 所以温差最大的一天是11月6日. 故选C . 【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.12.A解析:A【分析】根据数轴判断出a、b的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b<﹣1<0,0<a<1,∴a+b<0,故选项A符合题意,选项B不合题意;a﹣b>0,故选项C不合题意;ab<0,故选项D不合题意.故选:A.【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a、b的符号,熟知有理数的运算法则是解题关键.二、填空题13.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.14.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法解析:(-0.8)+(-0.7)+(-2.1) (-3.6) -2.4 32.5+(-22.5) 10 56【分析】(1)先根据加法的运算律把同号的数相加,再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加,再根据加法法则计算.【详解】解:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[(-0.8)+(-0.7)+(-2.1)]+1.2=(-3.6)+1.2=-2.4;(2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56.故答案为:(-0.8)+(-0.7)+(-2.1),(-3.6),-2.4;32.5+(-22.5),10,56.【点睛】本题考查了有理数的加法,属于基本题型,熟练掌握加法运算律和加法法则是解题的关键.15.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.16.-24【分析】直接根据有理数的减法运算即可;先运算绝对值再进行减法运算【详解】=-=-2;︱-9︱-5==9-5=4故答案为-24【点睛】本题考查了绝对值的化简以及有理数的运算解题的关键是掌握有理数解析:-2 4【分析】直接根据有理数的减法运算即可;先运算绝对值,再进行减法运算.【详解】3122--=-42=-2;︱-9︱-5==9-5=4, 故答案为-2,4. 【点睛】本题考查了绝对值的化简以及有理数的运算,解题的关键是掌握有理数的运算法则.17.乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可【详解】解:原式=-9+5+16=12故答案为:乘方乘法加法12【点睛】本题主要考查了有理数混合运算的运算顺序先算乘方再算乘除最后解析:乘方 乘法 加法 12 【分析】按照有理数混合运算的运算顺序进行计算解答即可. 【详解】 解:原式=-9+5+16 =12.故答案为:乘方,乘法,加法,12 【点睛】本题主要考查了有理数混合运算的运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.18.④【分析】利用绝对值的代数意义有理数的加法倒数的定义及有理数的乘法法则判断即可【详解】①若则故或当b<0时无解故①错误;②时ab 互为相反数但是对于等式不成立故②不正确;③几个有理数相乘如果负因数有偶解析:④ 【分析】利用绝对值的代数意义,有理数的加法,倒数的定义及有理数的乘法法则判断即可. 【详解】①若||a b =,则0b ,故a b =或=-a b ,当b<0时,无解,故①错误; ②0ab 时,a ,b 互为相反数,但是对于等式1ba=-不成立,故②不正确; ③几个有理数相乘,如果负因数有偶数个,但其中有因数0,那么它们的积为0,故③不正确;④两个正数相加,此时和大于每一个加数;一正数一负数相加,此时和大于负数;一个数和0相加,等于这个数;只有两个负数相加,其和小于每一个加数,故④正确; ⑤0除以0没有意义,故⑤不正确. 综上,正确的有④. 故答案为:④. 【点睛】本题考查了绝对值、相反数、有理数的加法、有理数的除法等基础知识点,这都是必须掌握的基础知识点.19.a7am+n36【分析】(1)根据题意乘方的意义7个a相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n=xm•xn即解析:a7 a m+n 36【分析】(1)根据题意,乘方的意义,7个a相乘可以写成a7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决;(3)运用以上的结论,可以知道:x m+n=x m•x n,即可解决问题.【详解】解:(1)根据材料规律可得a3•a4=(a•a•a)•(a•a•a•a)=a7;(2)归纳、概括:a m•a n=m na a a a⎛⎫⎛⎫⎪⎪⎪⎪⎝⎭⎝⎭=a m+n;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=x m•x n=4×9=36.故答案为:a7,a m+n,36.【点睛】本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.20.2【分析】根据只有符号不同的两个数互为相反数可得关于m的方程根据解方程可得m的值再根据在一个数的前面加上负号就是这个数的相反数可得答案【详解】解:由m-1的相反数是3得m-1=-3解得m=-2-m=解析:2【分析】根据只有符号不同的两个数互为相反数,可得关于m的方程,根据解方程,可得m的值,再根据在一个数的前面加上负号就是这个数的相反数,可得答案.【详解】解:由m-1的相反数是3,得m-1=-3,解得m=-2.-m=+2.故选:A.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.三、解答题21.(1)4125;(2)2.【分析】第(1)和(2)小题都属于有理数的混合运算,根据混合运算的运算顺序:先算乘方,并利用有理数的除法法则将除法转化为乘法,再计算乘法,最后计算加减即可求出结果.【详解】解:(1)21145()5-÷⨯-11116()55=-⨯⨯-16125=+4125=;(2)21(2)8(2)()2--÷-⨯-1148()()22=-⨯-⨯-42=-2=.【点睛】本题考查了有理数的混合运算,解题的关键是确定正确的运算顺序并运用运算法则准确计算.22.(1)-1;1;5;(2)4;(3)①-1-t;1+2t;5+5t;②BC-AB的值为2,不随着时间t的变化而改变.【分析】(1)先根据b是最小的正整数,求出b,再根据c2+|a+b|=0,即可求出a、c;(2)由(1)得B和C的值,通过数轴可得出B、C的距离;(3)①在(2)的条件下,通过运动速度和运动时间可表示出A、B、C;②先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】解:(1)∵b是最小的正整数,∴b=1.∵(c-5)2+|a+b|=0,∴a=-1,c=5;故答案为:-1;1;5;(2)由(1)知,b=1,c=5,b、c在数轴上所对应的点分别为B、C,B、C两点间的距离为4;(3)①点A以每秒1个单位长度的速度向左运动,运动了t秒,此时A表示的数为-1-t;点B以每秒2个单位长度向右运动,运动了t秒,此时B表示的数为1+2t;点C以5个单位长度的速度向右运动,运动了t秒,此时C表示的数为5+5t.②BC -AB 的值不随着时间t 的变化而改变,其值是2,理由如下:∵点A 都以每秒1个单位的速度向左运动,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,∴BC =5+5t –(1+2t )=3t +4,AB =1+2t –(-1-t )=3t +2,∴BC -AB =(3t +4)-(3t +2)=2.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.23.70【分析】先计算乘方,然后计算乘除,再计算加减,即可得到答案.【详解】解:原式=92(1)(9)9-+⨯---⨯=9281--+=70.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.24.(1)多1.75克;(2)9635克【分析】(1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数.【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克.(2)()5428001.56793+⨯=(克)所以抽样检测的这些奶粉的总质量为9635克.【点睛】本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的.25.(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元.【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可;(3)该厂一周工资=实际自行车产量×50+超额自行车产量×12.【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆),答:该厂本周实际生产自行车1409辆;(2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆;(3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.【点睛】本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.26.(1)1;(2)14;(3)1147-;(4)-900. 【分析】(1)先将减法化为加法,再分别把正数和负数相加,将结果相加;(2)先分别计算乘除,再计算加法;(3)先分别计算乘方和括号内的,再计算除法,最后计算加法;(4)先分别计算乘方和括号内的,再将结果相加即可.【详解】解:(1)原式=914(7)(15)++-+-=23(22)+-=1;(2)原式=7460(3)3--- =6074-+=14;(3)原式=115(8)(9)3-+-÷-- =2815(8)()3-+-÷-=315(8)()28-+-- =6157-+ =1147-; (4)原式=[]100064(4)9-+--⨯=1000(6436)-++=1000100-+=-900.【点睛】本题考查有理数的混合运算.熟记有理数混合运算的运算顺序和每一步的运算法则是解题关键.。
兰州市树人中学新初一分班数学试卷含答案一、选择题1.成语“立竿见影”在《辞源》里的解释为“竿立而影现,喻收效迅速。
”用数学的眼光来看,这是应用了比例知识中的()关系。
A.正比例B.反比例C.比例尺D.不确定2.有一个深4分米的长方体容器,其内侧底面为边长3分米的正方形。
当容器底面的一边紧贴桌面倾斜如图时,容器内的水刚好不溢出。
则此时容器内的水有()。
A.13.5升B.18升C.22.5升D.27升3.光明村今年每百户拥有电脑96台,比去年增加了32台,今年比去年增加了百分之多少?正确的算式是().A.32÷96×100%B.32÷(96-32)×100%C.96÷32×100%4.一个等腰三角形中,一个底角和顶角度数的比是1:2,这个三角形又是()三角形。
A.锐角B.直角C.钝角D.无法确定5.某校图书馆买来文艺书和科技书共1500本,其中买来的文艺书本数比买来的科技书的2倍少36本,买来的科技书有多少本?如果设买来的科技书有x本,那么下列方程正确的是()。
A.x+2x=1500-36 B.2x-36=1500 C.x+2x=1500 D.x+2x-36=1500 6.下图是一个正方体展开图,与4号相对的面是()号.A.6 B.5 C.2 D.17.下列说法错误的是()。
A.0是自然数B.平行四边形的面积是三角形的2倍C.梯形的高有无数条D.甲比乙多13,乙就比甲少148.圆锥和圆柱底面积相等,体积的比是1∶4,如果圆锥的高是2.4厘米,那么圆柱高是()。
A.9.6厘米B.3.2厘米C.0.6厘米D.4.2厘米9.一种电视机提价 后,又降价 ,现价( )原价.A .高于B .低于C .等于10.如图,将一张长方形纸沿一条对角线对折平放在桌面上,桌面被覆盖的面积是120平方厘米,正好是原长方形面积的60%,原长方形的面积是( )平方厘米。
1一、填空题(每题2分,共30分)1、77×13+255×999+510=2 、计算:1010101×27= 1001001×258=3、定义“A☆B”为A的3倍减去B的2倍,即A☆B=3A-2B,已知x☆(4☆1)=7,则x=4、a = 22 ⨯3⨯5 ,b = 2⨯32 ⨯7 ,则(a, b)=5、a=8.8+8.98+8.998+8.9998+8.99998,a的整数部分是6、1+1+1+1+1计算结果的小数点后第一位是2 12 30 56 907、规定运算,a⊕b=1+,若2⊕1=2ab (a +1)(b +x) 3,则2004⊕2005=8、设A 和B 都是自然数,且满足A+B=17,求A +B 的值11 3 339、有浓度为3.2%的食盐水500 克,为了把它变成浓度是8%的食盐水,需要使它蒸发掉克的水10、1470 的两位数约数中,最大的一个是11、有一列数:1,2002,2001,1,2000.....从第三个数起,每个数都是它前面两个数中大数减小数的差,那么第2002 个数是12、把一根长2.4 米的长方体木料锯成5 段,表面积比原来增加了96 平方厘米。
这根木料体积是13、一本书的售价是26 元,这本书售出后可获得30%的利润,这本书的成本是14、如图,正方形的面积是18,则图中灰色图形的周长等于(π取3.14)15、用一个小数减去末位数字不为零的整数,如果给整数添上一个小数点,使它变成小数,差就增加154.44, 这个整数是.二、解答题(16、17、18、19、19、20 每题 5 分,21--25 每题 10 分共 70 分)16、计算11+ 2+11+2 +3+11+2+3+4+ … +11+2 +3 + 4+…+200817、一片牧场,每天生长草的速度相同。
这片牧场可供14 头牛吃30 天,或者可供70 只羊吃16 天。
如果4 头羊的吃草量相当于1 头牛的吃草量。
1. 下列各数中,不是整数的是()A. 3.14B. -2C. 100D. 0.0012. 下列各数中,有理数是()A. πB. √3C. 2.5D. 无理数3. 下列各式中,正确的是()A. 3a + 2b = 5a + 4bB. 3a - 2b = 5a - 4bC. 3a + 2b = 5a + 4bD. 3a - 2b = 5a + 4b4. 已知a > b,那么下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 > b - 2C. a + 2 < b + 2D. a - 2 < b - 25. 一个长方形的长是10cm,宽是5cm,那么这个长方形的周长是()A. 20cmB. 25cmC. 30cmD. 35cm二、填空题(每题5分,共20分)6. (3/4)× 16 = _______,1.5 × 2.5 = _______,√(49) = _______。
7. 若a = -3,则3a + 2 = _______,a - 5 = _______。
8. 已知一个数的平方是4,那么这个数是 _______。
9. 若a = 2,b = -3,则a + b = _______,ab = _______。
10. 一根绳子长30m,剪去它的1/5,剩下的长度是 _______。
三、解答题(每题10分,共30分)11. 已知x + y = 8,x - y = 2,求x和y的值。
12. 一辆汽车从A地出发,以60km/h的速度行驶,行驶了2小时后到达B地。
然后以80km/h的速度返回A地,求汽车从A地到B地的路程。
13. 一根绳子长50cm,将其剪成两段,一段长是另一段的2倍,求这两段绳子的长度。
14. 小明家养了x只鸡,y只鸭,鸡和鸭的总数是30只,鸡和鸭的腿总数是86条。
求小明家养的鸡和鸭的数量。
15. 小华的年龄是小丽的2倍,小丽的年龄加上小华的年龄等于36岁。
七年级入学测试题姓名___________ 家长手机__________________一、填空题:1、一个数的千万位是最小的合数,千位是最小的质数,百位上是最小的自然数单位,其余各位是0,这个数是( )。
改写成用万作单位的数是( )万。
2、已知A ×211=B×0.05=C ÷311=D ÷10,A 、B 、C 、D 中最大的数是( ),最小的数是( )。
3、54>7>21,□中可以填写的所有整数有( )。
4、一个分数的分子加7等于1,若分子减1就等于21,这个分数是( ) 5、一个两位数被2、3、5除都余1,这个两位数最大是( )6、甲数的43是乙数的85,乙数是甲数的( )%。
甲数与乙数的比是( ):( )。
7、一个等腰三角形,它的一个底角的度数是顶角度数的4倍,这个等腰三角形的顶角是( )度。
8、一个圆柱体水桶,桶内直径4分米,桶深5分米,水深3分米,水的体积比水桶容积少( )%。
9、一个梯形的上底与下底的比是3:5,上底比下底短1米,下底比高多25%,这个梯形的面积是( )。
10、要把一块长44米、宽28米的长方形地划成相等的小方块而没有剩余,最大每边长( )米,共划成( )块。
二、判断题:1、一种商品先提价10%后再打九折出售,现售价比原价低。
( )2、如果甲数的21等于乙数的31,那么乙数大于甲数。
( ) 3、圆的面积与半径的平方成正比例。
( )4、棱长是6厘米的正方体,表面积和体积相等。
( )5、10克盐完全溶解在100克水中制成盐水,那么,盐水的浓度是10%。
三、选择题:1、如果a =53b (a 、b 均不为0),那么a :b =( ) A 、3:5 B 、5:3 C 、3:82、a 是奇数,b 是偶数,ab 是一个( )数。
A 、奇B 、偶 3、甲乙图中,甲的周长( )乙的周长,甲的面积( )乙的面积。
A 、>B 、=C 、﹤D 、无法确定□4、表示x 、y 成反比例关系的式子是( )A 、x-y=5B 、y=43x C 、y+x=20 D 、x=y 7 四、计算题:1、求未知数x 。
兰州市树人中学七年级数学上册第一章《有理数》经典测试卷(含答案解析)一、选择题1.(0分)数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.2.(0分)如果a =14-,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( ) A .-12 B .112 C .12 D .-112A 解析:A 【分析】 逐一求出三个数的绝对值,代入原式即可求解.【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A .【点睛】 本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.3.(0分)下列说法正确的是( )A .近似数1.50和1.5是相同的B .3520精确到百位等于3600C .6.610精确到千分位D .2.708×104精确到千分位C解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A、近似数1.50和1.5是不同的,A错B、3520精确到百位是3500,B错D、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.4.(0分)据报通,国家计划建设港珠澳大桥,估解该项工程总报资726亿元,用科学记数法表示726亿正确的是()A.7.26×1010B.7.26×1011C.72.6x109D.726×108A解析:A【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】726亿=7.26×1010.故选A.【点睛】本题考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n 的值是解题的关键.5.(0分)下列说法正确的是()A.近似数5千和5000的精确度是相同的B.317500精确到千位可以表示为31.8万,也可以表示为5⨯3.1810C.2.46万精确到百分位D.近似数8.4和0.7的精确度不一样B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A.近似数5千精确度到千位,近似数5000精确到个位,所以A选项错误;B.317500精确到千位可以表示为31.8万,也可以表示为5⨯,所以B选项正确;3.1810C.2.46万精确到百位,所以C选项错误;D.近似数8.4和0.7的精确度是一样的,所以D选项错误.故选B.【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.6.(0分)下列各组数中,互为相反数的是( )A .(﹣3)2和﹣32B .(﹣3)2和32C .(﹣2)3和﹣23D .|﹣2|3和|﹣23|A 解析:A【分析】各项中两式计算得到结果,即可作出判断.【详解】A 、(﹣3)2=9,﹣32=﹣9,互为相反数;B 、(﹣3)2=32=9,不互为相反数;C 、(﹣2)3=﹣23=﹣8,不互为相反数;D 、|﹣2|3=|﹣23|=8,不互为相反数,故选:A .【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键. 7.(0分)下列结论错误的是( )A .若a ,b 异号,则a ·b <0,a b <0 B .若a ,b 同号,则a ·b >0,a b >0 C .a b -=a b -=-a b D .a b--=-a b D 解析:D【解析】根据有理数的乘法和除法法则可得选项A 、B 正确;根据有理数的除法法则可得选项C 正确;根据有理数的除法法则可得选项D 原式=a b,选项D 错误,故选D. 8.(0分)据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元C 解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.(0分)在数3,﹣13,0,﹣3中,与﹣3的差为0的数是( ) A .3B .﹣13C .0D .﹣3D解析:D【分析】与-3的差为0的数就是0+(-3),据此即可求解.【详解】解:根据题意得:0+(﹣3)=﹣3,则与﹣3的差为0的数是﹣3,故选:D .【点睛】本题考查了有理数的运算.熟练掌握有理数减法法则是解本题的关键.10.(0分)已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( ) A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>- C 解析:C【分析】根据有理数大小比较的法则分别进行解答,即可得出答案.【详解】解:∵-1<b <a <0,∴a+b <a+(-b)=a-b .∵b >-1,∴a-1=a+(-1)<a+b .又∵-b <1,∴a-b=a+(-b)<a+1.综上得:a-1<a+b <a-b <a+1,故选:C .【点睛】本题主要考查了实数大小的比较,熟练掌握有理数大小比较的法则和有理数的加法法则是解题的关键. 二、填空题11.(0分)若a 、b 、c 、d 、e 都是大于1、且是不全相等的五个整数,它们的乘积2000abcde =,则它们的和a b c d e ++++的最小值为__.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.12.(0分)绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.13.(0分)在|﹣3|、﹣32、﹣(﹣3)2、﹣(3﹣π)、﹣|0|中,负数的个数为_____.2个【分析】分别计算出题目中所给的每一个数即可作出判定【详解】∵|﹣3|=3﹣32=﹣9﹣(﹣3)2=﹣9﹣(3﹣π)=π﹣3﹣|0|=0∴﹣32﹣(﹣3)2是负数故答案为2个【点睛】此题考查的知识解析:2个【分析】分别计算出题目中所给的每一个数,即可作出判定.【详解】∵|﹣3|=3,﹣32=﹣9,﹣(﹣3)2=﹣9,﹣(3﹣π)=π﹣3,﹣|0|=0,∴﹣32、﹣(﹣3)2是负数.故答案为2个.【点睛】此题考查的知识点是正数和负数,关键是理解负数的概念,而且要把这些数化为最后结果才能得出正确答案.这就又要理解平方、绝对值,正负号的变化等知识点.14.(0分)计算1-2×(32+12)的结果是 _____.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算解析:-18【分析】先算乘方、再算括号、然后算乘法、最后算加减即可.【详解】解:1-2×(32+12)=1-2×(9+12)=1-2×19 2=1-19=-18.故答案为-18.【点睛】本题考查了含乘方的有理数四则混合运算,掌握相关运算法则是解答本题的关键.15.(0分)校运动会的拔河比赛真是紧张刺激!规定拔河时,任意一方拉过30cm就算获胜.小胖他们班在每次喊过“拉”声之后都可拉过7cm,但又会被拉回3cm.如此下去,该班在第________次喊过“拉”声后就可获得胜利.7【分析】根据题意得到当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取得胜利【详解】解:由题意得喊过一次拉声之后可拉过当喊到第6次时一共拉过了离胜利还差所以再喊一次后拉过超过了即可取解析:7【分析】根据题意得到当喊到第6次时,一共拉过了6(73)24(cm)⨯-=,离胜利还差30246(cm)-=,所以再喊一次后拉过7cm,超过了30cm,即可取得胜利.【详解】解:由题意得喊过一次“拉”声之后可拉过4cm.当喊到第6次时,一共拉过了6(73)24(cm)⨯-=.离胜利还差30246(cm)-=,所以再喊一次后拉过7cm ,超过了30cm ,即可取得胜利.故答案为:7.【点睛】此题考查了有理数的混合运算的应用,正确理解题意,掌握有理数的各运算法则是解题的关键.16.(0分)有理数a ,b ,c 在数轴上的位置如图所示:填空:+a b ________0,1b -_______0,a c -_______0,1c -_______0.<<<>【分析】数轴上右边表示的数总大于左边表示的数左边的数为负数右边的数为正数;根据有理数减法法则进行判断即可【详解】由题图可知所以故答案为:<<<>【点睛】考核知识点:有理数减法掌握有理数减法法解析:< < < >【分析】数轴上右边表示的数总大于左边表示的数.左边的数为负数,右边的数为正数;根据有理数减法法则进行判断即可.【详解】由题图可知01b a c <<<<,所以0,10,0,10a b b a c c +<-<-<->故答案为:<,<,<,>【点睛】考核知识点:有理数减法.掌握有理数减法法则是关键.17.(0分)截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn 为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n ,n 为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a 的要求和10的指数n 的表示规律为关键,18.(0分)下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1;(2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1;(3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.19.(0分)一个跳蚤在一条数轴上,从0开始,第1次向右跳1单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,依此规律下去,当它跳第100落下时,落点在数轴上表示的数是_________ .-50【分析】根据题意列出式子然后计算即可【详解】根据题意落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)===-50故答案为:-50【点解析:-50【分析】根据题意,列出式子,然后计算即可.【详解】根据题意,落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)=()()()10021111÷--+-+-个=150-⨯=-50故答案为:-50.【点睛】此题考查的是有理数的加减法的应用,掌握有理数的加、减法法则和加法结合律是解决此题的关键.20.(0分)在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ .-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时当点在表示-2的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-2的点的左边时数为-2-3=-5;②当点在表示-2的点的解析:-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时,当点在表示-2的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-2的点的左边时,数为-2-3=-5;②当点在表示-2的点的右边时,数为-2+3=1;故答案为-5或1.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况.在数轴上到一个点的距离相等的点有两个,一个在这个点的左边,一个在这个点的右边.三、解答题21.(0分)计算:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-,=13-7,=6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭,=()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++-=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.22.(0分)点A 、B 在数轴上所表示的数如图所示,回答下列问题:(1)将A 在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C ,求出B 、C 两点间的距离是多少个单位长度?(2)若点B 在数轴上移动了m 个单位长度到点D ,且A 、D 两点间的距离是3,求m 的值.解析:(1)B 、C 两点间的距离是3个单位长度;(2)m 的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C 所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC =|2﹣5|=3;(2)分类考虑当点D 在点A 的左侧与右侧,利用AD=3,求出点D 所表示的数,再利用BD=m 求出m 的值即可.【详解】解:(1)点C 所表示的数为﹣3﹣1+9=5,∴BC =|2﹣5|=3.(2)当点D 在点A 的右侧时,点D 所表示的数为﹣3+3=0,所以点B 移动到点D 的距离为m =|2﹣0|=2,当点D 在点A 的左侧时,点D 所表示的数为﹣3﹣3=﹣6,所以点B 移动到点D 的距离为m =|2﹣(﹣6)|=8, 答:m 的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 23.(0分)计算(1)2125824(3)3-+-+÷-⨯(2)71113()2461224-+-⨯ 解析:(1)113-;(2)-19 【分析】 (1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3-+-+÷-⨯=114324()33-++⨯-⨯ =8433-+- =113- (2)71113()2461224-+-⨯ =7111324242461224-⨯+⨯-⨯ =-28+22-13=-19【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.24.(0分)(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯- 解析:(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭ 37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.25.(0分)将n 个互不相同的整数置于一排,构成一个数组.在这n 个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组.(1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1 2 3 4 =(2)若数组1,4,6,m 是“运算平衡”数组,则m 的值可以是多少?(3)若某“运算平衡”数组中共含有n 个整数,则这n 个整数需要具备什么样的规律? 解析:(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0.【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m 的方程,解方程即可;(3)根据“运算平衡”数组的定义可以得到n 个数的规律.【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0;(2)要使数组1,4,6,m 是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况,经计算得m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0.【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键.26.(0分)计算:(1)14-25+13(2)42111|23|()823---+-⨯÷ 解析:(1)2;(2)4【分析】 (1)根据有理数的加减运算,即可求出答案;(2)先计算乘方、绝对值、然后计算乘除,再计算加减运算,即可得到答案.【详解】解:(1)14251311132-+=-+=;(2)42111|23|()823---+-⨯÷=111834--+⨯⨯ =26-+=4.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则进行解题.27.(0分)表格记录的是龙岗区图书馆上周借书情况:(规定:超过200册记为正,少于200册记为负).(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?解析:(1)188册;(2)25册;(3)202册【分析】(1)由题意可知,周五借出的册数少于200册,即可解答.(2)根据正负数的定义分别求出周三、周四的册数,再解答即可.(3)将5天的册数分别求出,再求平均数即可.【详解】解:(1)200-12=188册.(2)(200+8)-(200-17)=208-183=25册.(3)[(200+21)+(200+10)+(200-17)+(200+8)+(200-12)]÷5=202册. 答:上星期五借出188册书,上星期四比上星期三多借出25册,上周平均每天借出202册.【点睛】主要考查正负数在实际生活中的应用,有理数加减乘除混合运算的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.28.(0分)计算:(1)()()128715--+--; (2)()()3241223125---÷+⨯--. 解析:(1)2-;(2)7.【分析】(1)先去括号,再进行有理数运算即可;(2)根据有理数混合运算顺序和运算法则计算可得.【详解】解:(1)12﹣(﹣8)+(﹣7)﹣15=12+8﹣7﹣15=(12+8)+(﹣7﹣15)=20﹣22=﹣2(2)﹣12﹣(﹣2)3÷45+3×|1﹣(﹣2)2|=﹣12﹣(﹣8)×54+3×|1﹣4|=﹣12+10+3×|﹣3|=﹣12+10+9=7【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.。
江苏省扬州市广陵区扬州中学教育集团树人学校2023-2024学年七年级上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________A.B.C.D.二、填空题9.若x=2是关于x的方程ax+3=5的解,则a=.10.如图是一个正方体的表面展开图,每个面上都标有字母.其中与字母A处于正方体相对面上的是字母.+的值为.们能看到的三种情况,如果记6的对面数字为a,2的对面数字为b,那么a b11(2)某户居民10月份缴纳的水费为66元,则该月用水量为多少立方米?27.某客运公司的甲、乙两辆客车分别从相距380千米的A,B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2小时时甲车先到达服务区C地,此时两车相距20千米,甲车在服务区C地休息了20分钟,然后按原速度开往B地;乙车行驶2小时10分钟时也经过C地,未停留继续开往A地.(1)求甲、乙两车行驶的速度分别是多少千米/小时:(2)乙车出发多长时间,两车相距200千米?28.如图,数轴上,O点与C点对应点的数分别是0、60,将一根质地均匀的直尺AB 放在数轴上(A在B的左边),若将直尺在数轴上水平移动,当A点移动到B点的位置时,B点与C点重合,当B点移动到A点的位置时,A点与O点重合.(1)直尺AB的长为___________个单位长度;(2)若直尺AB在数轴上,且满足B点与C点的距离等于B点与O点距离的3倍时,此时A点对应的数为___________;(3)当A点对应的数为20时,作为起始位置,直尺AB以2单位/秒的速度沿数轴匀速向右运动,同时点P从点A出发,以m个单位/秒的速度也沿数轴匀速向右移动,设运动时间为t秒.①若B、P、C三点恰好在同一时刻重合,则m的值为___________t 时,B、P、C三个点中恰好有一个点到另外两点的距离相等,请直接写出所②当15有满足条件的m的值.。
一、选择题(每题5分,共20分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 下列运算中,正确的是()A. 3^2 × 2^3 = 9 × 8B. (3^2)^3 = 3^6C. 2^3 ÷ 2^2 = 2D. 2^3 × 2^2 = 2^53. 下列方程中,无解的是()A. 2x + 3 = 5B. 3x - 4 = 2C. 2x + 5 = 0D. 3x + 7 = 04. 下列不等式中,正确的是()A. 3x < 6B. 2x > 4C. 4x ≤ 8D. 5x ≥ 105. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 梯形二、填空题(每题5分,共20分)6. 5的平方根是______,3的立方根是______。
7. 若a = 2,b = -3,则a^2 - b^2 = ______。
8. 下列函数中,y = 2x - 1是一次函数,y = x^2 + 1是______函数。
9. 下列图形中,周长最大的是______。
10. 若a = 2,b = -3,则a + b的倒数是______。
三、解答题(共60分)11. (10分)计算下列各式的值:(1)(3 + 2√2)^2(2)(2 - √3)(2 + √3)12. (10分)解下列方程:(1)2x - 5 = 11(2)3(x + 2) = 2(x - 1)13. (10分)已知函数y = 2x + 3,求:(1)当x = 1时,y的值是多少?(2)当y = 7时,x的值是多少?14. (15分)已知正方形的边长为4cm,求:(1)正方形的周长是多少cm?(2)正方形的面积是多少cm^2?(3)正方形的对角线长度是多少cm?(4)正方形的面积是正方形周长的多少倍?答案:一、选择题:1. C2. B3. D4. C5. A二、填空题:6. ±√2,√37. 78. 二次9. 长方形 10. -1/5三、解答题:11. (1)(3 + 2√2)^2 = 9 + 12√2 + 8 = 17 + 12√2(2)(2 - √3)(2 + √3) = 4 - 3 = 112. (1)2x - 5 = 11,移项得2x = 16,除以2得x = 8。
兰州市树人中学新初一分班数学试卷一、选择题1.一个零件长8厘米,画在设计图上的长度是16毫米,这幅图的比例尺是()A.15B.12C.5∶1 D.2∶12.4点钟后,从时针与分针第一次成90︒角,到时针与分针第二次成90︒角时,共经过()分钟(答案四舍五入到整数)。
A.60 B.30 C.40 D.333.一壶油,用去15,还剩5千克.这壶油原来有多少千克?正确的算式是( ).A.5+5× 15B.5÷15C.5÷(1+15) D.5÷(1-15)4.一个三角形三个内角度数的比是4∶3∶2,这个三角形是()。
A.钝角三角形B.等腰三角形C.直角三角形D.锐角三角形5.某食堂六月烧煤30t,比五月节约110,设五月烧煤xt,下列方程正确的是()。
A.1110⎛⎫-⎪⎝⎭x=30 B.1110⎛⎫+⎪⎝⎭x=30 C.30×1110⎛⎫-⎪⎝⎭=x6.下面这个立体图形,灵灵从右面看到的是()A. B. C.7.下列各个说法中,错误的是()。
A.三角形的面积一定,底与高成反比例B.实际距离和图上距离的比叫做比例尺C.每支铅笔的价钱一定,铅笔支数和总价成正比例D.被除数一定,除数和商成反比例8.把一个圆柱的底面平均分成若干个扇形,切开后拼成一个近似的长方体,表面积比原来增加40平方厘米,圆柱的底面半径是4厘米,那么圆柱的高是()厘米。
A.4 B.5 C.10 D.209.如果一种商品降价10%,再提价10%,那么,现在商品的价格与原来比较( )A.相等B.提高了C.降低了10.一个铁丝恰好围成一个圆,展开后将这个铁丝又折成一个正方形,那么这个圆与正方形关系的正确说法是()。
A.周长相等,面积变大B.周长相等,面积变小C.周长变大,面积相等D.周长变小,面积相等二、填空题11.3.6时=(________)分 3.051吨=(________)吨(________)千克0.106平方千米=(________)公顷 376立方米=(________)升十12.(________)∶(________)=35=9÷(________)=(________)(小数)=(________)%。
1. 下列数中,是偶数的是()A. 2.5B. 3.14C. 4D. 52. 下列图形中,不是轴对称图形的是()A. 等边三角形B. 长方形C. 平行四边形D. 正方形3. 下列运算中,正确的是()A. 2 + 3 = 5B. 2 × 3 = 6C. 2 ÷ 3 = 0.5D. 2 - 3 = -14. 下列代数式中,含有未知数的是()A. 3a + 2B. 5 - 2C. 3 × 4D. 2 ÷ 35. 下列等式中,正确的是()A. 3 × 4 = 12B. 4 × 3 = 12C. 3 + 4 = 7D. 3 - 4 = -16. 下列几何图形中,面积最大的是()A. 正方形B. 长方形C. 等腰三角形D. 等边三角形7. 下列关于直角三角形的说法中,正确的是()A. 直角三角形的两条直角边相等B. 直角三角形的斜边最长C. 直角三角形的面积最大D. 直角三角形的角最大8. 下列关于平行四边形的说法中,正确的是()A. 平行四边形的对边相等B. 平行四边形的对角相等C. 平行四边形的邻角互补D. 平行四边形的对角线相等9. 下列关于一次函数的说法中,正确的是()A. 一次函数的图像是一条直线B. 一次函数的图像是一条曲线C. 一次函数的图像是一条抛物线D. 一次函数的图像是一条双曲线10. 下列关于一元一次方程的说法中,正确的是()A. 一元一次方程的解只有一个B. 一元一次方程的解有两个C. 一元一次方程的解无解D. 一元一次方程的解有无数个1. 2 × 3 + 4 ÷ 2 = ______2. 5 - 3 × 2 = ______3. 3 × (2 + 4) = ______4. 2 ÷ (3 - 1) = ______5. 3a + 2 - 4 = ______6. 5 × (3 + 2) = ______7. 2a + 3 = 7 a = ______8. 4 - 2a = 1 a = ______9. 2a + 3 = 7 a = ______10. 4 - 2a = 1 a = ______三、解答题(每题10分,共30分)1. 求下列各式的值:(1)5 × 3 + 2 ÷ 2 - 4(2)3 × (2 - 1) + 4 ÷ 22. 求下列各式的值:(1)2a + 3 = 7 a = ______(2)4 - 2a = 1 a = ______3. 求下列各式的值:(1)3 × (2 + 4) - 5 ÷ 2(2)2a + 3 = 7 a = ______四、应用题(每题10分,共20分)1. 小明有5元,小华有3元,他们一起买了一本书,书的价格是8元,他们一共需要多少钱?2. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。
考试时间:90分钟满分:100分一、选择题(每题4分,共40分)1. 下列各数中,正数是()。
A. -5B. 0C. 2.5D. -3.22. 若a > b,则下列不等式中正确的是()。
A. a - b > 0B. a + b > 0C. a - b < 0D. a + b < 03. 已知直角三角形两直角边长分别为3cm和4cm,则斜边长为()。
A. 5cmB. 7cmC. 8cmD. 9cm4. 下列函数中,是反比例函数的是()。
A. y = 2x + 1B. y = x^2C. y = k/x(k ≠ 0)D. y = 3x - 25. 在平面直角坐标系中,点P(-2,3)关于y轴的对称点坐标是()。
A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,-3)6. 下列分数中,最大的是()。
A. 1/3B. 1/4C. 1/5D. 1/67. 下列各式中,正确的是()。
A. 5a = 5 aB. 5a = 5 + aC. 5a = 5 - aD. 5a = 5 / a8. 一个长方形的长是8cm,宽是4cm,它的周长是()。
A. 16cmB. 20cmC. 24cmD. 28cm9. 下列各数中,有理数是()。
A. √9B. √16C. √25D. √3610. 下列各式中,正确的是()。
A. 2^3 = 2 2 2 = 8B. 2^3 = 2 + 2 + 2 = 6C. 2^3 = 2 - 2 - 2 = -2D. 2^3 = 2 / 2 / 2 = 1/8二、填空题(每题5分,共50分)11. 3a - 5a = ______12. 2/3 × 4 = ______13. 1/2 + 1/4 = ______14. 5x - 3x + 2x = ______15. 3/4 - 1/2 = ______16. (3/4) × (2/3) = ______17. 2x^2 + 3x - 2 = ______18. (x + 3)(x - 2) = ______19. 5^2 = ______20. (2/5)^3 = ______三、解答题(每题10分,共40分)21. 解方程:2x - 5 = 3x + 122. 求下列函数的值:y = 3x - 2,当x = 4时,y = ______23. 一个长方形的长是x + 2cm,宽是x - 1cm,求这个长方形的面积。
树人学校七年级入学测试题
姓名___________ 家长手机__________________
一、填空题:
1、一个数的千万位是最小的合数,千位是最小的质数,百位上是最小的自然数单位,其余各位是0,这个数是( )。
改写成用万作单位的数是( )万。
2、已知A ×211=B×0.05=C ÷3
11=D ÷10,A 、B 、C 、D 中最大的数是( ),最小的数是( )。
3、54>7>2
1,□中可以填写的所有整数有( )。
4、一个分数的分子加7等于1,若分子减1就等于
2
1,这个分数是( ) 5、一个两位数被2、3、5除都余1,这个两位数最大是( )
6、甲数的43是乙数的8
5,乙数是甲数的( )%。
甲数与乙数的比是( ):( )。
7、一个等腰三角形,它的一个底角的度数是顶角度数的4倍,这个等腰三角形的顶角是( )度。
8、一个圆柱体水桶,桶内直径4分米,桶深5分米,水深3分米,水的体积比水桶容积少( )%。
9、一个梯形的上底与下底的比是3:5,上底比下底短1米,下底比高多25%,这个梯形的面积是( )。
10、要把一块长44米、宽28米的长方形地划成相等的小方块而没有剩余,最大每边长( )米,共划成( )块。
二、判断题:
1、一种商品先提价10%后再打九折出售,现售价比原价低。
( )
2、如果甲数的21等于乙数的3
1,那么乙数大于甲数。
( ) 3、圆的面积与半径的平方成正比例。
( )
4、棱长是6厘米的正方体,表面积和体积相等。
( )
5、10克盐完全溶解在100克水中制成盐水,那么,盐水的浓度是10%。
三、选择题:
1、如果a =5
3b (a 、b 均不为0),那么a :b =( ) A 、3:5 B 、5:3 C 、3:8
2、a 是奇数,b 是偶数,ab 是一个( )数。
A 、奇
B 、偶 3、甲
乙
图中,甲的周长( )乙的周长,甲的面积( )乙的面积。
A 、>
B 、=
C 、﹤
D 、无法确定
□
4、表示x 、y 成反比例关系的式子是( )
A 、x-y=5
B 、y=4
3x C 、y+x=20 D 、x=y 7 四、计算题:
1、求未知数x 。
312:x =0.4:7
21 8114131-=--+x x
2、用简便方法计算。
7
2758.85410+⎪⎭⎫ ⎝⎛-- 2512575.252.3417+++ 125.36.38134.7813⨯+-⨯
3、脱式计算:
15832452÷⎪⎭⎫ ⎝⎛-⨯ ⎪⎭
⎫ ⎝⎛⨯+⨯÷5333223176.3539
⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⨯25.01674398 53214315175.3÷⎥⎦⎤⎢⎣
⎡⨯⎪⎭⎫ ⎝⎛+-
五、列式解答。
1、4.8减去511的差乘54除6
1的商,积是多少?
2、甲数是40,比乙数的80%还少20,乙数是多少?
六、如图,ABC 为等腰直角三角形,E 为AC 边中点,求阴影部分面积。
E
A B 4cm C
七、应用题:
1、妈妈1999年6月1日把2000元钱存入银行,定期三年,年利率为2.85%,到期时应交20%的利息税,到2002年6月1日取款时,妈妈多取回多少元?
2、甲、乙、丙三人环湖散步,湖的周长是3000米。
他们三人从同一地点同时出发,甲、丙同向,乙与甲、丙反向,甲和乙相遇需7.5分钟,再过17.5分钟甲遇到丙,如果丙跑一圈,甲就跑两圈。
求甲的速度?
3、两辆汽车同时从A 地开往B 地,甲汽车每小时行80千米,乙汽车每小时行120千米,当乙汽车比甲汽车多行200千米时,甲汽车正好行了全程的40%,问A 地到B 地的路程是多少千米?
4、把一个棱长1米的正方体钢块铸造成底面积为12平方分米的一个圆柱,再按1:3分成两段,求每段圆柱的长各是多少米?
5、甲、乙两桶油,甲桶装油的重量比乙桶少120千克,如果从乙桶取出70千克放入甲桶中,则甲桶油的重量反而比乙桶多8
1,原来乙桶油重多少千克?
6、一瓶酒精,第一次倒出31,然后倒回瓶中40克,第二次倒出瓶中酒精的9
5,第三次倒出180克,瓶中还剩下60克,原来瓶中有酒精多少克?。