【最新】浙江省杭州市数学中考模拟试卷 (27)及答案
- 格式:doc
- 大小:807.00 KB
- 文档页数:12
2023年浙江省杭州市中考数学真题模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.正方形 ABCD 的边长为 1,对角线 AC 、BD 相交于点O ,若以 O 为圆心作圆,要使点A 在⊙O 外,则所选取的半径可能是( )A .12BCD .22.若抛物线2-6y x x c =+的顶点在x 轴上,则 c 的值为( )A .9B .3C .-9D .0 3.一个正方形的对角线长为2 cm ,则它的面积是( )A .2 cm 2 8.4 cm 2 C .6 cm 2 D .8 cm 2 4.8名学生在一次数学测试中的成绩为80,82,79,69,74,78,x ,81,这组成绩的平均数是77,则x 的值为( )A .76B .75C .74D .735.下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a6.某市气象预报称:“明天本市的降水概率为70%”,这句话指的是( )A .明天本市70%的时间下雨,30%的时间不下雨B .明天本市70%的地区下雨,30%的地区不下雨C .明天本市一定下雨D .明天本市下雨的可能性是70%7.已知∠α= 42°,则∠α的补角等于( )A . 148°B . 138°C .58°D . 48°8.已知数据:25,21,23,25,29,27,28,25,27,30,22,26,25,24,26,28,26,25,24,27.在列频数分布表时,如果取组距为2,那么落在24.5~26.5这一组的频率是 ( )A .0.6 B.0.5 C.0.4 D.0.39.如图,8×8方格纸的两条对称轴EF ,MN 相交于点0,对图a 分别作下列变换:①先以直线MN 为对称轴作轴对称图形,再向上平移4格;②先以点0为中心旋转180°,再向右平移1格;③先以直线EF 为对称轴作轴对称图形,再向右平移4格,其中能将图a 变换成图b 的是( )A .①②B .①③C .②③D .③二、填空题10.一次函数y kx b =+的图象经过点A(0,2),B(3,0),则此函数的解析式为 ;若将该图象沿x 轴向左平移4个单位,则新图象对应的函数解析式是 .11.在坐标平面上点(x+4,2y-1)与点(y-2,8- x)表示同一点,则点(x ,y)在坐标平面上的第 象限内.12.一组数据1,2,3,x 的平均数是4,则这组数据的中位数是 .13.如果4n x y 与2m xy 相乘的结果是572x γ,那么m ,n = .14.某市某中学随机调查了部分九年级学生的年龄,并画出了这些学生的年龄分布统计图(如图),那么,从该校九年级中任抽一名学生,抽到学生的年龄是l6岁的概率是 .15.某一天杭州的最低气温是零下3℃,最高气温是零上8℃,则这一天杭州的最大温差是 ℃.16.如图,DB=3 cm ,BC=7 cm ,C 是AD 的中点,则AB= .17.请你写出两个在1~5之间的无理数 .18.太阳的半径约是69660千米,用科学记数法表示(保留3个有效数字)约是 千米.19. 计算:32()5-= ;332⨯= ;3(32)⨯= ;32(3)(4)-⨯-= ;22233()44--= . 20.最大的负整数是 ,绝对值最小的数是 .三、解答题21.如图,PA 、PB 是⊙O 的切线,A 、B 为切点,∠OAB =30°.(1)求∠APB 的度数;(2)当OA =3时,求AP 的长.22.某人骑自行车以每时10km 的速度由A 地到达B 地,路上用了6小时.(1)写出时间t 与速度v 之间的关系式.(2)如果返程时以每时12km 的速度行进,利用上述关系式求路上要用多少时间?(1)t=60v; (2)5h .23.如图,正方形网格中的每个小正方形边长都是1,•每个小格的顶点叫做格点.以格点为顶点分别按下列要求画图:(1)在图甲中,画出一个平行四边形,使其面积为6;(2)在图乙中,画出一个梯形,使其面积为6.24. 如图,已知矩形ABCD 中,E 是AD 上的一点,F 是AB 上的一点,EF ⊥EC ,且EF=EC ,DE=4cm ,矩形ABCD 的周长为32cm ,求AE 的长.25.为了了解某中学九年级175名男生的身高情况,从中抽测了50名男生的身高,下面是数据整理与计算的一部分:(1)填写频率分布表中未完成的部分.(2)根据整理与计算回答下列问题:该校九年级男生身高在155.5~159.5cm 范围内的人数是 ,占 %.(3)绘制频数分布折线图.26.比较下面 4 个算式结果的大小(在横线上填“>”“<”或“=”).2245+ 245⨯⨯;22(1)2-+ 2(1)2⨯-⨯;221()3+123; 2233+ 233⨯⨯.通过观察归纳,写出反映这种规律的一般结论.2 1 E D C B A27.如图,在△ABC 中,AB =AC ,D 为 BC 边上的一点,∠BAD = ∠CAD ,BD = 6cm ,求BC 的长.28.如图,图中有哪些直线互相平行?为什么?29. 如图,已知在△ABC 中,BE 和CD 分别为∠ABC 和∠ACB 的平分线,且BD=CE ,∠1=∠2.说明BE=CD 的理由.30.如图,已知直线AB 与CD 、EF 相交于同一点0,且∠AOE=122°,∠BOC=107°. 求∠DOF 的度数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.A4.D5.C6.D7.B8.C9.D二、填空题10.223y x =-+,223y x =--11.二12.2.513.3,414.92015. 1116.11 cm17.18.6.97×10419.8125 ,24,216,432,451620.-1 ,0三、解答题21.解:(1)∵在△ABO 中,OA =OB ,∠OAB =30°∴∠AOB =180°-2×30°=120°∵PA 、PB 是⊙O 的切线∴OA ⊥PA ,OB ⊥PB .即∠OAP =∠OBP =90°∴在四边形OAPB 中,∠APB =360°-120°-90°-90°=60°.(2)如图①,连结OP,∵PA 、PB 是⊙O 的切线,∴PO 平分∠APB ,即∠APO =12∠APB =30° 又∵在Rt △OAP 中,OA =3, ∠APO =30°,∴AP =tan 30OA °=23.解:图形略,答案不惟一.24.解:在Rt△AEF和Rt△DEC中,∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.又∠FAE=∠EDC=90°,EF=EC,∴Rt△AEF≌Rt△DCE.∴AE=CD,AD=AE+4.∵矩形ABCD的周长为32 cm,∴2(AE+AE+4)=32.解得,AE=6 (cm).25.(1)略;(2)14人,8;(3)略26.>,>,>,= 一般结论:设两数为a,b,则a2+b2≥2ab(当a=b时,等号成立) 27.∵∠BAD=∠CAD,∴AD是∠BAC的平分线.∵AB=AC,∴△ABC是等腰三角形.∴AD是△ABC的BC边上的中线,∴BD=CD=12 BC.∵BD=6cm,∴BC=12(cm)28.a∥b,m∥n,同位角相等,两直线平行29.BE和CD分别为∠ABC和∠ACB的平分线,可得∠ABC=2∠1,∠ACB=2∠2, 由于∠1=∠2,∴∠ABC=∠ACB,△BCD≌△CBE(AAS),∴BE=CD.30.49°。
2023年浙江省杭州市中考数学模拟考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在ABC △中,90C AC BC ∠=,,的长分别是方程27120x x -+=的两个根,ABC△内一点P 到三边的距离都相等.则PC 为( )A .1B .2C .322D .222.下列各式正确的是( )A .sin30°+sin30°=sin60°B .tan60°-tan30°=tan30°C .cos (60°-30°)=cos60°-cos30°D .3tg30°=3 3.已知1x =-是一元二次方程20x px q ++=的一个根,则代数式p q -的值是( )A .1B .-1C .2D .-24.下列命题是假命题的是( )A .四个角相等的四边形是矩形B .对角线互相平分的四边形是平行四边形C .四条边相等的四边形是菱形D .对角线互相垂直且相等的四边形是正方形5.有两棵树,高度分别为6米、2米,它们相距5米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米( )A .41B .41C .3D .96.下列各曲线中不表示y 是x 的函数的是( )A .B .C .D . 7.如图,AB ∥CD ,如果∠2=2∠1,那么∠2 为( ) A .105° B .120° C .135°D .150°8.下列长度的三条线段,能组成三角形的是( )A . 1,2,3B .1,3,5C . 2,2,4D .2,3,49.图(1)、图 (2)分别是2005~2008年我国某省初中在校生人数和初中学校数目统计图,由图可知,2005~2008年,该省初中( )A .在校生人数逐年增加,学校数也逐年增加B .在校生人数逐年增加,学校数逐年减少C .在校生人数逐年减少,学校数也逐年减少D .在校生人数逐华减少,学校数逐年增加10.若a a ±=-时,a 是( )A . 全体实数B . 正实数C .负实数D .零 11.已知线段AB=3 cm ,延长BA 到C 使BC=5 cm ,则AC 的长是( )A .11 cmB .8 cmC .3 cmD .2 cm 二、填空题12.皮影戏中的皮影是由 投影得到的.13.两个相似三角形的周长分别为8cm 和16cm ,则它们的对应高的比为 .14.如图,菱形ABCD 的对角线AC =24,BD =10,则菱形的周长L=________.15. 解方程:2324x =-,x = .16.点P(2,-3)到x 轴的距离是 ,到y 轴的距离是 .17.如图,若∠1+∠2 =180°,则1l ∥2l ,试说明理由(填空).∵∠2+∠3= ( )又∵∠1+∠2=180°( ),∴∠1= ( ),∴1l ∥2l ( )18.轮船在静水中每小时行驶akm ,水流的速度为每小时bkm ,则轮船在逆流中行驶skm 需要 小时.解答题19.一个长方形的面积等于(2268a b ab +)cm 2,其中长是(34a b +)cm ,则该长方形的宽是 cm .20.将与水平方向成一定角度的线段AB 向右平移3个单位得到CD ,其中点A 与点C 对应,点B 与点D 对应,则AC 与BD 的关系是 .三、解答题21.如图,在△ABC 中,CD 交 AB 于点 E ,且AE :EB =1:2,EF ∥BC ∥AD ,EF 交AC 于点F ,ADE =1S ∆,求BCE s ∆和AEF S ∆.22.有一个抛物线的拱形隧道,隧道的最大高度为 6m ,跨度为 8m ,把它放在如图所示的平面直角坐标系中.(1)求这条抛物线所对应的函数解析式;(2)若要在隧道壁上 P 点处 (如图 )安装一盏照明灯,灯离地面高 4.5 m ,求灯与点B 的距离.23.已知:如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.24.如图,已知四边形ABCD是等腰梯形,CD∥BA,四边形AEBC是平行四边形.求证:∠ABD=∠ABE.25.如图所示,人民公园的入口处原设有三级台阶,每级台阶高为 20 cm,深为 30 cm.但这三级台阶给残疾人带来了诸多的不便,为此,园林工作人员拟将台阶改成斜坡,原台阶的起始点为 A,斜坡的起始点为 C,且拟定斜坡的坡比为 1:8. 求AC 与 EC 的长. (精确到0. 1 cm)26.在直角坐标中,画出以A(0,0),B(3,4),C(3,-4)为顶点的△ABC,并判断△ABC的形状.27.解下列不等式组:(1)1212x--≤<(2)2x1511 32513(1)xx x-+⎧-≤⎪⎨⎪-<+⎩28.如图,在△ABC 中,AB=AC,∠A =30°,BD是△ABC 的高,求∠CBD 的度数.29.观察下列各式:2x x x-+=-(1)(1)123-++=-x x x x(1)(1)1324-++÷=-x x x x x(1)(1)1…由上面的规律:(1)求5432+++++的值;222221(2)求200820072006+++++的个位数字.2222130.在下列方框内填上“+”,“-”,“×”,“÷”或小括号,使算式成立.①4□4□4□4=1②4□4□4□口4=3③4□10□6□3=24【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.D3.A4.D5.B6.D7.B8.D9.B10.D11.D二、填空题12.中心13.1214. 5215.2m =-.3,217.180°;平角的定义;已知,∠3;同角的补角相等;同位角相等,两直线平行 18.b a s-19.2ab 20.平行且相等三、解答题21.∵AD ∥BC,∵△ADE ∽△BCE .∵12AE BE =,1AED s ∆=,∴4BEC s ∆=, 又∵AEC 21BEC S S ∆∆=,∴2AEC S ∆=,∵12AEF CEF S AF S FC ∆∆==,∴23AEF S ∆=. 22.(1)由题意,设26(0)y ax a =+<,∵ 点 A(—4,0)和点 B(4,0)在抛物线上, ∴20(4)6a =⋅-+,得38a =-. 所求函数解析式是2368y x =-+ (2)将y=4. 5 代入2368y x =-+中,得2x =±,∴P(-2,4. 5). 作 PQ ⊥AB ,连接 PB ,则 Q(—2,0),∴ PQ= 4.5 , BQ= 6. ∴224.567.5PB =+=,即灯与B 的距离是7. 5 m .23.(1)证明:在△A BC 中, AB =AC ,AD ⊥BC .∴ ∠BAD =∠DAC .∵ AN 是△ABC 外角∠CAM 的平分线,∴ MAE CAE ∠=∠.∴∠DAE=∠DAC+∠CAE=⨯21180°=90°.又∵ AD⊥BC,CE⊥AN,∴ADC CEA∠=∠=90°,∴四边形ADCE为矩形.(2)例如,当AD=12BC时,四边形ADCE是正方形.证明:∵ AB=AC,AD⊥BC于D.∴ DC=12BC.又 AD=12BC,∴ DC=AD.由(1)四边形ADCE为矩形,∴矩形ADCE是正方形.24.证△ABD≌△BAC25.AC =420 cm,BC= 483.7cm26.作图略,△ABC为等腰三角形27.(1)-1<x≤5;(2)-1≤x<228.15°29.(1)63;(2)130.答案不唯一如①4×4÷4÷4=1 ②(4+4+4)÷4=3 ③4+10× 6÷3 =24。
中考模拟试卷数学卷考试时间:120分钟 满分:120分一.选择题 (本题有10小题,每小题3分,共30分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(原创)2015年11月22日,“球冠杯”萧山戴村山地越野赛在戴村举行。
此次越野赛以徒步登山为主,线路两条,分为健身组路线、挑战组路线。
其中,健身组路线全长12.88km 。
以下用科学计数法表示12.88km 正确的是( )A. 310288.1⨯ mB. 410288.1⨯ mC. 510288.1⨯ mD.610288.1⨯m 2.(原创)[]=--2)1(x ( )A.122++x xB. 122++-x xC. 122+-x xD.122-+-x x 3.(原创)下列关于“0”的说法错误的是( )A.0的相反数是0B. 0的算术平方根是0C. 0是无理数D.0既不是正数也不是负数 4.(原创)已知某几何体的三视图(单位:cm )则该几何体的底面积等于( )2cm A. 12 B. 24 C. 128 D. 255.(原创)在RT △ABC 中,已知∠C=90°,∠A=20°,AB =5,则AC=( )A. ο20sin 5 B. ο70cos 5 C. ο20tan 5 D. ο20cos 56.(改编)设26,22,35-=-=-=c b a ,则 a ,b ,c 的大小关系式( )A. a >b >cB. c >b >aC. c >a >bD. b >c >a7.(改编)反比例函数y =kx 的图象经过二次函数 y =ax 2+bx 图象的顶点 (-12,m )(m >0),则A. a =b +2kB. a =b -2kC. k <b <0D. a <k <08.以下是某手机店1~4月份的统计图,对3、4月份三星手机的销售情况四个同学得出的以下四个结论,其中正确的为( )A. 4月份三星手机销售额为65万元B. 4月份三星手机销售额比3月份有所上升C. 4月份三星手机销售额比3月份有所下降D. 3月份与4月份的三星手机销售额无法比较,只能比较该店销售总额 9.(原创)如右图所示,⊙O 内OAB ∆绕圆心O 顺时针旋转90°得到B A O ''∆。
2023年浙江省杭州市中考数学模拟卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算42-÷的结果是().A.2-B.2C.12-D.122.第四届世界茉莉花大会、2022年中国(横州)茉莉花文化节于9月19日、20日在南宁市和横州市两地举行,茉莉花产业成了横州市一张靓丽的名片,目前横州市茉莉花种植面积约125000亩.数据125000用科学记数法可表示为()A.60.12510⨯B.51.2510⨯C.412.510⨯D.312510⨯3.计算62a a⋅的结果是()A.3a B.4a C.8a D.12a4.在平面直角坐标系中,点(1,2)P-关于原点对称的点在()A.第一象限B.第二象限C.第三象限D.第四象限5.祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献.数学活动课上,孙老师对圆周率的小数点后100位数字进行了统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数与中位数分别为()A.14,5B.5,9C.9,5D.14,4.56.从甲、乙、丙、丁四名青年骨干教师中随机选取两名去参加“同心向党”演讲比赛,则恰好抽到甲、丙两人的概率是()A.18B.16C.14D.127.如果关于x的一元二次方程210ax bx++=的一个解是x=1,则代数式2022-a-b 的值为()A.-2022B.2021C.2022D.20238.若一个多边形的每一个内角都等于140︒,则这个多边形的边数是()A.7B.8C.9D.109.某活动小组购买了4个篮球和5个足球,一共花费435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意可列方程组为()A .343435x y y y -=⎧⎨+=⎩B .345435y x x y -=⎧⎨+=⎩C .345435x y x y =-⎧⎨+=⎩D .345435x y x y -=⎧⎨+=⎩10.已知在平面直角坐标系xOy 中,过点O 的直线交反比例函数1y x=的图象于A ,B 两点(点A 在第一象限),过点A 作AC x ⊥轴于点C ,连结BC 并延长,交反比例函数图象于点D ,连结AD ,将ACB △沿线段AC 所在的直线翻折,得到1ACB ,1AB 与CD 交于点E .若点D 的横坐标为2,则AE 的长是()A .23BC.2D .1二、填空题11.分解因式:229x y -=________.12.五线谱是一种记谱法,通过在五根等距离的平行横线上标以不同时值的音符及其他记号来记载音乐.如图,A ,B ,C 为直线l 与五线谱的横线相交的三个点,则AB BC的值是_______.13.不等式组34214x x +<⎧⎪⎨-≤⎪⎩的解为_________.14.如图,一辆小车沿倾斜角为α的斜坡向上行驶26米,已知12cos 13α=,则小车上升的高度是________米.15.如图,以AD 为直径的半圆O 经过Rt △ABC 的斜边AB 的两个端点,交直角边AC 于点E .B 、E 是半圆弧的三等分点,弧BE 的长为23π,则图中阴影部分的面积为_____.16.如图,菱形OABC 的一边OA 在x 轴的负半轴上,O 是坐标原点,A 点坐标为()50-,,对角线AC 和OB 相交于点D 且40AC OB ⋅=.若反比例函数(0)ky x x=<的图象经过点D ,并与BC 的延长线交于点E ,则OCE S = _____.三、解答题17.计算:(1)(052020--;(2)x (1-x )+(x +1)(x -1).18.某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.19.已知,如图,点A ,D ,B ,E 在同一条直线上,,,AC EF AD EB A E ==∠=∠,BC 与DF 交于点G .(1)求证:ABC EDF △≌△;(2)当110CGD ∠=︒时,求GBD ∠的度数.20.如图,ABC 内接于O ,AB AC =,ADC △与ABC 关于直线AC 对称,AD 交O 于点E .(1)求证:CD 是O 的切线.(2)连接CE ,若1cos 3D =,6AB =,求CE 的长.21.小李、小王分别从甲地出发,骑自行车沿同一条路到乙地参加公益活动.如图,折线OAB 和线段CD 分别表示小李、小王离甲地的距离y (单位:千米)与时间x (单位:小时)之间的函数关系.根据图中提供的信息,解答下列问题:(1)求小王的骑车速度,点C 的横坐标;(2)求线段AB 对应的函数表达式;(3)当小王到达乙地时,小李距乙地还有多远?22.如图,在正方形ABCD 中,6AB =,E 为AB 的中点,连接CE ,作CF EC ⊥交射线AD 于点F ,过点F 作FG CE ∥交射线CD 于点G ,连接EG 交AD 于点H .(1)求证:CE CF =.(2)求HD 的长.(3)如图2,连接CH ,点P 为CE 的中点,Q 为AF 上一动点,连接PQ ,当QPC ∠与四边形GHCF 中的一个内角相等时,求所有满足条件的DQ 的长.23.如图1,抛物线()2102y x bx c c =++<与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,过点C 作CD x ∥轴,与抛物线交于另一点D ,直线BC 与AD 相交于点M .(1)已知点C 的坐标是()04-,,点B 的坐标是()40,,求此抛物线的解析式;(2)若112b c =+,求证:AD BC ⊥;(3)如图2,设第(1)题中抛物线的对称轴与x 轴交于点G ,点P 是抛物线上在对称轴右侧部分的一点,点P 的横坐标为t ,点Q 是直线BC 上一点,是否存在这样的点P ,使得PGQ △是以点G 为直角顶点的直角三角形,且满足GQP OCA ∠=∠,若存在,请直接写出t 的值;若不存在,请说明理由.参考答案:1.A【分析】按照“两数相除,异号得负,并把绝对值相除”的法则直接计算即可.【详解】解:(-4)÷2=-2故选:A .【点睛】本题考查有理数除法运算,解题的关键是熟练掌握运算法则,注意先确定运算的符号,同号得正,异号得负.2.B【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:5125000 1.2510=⨯.故选:B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.C【分析】根据同底数的幂相乘,底数不变,指数相加求解即可.【详解】解:62a a ⋅=a 6+2=a 8,故选C .【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解答本题的关键.4.D【分析】根据关于原点对称的点坐标变换规律即可得.【详解】解: 点(1,2)P -关于原点对称的点的坐标为(1,2)-,∴在平面直角坐标系中,点(1,2)P -关于原点对称的点在第四象限,故选:D .【点睛】本题考查了关于原点对称的点坐标变换规律,熟练掌握关于原点对称的点坐标变换规律是解题关键.5.C【分析】直接根据众数和中位数的定义可得答案.【详解】解:圆周率的小数点后100位数字的出现次数最多的为9,故众数为9;处于最中间的两位数为5和5,所以中位数为5故答案为:9,5.【点睛】本题主要考查众数和中位数,解题的关键是掌握求一组数据的众数和中位数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.找出处于最中间的两位数取他们的平均数,即为中位数.6.B【分析】根据列表法求概率即可.【详解】解:设,,,A B C D 表示甲、乙、丙、丁四名青年骨干教师,列表如下AB C D A --AB AC AD B BA --BC BD C CA CB --CD DDADBDC--共有12种等可能结果,其中恰好抽到甲、丙两人有2种结果,故恰好抽到甲、丙两人的概率为21=126.故选B【点睛】本题考查了列表法求概率,掌握求概率的方法是解题的关键.7.D【分析】根据一元二次方程解得定义即可得到1a b +=-,再由()20222022a b a b --=-+进行求解即可.【详解】解:∵关于x 的一元二次方程210ax bx ++=的一个解是x =1,∴10a b ++=,∴1a b +=-,∴()()20222022202212023a b a b --=-+=--=,故选D .【点睛】本题主要考查了代数式求值和一元二次方程的解,熟知一元二次方程解得定义是解题的关键.8.C【分析】先求出外角的度数,根据多边形的外角和等于360︒即可求出多边形的边数.【详解】解:∵一个多边形的每一个内角都等于140︒,∴这个多边形的每一个内角对应的外角度数为18014040︒-︒=︒,∵多边形的外角和为360°,∴多边形的边数为360940°=°,故选:C .【点睛】本题考查了多边形的内角和外角,能灵活运用多边形的外角和等于360︒进行求解是解此题的关键.9.D【分析】设篮球的单价为x 元,足球的单价为y 元,根据题意列出二元一次方程组,即可求解.【详解】解:设篮球的单价为x 元,足球的单价为y 元,由题意得:345435x y x y -=⎧⎨+=⎩,故选:D .【点睛】本题考查了列二元一次方程组,找到等量关系是解题的关键.10.B【分析】求出直线BC ,1AB 的解析式,联立两个解析式,求出E 点坐标,利用两点间距离公式,进行求解即可.【详解】解:设点A 的坐标为1,m m ⎛⎫ ⎪⎝⎭,则点B 的坐标为1,m m ⎛⎫-- ⎪⎝⎭∵AC x ⊥轴,∴(),0C m ,设直线BC 的解析式为y kx b =+,把1,,B m m ⎛⎫-- ⎪⎝⎭(),0c m 代入,得10km b m mk b ⎧-+=-⎪⎨⎪+=⎩,解得:21212k m b m ⎧=⎪⎪⎨⎪=-⎪⎩,∴2122x y m m=-,∵点D 的横坐标为2,∴12,2D ⎛⎫ ⎪⎝⎭把点12,2D ⎛⎫⎪⎝⎭代入2122x y m m =-得:121,2m m ==-(舍),∴()()()1,1,1,11,0A B C --,直线BC 的解析式为:1122y x =-,∵将ACB △沿线段AC 所在的直线翻折,得到1ACB ,∴点1B 的坐标为()3,1-,设直线1AB 的解析式为y ax n =+,把()1,1A ,()13,1B -代入可得:1,31a n a n +=⎧⎨+=-⎩解得:12a n =-⎧⎨=⎩,∴2y x =-+,联立21122y x y x =-+⎧⎪⎨=-⎪⎩,解得:5313x y ⎧=⎪⎪⎨⎪=⎪⎩,∴51,33E ⎛⎫⎪⎝⎭,∴3AE ==.故选:B .【点睛】本题考查反比例函数与一次函数综合应用,坐标系下的旋转.熟练掌握旋转的性质,正确的求出一次函数的解析式,是解题的关键.11.()()33x y x y +-##()()33x y x y -+【分析】直接根据平方差公式因式分解即可求解.【详解】解:229x y -=()()33x y x y +-,故答案为:()()33x y x y +-.【点睛】本题考查了因式分解,掌握平方差公式是解题的关键.12.2【分析】过点A 作AD a ⊥于D ,交b 于E ,根据平行线分线段成比例定理列出比例式,计算即可.【详解】过点A 作AD a ⊥于D ,交b 于E,∵a b ,∴2==AB AE BC ED,故答案为:2.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.13.21x -£<【分析】分别解出两个不等式的解集,并将解集表示在数轴上,找到公共解集即可.【详解】解:34214x x +<⎧⎪⎨-≤⎪⎩①②解不等式①得,1x <解不等式②得,2x ≥-将解集表示在数轴上,如图,∴不等式组的解集为21x -£<故答案为:21x -£<.【点睛】本题考查解一元一次不等式组、在数轴上表示不等式的解集等知识,是基础考点,掌握相关知识是解题关键.14.10【分析】由题意易得该直角三角形的三边之比为5∶12∶13,进而可得5sin 13α=,然后问题可求解.【详解】解:∵12cos 13α=,∴该直角三角形的三边之比为5∶12∶13,∴5sin 13α=,∵小车沿倾斜角为α的斜坡向上行驶26米,∴小车上升的高度是26sin 2056113α⨯=⨯=米;故答案为10.【点睛】本题主要考查解直角三角形的应用,熟练掌握三角函数是解题的关键.1523π【分析】连接BD ,BE ,BO ,EO ,由 BE 的长为23π,可求出圆的半径,然后根据图中阴影部分的面积为:S △ABC -S 扇形BOE ,即可求解.【详解】解:连接BD ,BE ,BO ,EO ,∵B ,E 是半圆弧的三等分点,∴∠EOA =∠EOB =∠BOD =60°,∴∠BAC =∠EBA =30°,∴BE ∥AD ,∵ BE 的长为23π,∴6021803R ππ=,解得R =2.∴AB =AD ∴BC =12AB3,AC =13,22ABC s BC AC ∆=⨯⨯==∵△BOE 和△ABE 同底等高,∴△BOE 和△ABE 面积相等,∴图中阴影部分的面积为:S △ABC -S 扇形BOE 23π,23π.【点睛】本题考查扇形的面积公式,解直角三角形,勾股定理,圆周角定理的推论,添加辅助线,利用割补法求面积是关键.16.2【分析】如图所示,过点C 作CG AO ⊥于G ,根据菱形和三角形的面积公式可得1210OAC OABC S S ==菱形V ,再由5OA =,求出CG 4=,在Rt OGC △中,根据勾股定理得3OG =,即()34C -,,根据菱形的性质和两点中点坐标公式求出()42D -,,将D 代入反比例函数解析式可得k ,进而求出点E 坐标,最后根据三角形面积公式分别求得OCE S 即可.【详解】解:如图所示,过点C 作CG AO ⊥于G ,∵40BO AC ⋅=,∴1202OABC BO S AC =⋅=菱形,∴1210OAC OABC S S ==菱形V ,∴1102AO CG ⋅=,∵()50A -,,∴5OA =,∴CG 4=,在Rt OGC △中,54OC OA CG ===,,∴3OG ==,∴()34C -,,∵四边形OABC 是菱形,∴()84B -,,∵D 为BO 的中点,∴()42D -,,又∵D 在反比例函数上,∴428k =-⨯=-,∵()34C -,,∴E 的纵坐标为4,又∵E 在反比例函数上,∴E 的横坐标为824-=-,∴()24E -,,∴1CE =,∴1114222OCE S CE CG =⋅=⨯⨯=△,故答案为:2.【点睛】本题主要考查了反比例函数图象上点的坐标特征以及菱形性质的运用,解题时注意:菱形的对角线互相垂直平分.17.(1)9(2)1x -【分析】(1)利用绝对值的代数意义,算术平方根的定义以及零指数幂的定义计算即可.(2)利用单项式乘多项式的运算法则以及平方差公式化简即可.【详解】(1)解:(052020-+5519=+-=.(2)解:原式221x x x =-+-,【点睛】本题考查了平方差公式,算术平方根,单项式乘多项式以及零指数幂的定义和法则,牢固掌握运算法则是解题的关键.18.(1)5,20,80(2)图见解析(3)3 5【分析】(1)用喜欢跳绳的学生人数除以所占的百分比,求出班级人数,用班级人数减去喜欢跳绳,乒乓球和其他项目的人数,求出喜欢篮球项目的人数,用喜欢乒乓球的人数除以班级总人数,得到乒乓球的百分比,用全校人数乘以喜欢篮球的百分比,求出全校喜欢篮球的人数;(2)补全条形图即可;(3)画树状图求概率即可.【详解】(1)解:调查的总人数为2040%50÷=人,∴喜欢篮球项目的同学的人数502010155=---=人;扇形图中:“乒乓球”的百分比:1020% 50=,全校喜欢篮球的人数:58008050⨯=人,∴估计全校学生中有80人喜欢篮球项目;故答案为:5,20,80;(2)补全条形图如下:(3)解:画树状图如下:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果所以所抽取的2名同学恰好是1名女同学和1名男同学的概率123205==.【点睛】本题考查条形图和扇形图综合应用,以及画树状图法求概率.通过扇形图和条形图有效地获取信息,是解题的关键.19.(1)证明见解析;(2)55︒.【分析】(1)先根据线段的和差可得AB ED =,再根据三角形全等的判定定理即可得证;(2)先根据三角形全等的性质可得GBD GDB ∠=∠,再根据三角形的外角性质即可得.【详解】证明:(1)AD EB = ,AD BD EB BD ∴+=+,即AB ED =,在ABC 和EDF 中,AC EF A E AB ED =⎧⎪∠=∠⎨⎪=⎩,()ABC EDF SAS ∴≅ ;(2)由(1)已证:ABC EDF ≅ ,ABC EDF ∴∠=∠,即GBD GDB ∠=∠,110GBD G D DB CG ∠+∠=∠=︒ ,5512CG BD D G ∠∴=∠=︒.【点睛】本题考查了三角形全等的判定定理与性质、三角形的外角性质等知识点,熟练掌握三角形全等的判定方法是解题关键.20.(1)证明见解析(2)4【分析】(1)如图所示,连接OC ,连接AO 并延长交BC 于F ,根据等边对等角得到A ABC CB =∠∠,再证明AF BC ⊥,得到90ACF CAF ∠+∠=︒,由OA OC =,得到OAC OCA ∠=∠,由轴对称的性质可得ACB ACD ∠=∠,即可证明90ACD OCA ∠+∠=︒,从而证明CD 是O 的切线;(2)由轴对称的性质得B D ∠=∠,CD BC =,再由圆内接四边形对角互补推出,CED D ∠=∠,得到CE CD BC ==,解Rt ABF ,求出2BF =,则24BC BF ==,即可得到4CE BF ==.【详解】(1)证明:如图所示,连接OC ,连接AO 并延长交BC 于F ,∵AB AC =,∴A ABC CB =∠∠,∵ABC 内接于O ,∴AF BC ⊥,∴90ACF CAF ∠+∠=︒,∵OA OC =,∴OAC OCA ∠=∠,∴90ACF OCA +=︒∠∠,由轴对称的性质可得ACB ACD ∠=∠,∴90ACD OCA ∠+∠=︒,即90OCD ∠=︒,又∵OC 是O 的半径,∴CD 是O 的切线;(2)解:由轴对称的性质得B D ∠=∠,CD BC =,∵四边形ABCE 是圆内接四边形,∴180B AEC AEC CED +=︒=+∠∠∠∠,∴CED D ∠=∠,∴CE CD BC ==,∵1cos 3D =,∴1cos cos 3B D ==,在Rt ABF 中,cos 2BF AB B =⋅=,∴24BC BF ==,∴4CE BF ==.【点睛】本题主要考查了切线的判定,等腰三角形的性质与判定,锐角三角函数,轴对称的性质等等,灵活运用所学知识是解题的关键.21.(1)18千米/小时,0.5(2)()9 4.50.5 2.5y x x =+≤≤;(3)4.5千米【分析】(1)根据函数图象中的数据先求出小王的骑车速度,再求出点C 的坐标;(2)用待定系数法可以求得线段AB 对应的函数表达式;(3)将2x =代入(2)中的函数解析式求出相应的y 的值,再用27减去此时的y 值即可求得当小王到达乙地时,小李距乙地的距离.【详解】(1)解:由图可得,小王的骑车速度是:()()2792118-÷-=(千米/小时),点C 的横坐标为:19180.5-÷=;(2)设线段AB 对应的函数表达式为()0y kx b k =+≠,∵()0.5,9A ,()2.5,27B ,∴0.592.527k b k b +=⎧⎨+=⎩,解得:94.5k b =⎧⎨=⎩,∴线段AB 对应的函数表达式为()9 4.50.5 2.5y x x =+≤≤;(3)当2x =时,18 4.522.5y =+=,∴此时小李距离乙地的距离为:2722.5 4.5-=(千米),答:当小王到达乙地时,小李距乙地还有4.5千米.【点睛】本题考查了从函数图象获取信息,以及一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(1)证明见解析(2)2(3)DQ 的值为333,3,414【分析】(1)证明△△BCE DCF ≌即可得结论;(2)由E 为AB 中点,6AE =,得3AE BE ==,进而求得1tan 2ECB ∠=,从而有1tan 2GFD ∠=,32GD =,再证明△△AEH DGH ∽即可求解;(3)由“边边边”证明△≌△ECH FCH ,得45,ECH FCH HEC HFC ∠=∠=︒∠=∠.进而分四种情况讨论求解,①如图2,当90QPC GFC ∠=∠=︒时,②如图3,当QPC HGF ∠=∠时,③如图4,当QPC GHC ∠=∠时,进而求得DQ 的长.【详解】(1)证明: 四边形ABCD 为正方形,BC CD ∴=,90ABC BCD CDF ∠=∠=∠=︒.CF EC ⊥ ,90DCF ECD ∴∠+∠=︒,90∵ECB ECD ∠+∠=︒,ECB DCF ∴∠=∠,BCE DCF ∴≌△△,CE CF ∴=.(2)解:E 为AB 中点,6AE =,3AE BE ∴==,1tan 2ECB ∴∠=.GF EC ∥ ,90GFC ECF ∴∠=∠=︒,1tan tan tan 2GFD DCF ECB ∴∠=∠=∠=,32GD ∴=.AE GD ∥ ,AEH DGH ∴∽△△,21AE AH GD DH ∴==,123HD AD ∴==.(3)解:2,3HD DF == ,5EH FH ∴==.,EC CF CH CH == ,ECH FCH ∴△≌△,45,ECH FCH HEC HFC ∴∠=∠=︒∠=∠.①如图2,当90QPC GFC ∠=∠=︒时,可得PQ FC ∥,tan tan 2AQP AFC ∴∠=∠=.过点P 作MN AD ⊥于点MP 为中点,1322PN BE ∴==,39622PM ∴=-=,94QM ∴=,93344DQ MD QM ∴=-=-=.②如图3,当QPC HGF ∠=∠时,GF EC ∥ ,180HGF HEC ∴∠+∠=︒,180∵QPC QPE +∠=︒.QPC HGF ∠=∠,QPE HEC ∴∠=∠,HEC HFC ∠=∠ ,QPE HFC BEC ∴∠=∠=∠,PQ AB ∴∥,3DQ ∴=.③如图4,当QPC GHC ∠=∠时,2,6HD DC == ,tan 3DHC ∴∠=.QPC GHC ∠=∠ ,EHC QPE FHC ∴∠=∠=∠,45,tan 3EMP ECH QPE ∴∠=∠=︒∠=.过点M 作MN EP ⊥于点N ,∴设NP a =,则33,2a MN a EN ==.32a a +a =91,22EM MH ∴==.在QMH △中,过点Q 作QJ EH ⊥于点J ,∴设3,4,3QJ b JH b MJ b ===.117,214b b =∴=514QH ∴=,3314DQ ∴=.综上所述,DQ 的值为333,3,414.【点睛】本题主要考查了全等三角形的判定及性质、正方形的性质、相似三角形的判定及性质以及解直角三角形,掌握分类思想,构造恰当辅助线是解题的关键.23.(1)2142y x x =--(2)证明见解析(3)t =或t =【分析】(1)利用待定系数法求解即可;(2)先求出当112b c =+时,抛物线的解析式为211122y x c x c ⎛⎫=+++ ⎪⎝⎭,由此求出()()200A B c --,,,,再求出()2D c c --,,求出直线AD 的解析式为2y x =--,设直线AD 与y 轴交于点E ,则()02E -,,得到2OA OE ==,则45OAE ∠=︒,同理得45OBC ∠=︒,从而得到90AMB ∠=︒,即可证明AD BC ⊥;(3)如图所示,连接AC PQ ,,求出抛物线对称轴为直线1x =,则()20A -,,推出1tan tan 2GQP OCA ∠=∠=,求出直线BC 的解析式为4y x =-,设()21442P t t t Q s s ⎛⎫--- ⎪⎝⎭,,,,然后分当点Q 在点P 下方时,如图3-1所示,过点Q 、P 分别作x 轴的垂线,垂足分别为M 、N ,证明QMG GNP △∽△,得到24121142s s t t t --==--++,解方程即可;当点Q 在点P 上方时,如图3-2所示,过点G 作MN y ∥轴,过点P 、Q 分别作直线MN 的垂线,垂足分别为N 、M ,同理可得21421142s s t t t --==--++,解方程即可.【详解】(1)解:把()40B ,,()04C -,代入212y x bx c =++得:8404b c c ++=⎧⎨=-⎩,∴14b c =-⎧⎨=-⎩,∴抛物线解析式为2142y x x =--;(2)解:∵112b c =+,∴抛物线解析式为211122y x c x c ⎛⎫=+++ ⎪⎝⎭,令2102y x bx c =++=,则2111022x c x c ⎛⎫+++= ⎪⎝⎭,解得x c =-或2x =-,∴()()200A B c --,,,,∴抛物线对称轴为直线22c x +=-,∵CD x ∥轴,∴()2D c c --,,设直线AD 的解析式为()2y k x =+,∴()22k c c --+=,解得1k =-,∴直线AD 的解析式为()22y x x =-+=--,设直线AD 与y 轴交于点E ,∴()02E -,,∴2OA OE ==,∴45OAE ∠=︒,∵OC OB c ==,∴45OBC ∠=︒,∴90AMB ∠=︒,∴AD BC ⊥;(3)解:如图所示,连接AC PQ ,,∵抛物线解析式为()2211941222y x x x =--=--,∴抛物线对称轴为直线1x =,∴()20A -,,∴24OA OC ==,,∴1tan 2OA ACO OC ∠==;∵GQP OCA ∠=∠,∴1tan tan 2GQP OCA ∠=∠=,设直线BC 的解析式为11y k x b =+,∴111404k b b -+=⎧⎨=-⎩,∴1114k b =⎧⎨=-⎩,∴直线BC 的解析式为4y x =-,设()21442P t t t Q s s ⎛⎫--- ⎪⎝⎭,,,,当点Q 在点P 下方时,如图3-1所示,过点Q 、P 分别作x 轴的垂线,垂足分别为M 、N ,∵90QGP =︒∠,∴90MGQ MQG MGQ NGP +=︒=+∠∠∠∠,1tan 2PG GQP QG ∠==,∴MQG NGP =∠∠,又∵90QMG GNP ==︒∠∠,∴QMG GNP △∽△,∴2QM GM GQ GN PN PG===,∴24121142s s t t t --==--++,∴422s t -=-,2128s t t -=-++,∴216228t t t -+=-++,解得t =;当点Q 在点P 上方时,如图3-2所示,过点G 作MN y ∥轴,过点P 、Q 分别作直线MN 的垂线,垂足分别为N 、M ,同理可得2QM GM GQ GN PN PG ===,∴21421142s s t t t --==--++,∴422s t -=-,2128s t t -=-++,∴222128t t t +-=-++,解得t =(负值舍去);综上所述,t t =.【点睛】本题主要考查了二次函数综合,待定系数法求二次函数解析式,一次函数与几何综合,相似三角形的性质与判定,解直角三角形等等,利用分类讨论的思想求解是解题的关键.。
浙江省杭州地区达标名校2024学年中考数学全真模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(共10小题,每小题3分,共30分)1.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A.485cm B.245cm C.125cm D.105cm2.如图,△ABC在平面直角坐标系中第二象限内,顶点A的坐标是(﹣2,3),先把△ABC向右平移6个单位得到△A1B1C1,再作△A1B1C1关于x轴对称图形△A2B2C2,则顶点A2的坐标是()A.(4,﹣3)B.(﹣4,3)C.(5,﹣3)D.(﹣3,4)3.13-的相反数是()A.13B.13-C.3 D.-34.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=6x在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A .36B .12C .6D .35.若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a )和点(8a ,-3),则a 的值为( )A .B .C .D .±6.已知一次函数3y kx =-且y 随x 的增大而增大,那么它的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限7.下列运算正确的是( ) A .5ab ﹣ab=4 B .a 6÷a 2=a 4 C .112a b ab+= D .(a 2b )3=a 5b 38.如图,⊙O 是等边△ABC 的外接圆,其半径为 3,图中阴影部分的面积是( )A .πB .32π C .2π D .3π9.某反比例函数的图象经过点(-2,3),则此函数图象也经过( ) A .(2,-3)B .(-3,3)C .(2,3)D .(-4,6)10.下列计算正确的是( )A .2224()39b b c c =B .0.00002=2×105C .2933x x x -=--D .3242·323x y y x x =二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在直角坐标系中,⊙A 的圆心A 的坐标为(1,0),半径为1,点P 为直线y =34x +3上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是______________.12.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是 . 13.4的平方根是 .14.2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m 、n 的式子表示AB 的长为______.15.分解因式:4a 2-4a+1=______.16.如图,已知点E 是菱形ABCD 的AD 边上的一点,连接BE 、CE ,M 、N 分别是BE 、CE 的中点,连接MN ,若∠A=60°,AB=4,则四边形BCNM 的面积为_____.三、解答题(共8题,共72分)17.(8分)在Rt ABC ∆中,90ACB ∠=,CD 是AB 边的中线,DE BC ⊥于E ,连结CD ,点P 在射线CB 上(与B ,C 不重合)(1)如果30A ∠=①如图1,DCB ∠=②如图2,点P 在线段CB 上,连结DP ,将线段DP 绕点D 逆时针旋转60,得到线段DF ,连结BF ,补全图2猜想CP 、BF 之间的数量关系,并证明你的结论;(2)如图3,若点P 在线段CB 的延长线上,且()090A αα∠=<<,连结DP ,将线段DP 绕点逆时针旋转2α得到线段DF ,连结BF ,请直接写出DE 、BF 、BP 三者的数量关系(不需证明)18.(8分)定义:若四边形中某个顶点与其它三个顶点的距离相等,则这个四边形叫做等距四边形,这个顶点叫做这个四边形的等距点.(1)判断:一个内角为120°的菱形 等距四边形.(填“是”或“不是”)(2)如图2,在5×5的网格图中有A 、B 两点,请在答题卷给出的两个网格图上各找出C 、D 两个格点,使得以A 、B 、C 、D 为顶点的四边形为互不全等的“等距四边形”,画出相应的“等距四边形”,并写出该等距四边形的端点均为非等距点的对角线长.端点均为非等距点的对角线长为 端点均为非等距点的对角线长为(3)如图1,已知△ABE 与△CDE 都是等腰直角三角形,∠AEB=∠DEC=90°,连结A D ,AC ,BC ,若四边形ABCD 是以A 为等距点的等距四边形,求∠BCD 的度数. 19.(8分)关于x 的一元二次方程ax 2+bx+1=1. (1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根. 20.(8分)如图,在△ABC 中,∠ABC=90°,BD 为AC 边上的中线.(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C 作直线CE ,使CE ⊥BC 于点C ,交BD 的延长线于点E ,连接AE ;(2)求证:四边形ABCE 是矩形.21.(8分)如图,在平面直角坐标系中,矩形DOBC 的顶点O 与坐标原点重合,B 、D 分别在坐标轴上,点C 的坐标为(6,4),反比例函数y=1k x(x >0)的图象经过线段OC 的中点A ,交DC 于点E ,交BC 于点F . (1)求反比例函数的解析式; (2)求△OEF 的面积;(3)设直线EF 的解析式为y=k 2x+b ,请结合图象直接写出不等式k 2x+b >1k x的解集.22.(10分)如图,已知△ABC 中,∠ACB =90°,D 是边AB 的中点,P 是边AC 上一动点,BP 与CD 相交于点E .(1)如果BC =6,AC =8,且P 为AC 的中点,求线段BE 的长; (2)联结PD ,如果PD ⊥AB ,且CE =2,ED =3,求cos A 的值; (3)联结PD ,如果BP 2=2CD 2,且CE =2,ED =3,求线段PD 的长.23.(12分)已知关于 x 的一元二次方程 x 2﹣2(k ﹣1)x+k(k+2)=0 有两个不相等的实数根.求 k 的取值范围;写出一个满足条件的 k 的值,并求此时方程的根.24.鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x 元(x 为偶数),每周销售为y 个. (1)直接写出销售量y 个与降价x 元之间的函数关系式;(2)设商户每周获得的利润为W 元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元? (3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?参考答案一、选择题(共10小题,每小题3分,共30分) 1、B 【解题分析】试题解析:∵菱形ABCD 的对角线86AC cm BD cm ==,,114322AC BD OA AC cm OB BD cm ∴⊥====,,,根据勾股定理,5AB cm ===, 设菱形的高为h , 则菱形的面积12AB h AC BD =⋅=⋅, 即15862h =⨯⨯, 解得24.5h = 即菱形的高为245cm . 故选B . 2、A 【解题分析】直接利用平移的性质结合轴对称变换得出对应点位置. 【题目详解】 如图所示:顶点A2的坐标是(4,-3).故选A.【题目点拨】此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键.3、B【解题分析】先求13-的绝对值,再求其相反数:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点13-到原点的距离是13,所以13-的绝对值是13;相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.因此13的相反数是13-.故选B.4、D【解题分析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.解:设△OAC和△BAD的直角边长分别为a、b,则点B的坐标为(a+b,a﹣b).∵点B在反比例函数6yx=的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=1.∴S△OAC﹣S△BAD=12a2﹣12b2=12(a2﹣b2)=12×1=2.故选D.点睛:本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键.5、D【解题分析】根据一次函数的图象过原点得出一次函数式正比例函数,设一次函数的解析式为y=kx,把点(−3,2a)与点(8a,−3)代入得出方程组,求出方程组的解即可.【题目详解】解:设一次函数的解析式为:y=kx,把点(−3,2a)与点(8a,−3)代入得出方程组,由①得:,把③代入②得:,解得:.故选:D.【题目点拨】本题考查了用待定系数法求一次函数的解析式,主要考查学生运用性质进行计算的能力.6、B【解题分析】根据一次函数的性质:k>0,y随x的增大而增大;k<0,y随x的增大而减小,进行解答即可.【题目详解】解:∵一次函数y=kx-3且y随x的增大而增大,∴它的图象经过一、三、四象限,∴不经过第二象限,故选:B.【题目点拨】本题考查了一次函数的性质,掌握一次函数所经过的象限与k、b的值有关是解题的关键.7、B【解题分析】由整数指数幂和分式的运算的法则计算可得答案.【题目详解】A项, 根据单项式的减法法则可得:5ab-ab=4ab,故A项错误;B 项, 根据“同底数幂相除,底数不变,指数相减”可得: a 6÷a 2=a 4,故B 项正确;C 项,根据分式的加法法则可得:11a ba b ab++=,故C 项错误; D 项, 根据 “积的乘方等于乘方的积” 可得:2363()a b a b =,故D 项错误; 故本题正确答案为B. 【题目点拨】 幂的运算法则:(1) 同底数幂的乘法: ·m n m n a a a +=(m 、n 都是正整数) (2)幂的乘方:()m n mn a a =(m 、n 都是正整数) (3)积的乘方:()n n n ab a b = (n 是正整数)(4)同底数幂的除法:m n m n a a a -÷=(a≠0,m 、n 都是正整数,且m>n) (5)零次幂:01a =(a≠0) (6) 负整数次幂: 1ppa a -=(a≠0, p 是正整数). 8、D 【解题分析】根据等边三角形的性质得到∠A=60°,再利用圆周角定理得到∠BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可. 【题目详解】∵△ABC 为等边三角形, ∴∠A=60°,∴∠BOC=2∠A=120°,∴图中阴影部分的面积= 21203360π⨯=3π.故选D . 【题目点拨】本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得∠BOC=120°是解决问题的关键. 9、A 【解题分析】 设反比例函数y=kx(k 为常数,k≠0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断. 【题目详解】 设反比例函数y=kx(k 为常数,k≠0), ∵反比例函数的图象经过点(-2,3), ∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24, ∴点(2,-3)在反比例函数y=-6x的图象上. 故选A . 【题目点拨】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 10、D 【解题分析】在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去. 【题目详解】解:A 、原式=2249b c;故本选项错误;B 、原式=2×10-5;故本选项错误;C 、原式=()()3333x x x x +-=+- ;故本选项错误;D 、原式=223x ;故本选项正确; 故选:D . 【题目点拨】分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.二、填空题(本大题共6个小题,每小题3分,共18分)11、【解题分析】分析:因为BP =22PA AB -,AB 的长不变,当PA 最小时切线长PB 最小,所以点P 是过点A 向直线l 所作垂线的垂足,利用△APC ≌△DOC 求出AP 的长即可求解. 详解:如图,作AP ⊥直线y =34x +3,垂足为P ,此时切线长PB 最小,设直线与x 轴,y 轴分别交于D ,C . ∵A 的坐标为(1,0),∴D (0,3),C (﹣4,0),∴OD =3,AC =5,∴DC =22OD OC +=5,∴AC =DC ,在△APC 与△DOC 中,∠APC =∠COD =90°,∠ACP =∠DCO ,AC =DC ,∴△APC ≌△DOC ,∴AP =OD =3,∴PB =2231-=22.故答案为22.点睛:本题考查了切线的性质,全等三角形的判定性质,勾股定理及垂线段最短,因为直角三角形中的三边长满足勾股定理,所以当其中的一边的长不变时,即可根据另一边的取值情况确定第三边的最大值或最小值.12、21 【解题分析】试题分析:这四个数中,奇数为1和3,则P (抽出的数字是奇数)=2÷4=12. 考点:概率的计算.13、±1. 【解题分析】试题分析:∵2(2)4±=,∴4的平方根是±1.故答案为±1. 考点:平方根.14、33m n n +- 【解题分析】过点C 作CE ⊥CF 延长BA 交CE 于点E,先求得DF 的长,可得到AE 的长,最后可求得AB 的长.【题目详解】解:延长BA 交CE 于点E ,设CF ⊥BF 于点F ,如图所示.在Rt △BDF 中,BF =n ,∠DBF =30°, ∴3tan 3DF BF DBF n =⋅∠=. 在Rt △ACE 中,∠AEC =90°,∠ACE =45°,∴AE =CE =BF =n ,∴33AB BE AE CD DF AE m n n =-=+-=+-. 故答案为:33m n n +-.【题目点拨】此题考查解直角三角形的应用,解题的关键在于做辅助线.15、2(21)a -【解题分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,本题可用完全平方公式分解因式.【题目详解】解:22441(21)a a a -+=-.故答案为2(21)a -.【题目点拨】本题考查用完全平方公式法进行因式分解,能用完全平方公式法进行因式分解的式子的特点需熟练掌握. 16、3【解题分析】如图,连接BD .首先证明△BCD 是等边三角形,推出S △EBC =S △DBC =34×42=43,再证明△EMN ∽△EBC ,可得EMN EBC S S ∆∆=(MN BC )2=14,推出S △EMN =3,由此即可解决问题. 【题目详解】 解:如图,连接BD .∵四边形ABCD 是菱形, ∴AB=BC=CD=AD=4,∠A=∠BCD=60°,AD ∥BC ,∴△BCD 是等边三角形,∴S △EBC =S △DBC 3423 ∵EM=MB ,EN=NC ,∴MN ∥BC ,MN=12BC , ∴△EMN ∽△EBC , ∴EMN EBC S S ∆∆=(MN BC )2=14, ∴S △EMN 3,∴S 阴333 故答案为3【题目点拨】本题考查相似三角形的判定和性质、三角形的中位线定理、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(共8题,共72分)17、(1)①60;②CP BF =.理由见解析;(2)2tan BF BP DE α-=⋅,理由见解析.【解题分析】(1)①根据直角三角形斜边中线的性质,结合30A ∠=,只要证明CDB ∆是等边三角形即可;②根据全等三角形的判定推出DCP DBF ∆≅∆,根据全等的性质得出CP BF =,(2)如图2,求出DC DB AD ==,DE AC ,求出2FDB CDP PDB α∠=∠=+∠,DP DF =,根据全等三角形的判定得出DCP DBF ∆≅∆,求出CP BF =,推出BF BP BC -=,解直角三角形求出tan CE DE α=即可.【题目详解】解:(1)①∵30A ∠=,90ACB ∠=,∴60B ∠=,∵AD DB =,∴CD AD DB ==,∴CDB ∆是等边三角形,∴60DCB ∠=.故答案为60.②如图1,结论:CP BF =.理由如下:∵90ACB ∠=,D 是AB 的中点,DE BC ⊥,A α∠=,∴DC DB AD ==,DE AC ,∴A ACD α∠=∠=,EDB A α∠=∠=,2BC CE =,∴2BDC A ACD α∠=∠+∠=,∵2PDF α∠=,∴2FDB CDP PDB α∠=∠=-∠,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP DF =,在DCP ∆和DBF ∆中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴DCP DBF ∆≅∆,∴CP BF =.(2)结论:2tan BF BP DE α-=⋅.理由:∵90ACB ∠=,D 是AB 的中点,DE BC ⊥,A α∠=,∴DC DB AD ==,DE AC ,∴A ACD α∠=∠=,EDB A α∠=∠=,2BC CE =,∴2BDC A ACD α∠=∠+∠=,∵2PDF α∠=,∴2FDB CDP PDB α∠=∠=+∠,∵线段DP 绕点D 逆时针旋转2α得到线段DF ,∴DP DF =,在DCP ∆和DBF ∆中DC DB CDP BDF DP DF =⎧⎪∠=∠⎨⎪=⎩,∴DCP DBF ∆≅∆,∴CP BF =,而CP BC BP =+,∴BF BP BC -=,在Rt CDE ∆中,90DEC ∠=, ∴tan DE DCE CE∠=, ∴tan CE DE α=,∴22tan BC CE DE α==,即2tan BF BP DE α-=.【题目点拨】本题考查了三角形外角性质,全等三角形的性质和判定,直角三角形的性质,旋转的性质的应用,能推出DCP DBF ∆≅∆是解此题的关键,综合性比较强,证明过程类似.18、(1)是;(2)见解析;(3)150°.【解题分析】(1)由菱形的性质和等边三角形的判定与性质即可得出结论;(2)根据题意画出图形,由勾股定理即可得出答案;(3)由SAS 证明△AEC ≌△BED ,得出AC=BD ,由等距四边形的定义得出AD=AB=AC ,证出AD=AB=BD ,△ABD 是等边三角形,得出∠DAB=60°,由SSS 证明△AED ≌△AEC ,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE ﹣∠CAE=30°,由等腰三角形的性质和三角形内角和定理求出∠ACB 和∠ACD 的度数,即可得出答案.【题目详解】解:(1)一个内角为120°的菱形是等距四边形;故答案为是;(2)如图2,图3所示:在图2中,由勾股定理得:CD ==在图3中,由勾股定理得:CD ==(3)解:连接BD .如图1所示:∵△ABE 与△CDE 都是等腰直角三角形,∴DE=EC ,AE=EB ,∠DEC+∠BEC=∠AEB+∠BEC ,即∠AEC=∠DEB ,在△AEC 和△BED 中,,DE CE AEC BED AE BE =⎧⎪∠=∠⎨⎪=⎩,∴△AEC ≌△BED (SAS ),∴AC=BD ,∵四边形ABCD 是以A 为等距点的等距四边形,∴AD=AB=AC ,∴AD=AB=BD ,∴△ABD 是等边三角形,∴∠DAB=60°,∴∠DAE=∠DAB ﹣∠EAB=60°﹣45°=15°,在△AED 和△AEC 中,,AD AC DE CE AE AE =⎧⎪=⎨⎪=⎩∴△AED ≌△AEC (SSS ),∴∠CAE=∠DAE=15°,∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE ﹣∠CAE=30°,∵AB=AC ,AC=AD , ∴180301803075,75,22ACB ACD --∠==∠== ∴∠BCD=∠ACB+∠ACD=75°+75°=150°.【题目点拨】本题是四边形综合题目,考查了等距四边形的判定与性质、菱形的性质、等边三角形的判定与性质、勾股定理、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键.19、(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x 2=x 2=﹣2.【解题分析】分析:(2)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可.详解:(2)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>,∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如:解:令1a =,2b =-,则原方程为2210x x -+=,解得:121x x ==.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.20、 (1)见解析;(2)见解析.【解题分析】(1)根据题意作图即可;(2)先根据BD 为AC 边上的中线,AD=DC ,再证明△ABD ≌△CED (AAS )得AB=EC ,已知∠ABC=90°即可得四边形ABCE 是矩形.【题目详解】(1)解:如图所示:E 点即为所求;(2)证明:∵CE ⊥BC ,∴∠BCE=90°,∵∠ABC=90°,∴∠BCE+∠ABC=180°,∴AB ∥CE ,∴∠ABE=∠CEB ,∠BAC=∠ECA ,∵BD 为AC 边上的中线,∴AD=DC ,在△ABD 和△CED 中,∴△ABD ≌△CED (AAS ),∴AB=EC ,∴四边形ABCE 是平行四边形,∵∠ABC=90°,∴平行四边形ABCE 是矩形.【题目点拨】本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定与性质与矩形的性质.21、(1)y=6x ;(2)454;(3)32<x <1. 【解题分析】(1)先利用矩形的性质确定C 点坐标(1,4),再确定A 点坐标为(3,2),根据反比例函数图象上点的坐标特征得到k 1=1,即反比例函数解析式为y=6x ;(2)利用反比例函数解析式确定F 点的坐标为(1,1),E 点坐标为(32,4),然后根据△OEF 的面积=S 矩形BCDO ﹣S △ODE ﹣S △OBF ﹣S △CEF 进行计算;(3)观察函数图象得到当32<x <1时,一次函数图象都在反比例函数图象上方,即k 2x+b >1k x . 【题目详解】(1)∵四边形DOBC 是矩形,且点C 的坐标为(1,4),∴OB=1,OD=4,∵点A 为线段OC 的中点,∴A 点坐标为(3,2),∴k 1=3×2=1,∴反比例函数解析式为y=6x ; (2)把x=1代入y=6x得y=1,则F 点的坐标为(1,1); 把y=4代入y=6x 得x=32,则E 点坐标为(32,4), △OEF 的面积=S 矩形BCDO ﹣S △ODE ﹣S △OBF ﹣S △CEF=4×1﹣12×4×32﹣12×1×1﹣12×(1﹣32)×(4﹣1) =454; (3)由图象得:不等式不等式k 2x+b >1k x 的解集为32<x <1. 【题目点拨】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解即可.22、(1)4133(2)63(3) 15. 【解题分析】(1)由勾股定理求出BP 的长, D 是边AB 的中点,P 为AC 的中点,所以点E 是△ABC 的重心,然后求得BE 的长. (2)过点B 作BF ∥CA 交CD 的延长线于点F ,所以BD FD BF DA DC CA ==,然后可求得EF =8,所以14CP CE BF EF ==,所以13CP PA =,因为PD ⊥AB ,D 是边AB 的中点,在△ABC 中可求得cosA 的值. (3)由22BP CD CD BD AB =⋅=⋅,∠PBD=∠ABP ,证得△PBD ∽△ABP ,再证明△DPE ∽△DCP 得到2PD DE DC =⋅,PD 可求.【题目详解】解:(1)∵P 为AC 的中点,AC =8,∴CP =4,∵∠ACB =90°,BC =6,∴BP =213,∵D 是边AB 的中点,P 为AC 的中点,∴点E 是△ABC 的重心,∴241333BE BP ==, (2)过点B 作BF ∥CA 交CD 的延长线于点F ,∴BD FD BF DA DC CA==, ∵BD=DA ,∴FD=DC ,BF=AC ,∵CE=2,ED=3,则CD =5,∴EF =8,∴2184CP CE BF EF ===, ∴14CP CA =, ∴13CP PA =,设CP=k ,则PA=3k , ∵PD ⊥AB ,D 是边AB 的中点,∴PA=PB=3k,∴22BC k =,∴26AB k =,∵4AC k =,∴6cos 3A =, (3)∵∠ACB =90°,D 是边AB 的中点,∴12CD BD AB ==, ∵222BP CD =,∴22BP CD CD BD AB =⋅=⋅,∵∠PBD=∠ABP ,∴△PBD ∽△ABP ,∴∠BPD=∠A ,∵∠A=∠DCA ,∴∠DPE=∠DCP ,∵∠PDE=∠CDP ,△DPE ∽△DCP ,∴2PD DE DC =⋅,∵DE=3,DC=5,∴.【题目点拨】本题是一道三角形的综合性题目,熟练掌握三角形的重心,三角形相似的判定和性质以及三角函数是解题的关键.23、方程的根120=2x x =-或【解题分析】(1)根据方程的系数结合根的判别式,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围; (1)取k=0,再利用分解因式法解一元二次方程,即可求出方程的根.【题目详解】(1)∵关于x 的一元二次方程x 1﹣1(k ﹣a )x+k (k+1)=0有两个不相等的实数根,∴△=[﹣1(k ﹣1)]1﹣4k (k ﹣1)=﹣16k+4>0,解得:k <14. (1)当k=0时,原方程为x 1+1x=x (x+1)=0,解得:x 1=0,x 1=﹣1.∴当k=0时,方程的根为0和﹣1.【题目点拨】本题考查了根的判别式以及因式分解法解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(1)取k=0,再利用分解因式法解方程.24、(1)y =10x +160;(2)5280元;(3)10000元.【解题分析】试题分析:(1)根据题意,由售价是80元/个时,每周可卖出160个,若销售单价每个降低2元,则每周可多卖出20个,可得销售量y 个与降价x 元之间的函数关系式;(2)根据题意结合每周获得的利润W =销量×每个的利润,进而利用二次函数增减性求出答案;(3)根据题意,由利润不低于5200元列出不等式,进一步得到销售量的取值范围,从而求出答案.试题解析:(1)依题意有:y =10x +160;(2)依题意有:W =(80﹣50﹣x )(10x +160)=﹣10(x ﹣7)2+5290,∵-10<0且x 为偶数,故当x =6或x =8时,即故当销售单价定为74或72元时,每周销售利润最大,最大利润是5280元;(3)依题意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,则200≤y≤260,200×50=10000(元).答:他至少要准备10000元进货成本.点睛:此题主要考查了二次函数的应用以及一元二次方程的应用等知识,正确利用销量×每个的利润=W得出函数关系式是解题关键.。
浙江省杭州市中考数学模拟卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)2023的相反数是( )A.﹣2023B.C.2023D.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:2023的相反数是﹣2023.故选:A.2.(3分)2022年北京冬奥会国家速滑馆“冰丝带”屋顶上安装的光伏电站,据测算,每年可输出约44.8万度的清洁电力.将44.8万度用科学记数法可以表示为( )A.0.448×106度B.44.8×104度C.4.48×105度D.4.48×106度【分析】根据1万=104,然后写成科学记数法的形式:a×10n,其中1≤a<10,n为正整数即可.【解答】解:44.8万=44.8×104=4.48×105,故选:C.3.(3分)如图,在△ABC中,BC边上的高是( )A.线段AE B.线段BD C.线段BF D.线段CF【分析】根据三角形的高的定义,可直接进行排除选项.【解答】解:由图可知:BC边上的高是线段AE;故选:A.4.(3分)如果不等式(a﹣3)x<a﹣3的解集为x>1,则a必须满足的条件是( )A.a>0B.a>3C.a≠3D.a<3【分析】根据不等式的性质,发现不等号方向改变了,说明两边同时乘或除了一个负数,由此求出a的范围即可.【解答】解:∵不等式(a﹣3)x<a﹣3的解集为x>1,∴a﹣3<0,∴a<3,故选:D.5.(3分)下列命题中,真命题是( )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.两条对角线互相平分且相等的四边形是正方形D.顺次连接四边形的各边中点所得的四边形是平行四边形【分析】利用矩形的判定、菱形的判定、正方形的判定及平行四边形的判定定理分别进行判定后即可确定正确的选项.【解答】解:A、对角线的相等的平行四边形是矩形,故错误,是假命题;B、对角线互相垂直的平行四边形是菱形,故错误,是假命题;C、两条对角线互相平分且相等的四边形是矩形,故错误,是假命题;D、顺次连接四边形各边中点所得的四边形是平行四边形,正确,是真命题,故选:D.6.(3分)如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于( )A.25°B.50°C.100°D.115°【分析】根据折叠的性质,得∠BFE=(180°﹣∠1),求出∠EFC的度数,再根据平行线的性质即可求得∠AEF的度数.【解答】解:∵长方形ABCD沿EF对折,∠1=50°,∴∠BFE=(180°﹣∠1)=65°,∵AD∥BC,∴∠AEF=180°﹣∠BFE=180°﹣65°=115°.故选:D.7.(3分)公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂,小伟欲用撬棍撬动一块石头,已知阻力和阻力分别1000 N和0.5 m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是( )A.F=B.F=C.F=D.F=【分析】直接利用阻力×阻力臂=动力×动力臂,进而将已知量据代入得出函数关系式.【解答】解:∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1000N和0.5m,∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1000×0.5=Fl,则F=,故选:C.8.(3分)一份摄影作品【七寸照片(长7英寸,宽5英寸)】,现将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的2倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是( )A.2(7+x)(5+x)=7×5B.(7+x)(5+x)=2×7×5C.2(7+2x)(5+2x)=7×5D.(7+2x)(5+2x)=2×7×5【分析】根据关键语句“矩形衬纸的面积为照片面积的2倍”列出方程求解即可.【解答】解:设照片四周外露衬纸的宽度为x英寸,根据题意得:(7+2x)(5+2x)=2×7×5,故选:D.9.(3分)已知二次函数y=(x+k+6)(x﹣k)+m,其中k,m为常数,则下列说法正确的( )A.若k=1,m≠0,则二次函数y的最小值小于0B.若k=﹣3,m>0,则二次函数的y最大值小于0C.若k<2,m≠0,则二次函数y的最大值大于0D.若k>﹣3,m<0,则二次函数y的最小值小于0【分析】将函数解析式化为顶点式,根据选项进行判断即可.【解答】解:∵y=(x+k+6)(x﹣k)+m=(x+3)2﹣(k+3)2+m,∴当x=﹣3时,函数最小值为y=﹣(k+3)2+m,则当m<0时,有y=﹣(k+3)2+m<0,则二次函数y的最小值小于0.故选:D.10.(3分)已知在扇形OAB中,∠AOB=90°,OB=4,C为弧AB的中点,D为半径OB上一动点,点B 关于直线CD的对称点为M,若点M落在扇形OAB内(不含边界),则OD长的取值范围是( )A.B.C.D.【分析】求出两种特殊位置:当点M落在OB上时,当点M落在OA上时,OD的值,可得结论.【解答】解:如图,连接OC,当点M落在OB上时,CD⊥OB.∵∠AOB=90°,=,∴∠AOC=∠COB=45°,∵CDO=90°,∴∠DCO=∠COD=45°,∴CD=OC=2.当点M落在OA上时,连接CM,CB,CO,DM,过点C作CT⊥OB于点T,CJ⊥OA于点J,∵∠CJO=∠JOT=∠OTC=90°,∴四边形JOTC是矩形,∵OT=TC,∴四边形JOTC是正方形,∴OJ=OT=CJ=CT=2,∵CM=CN,CJ=CT,∠CJM=∠CTB=90°,∴Rt△CJM≌Rt△CTB(HL),∴JM=TN=4﹣2,设OD=y,则DM=DB=4﹣y.∵OM2+OD2=DM2,∴[2﹣(4﹣2)]2+y2=(4﹣y)2,∴y=4﹣4,观察图象可知:点M落在扇形OAB内(不含边界),则4﹣4<OD<2.故选:A.二.填空题(共6小题,满分24分)11.(4分)计算:3﹣2+20230= .【分析】根据负整数指数幂与零指数幂的运算法则计算即可得到答案.【解答】解:原式=+1=+1=1.故答案为:1.12.(4分)如图所示的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,把左转盘的数字作为十位数字,把右转盘的数字作为个位数字,同时自由转动两个转盘,转盘停止后(指针落在边界处重新转动转盘直至不落在边界为止),指针落点所构成的两位数为3的倍数的概率是 .【分析】画树状图得出所有等可能的结果数和所构成的两位数为3的倍数的结果数,再利用概率公式可得出答案.【解答】解:画树状图如下:共有20种等可能的结果,所构成的两位数分别为:13,14,18,19,23,24,28,29,33,34,38,39,43,44,48,49,53,54,58,59,其中所构成的两位数为3的倍数的有:18,24,33,39,48,54,共6种,∴所构成的两位数为3的倍数的概率为=.故答案为:.13.(4分)已知一次函数y=﹣x+m与y=nx(m,n为常数,n≠0)的图象交点坐标为(1,2),则二元一次方程组的解是 .【分析】根据一次函数的交点坐标即可确定以两个一次函数解析式组成的二元一次方程组的解.【解答】解:∵一次函数y=﹣x+m与y=nx(m,n为常数,n≠0)的图像交点坐标为(1,2),∴方程组的解为.故答案为:.14.(4分)如图,在A时测得一棵大树的影长为4米,B时又测得该树的影长为9米,若两次日照的光线互相垂直,则树的高度是 .【分析】根据题意作辅助线CD⊥EF于点D,然后根据相似三角形的判定和性质,即可求得树的高度.【解答】解:作CD⊥EF于点D,由已知可得,DE=4米,DF=9米,∵CD⊥EF,CE⊥CF,∴∠CDE=∠FDC=90°,∠ECF=90°,∴∠ECD+∠E=90°,∠ECD+∠DCF=90°,∴∠E=∠DCF,∴△ECD∽△CFD,∴,即,解得DC=6或DC=﹣6(不合题意,舍去),即树的高为6米,故答案为:6米.15.(4分)已知一元二次方程ax2+bx+c=0的两根是﹣1和2,则抛物线y=bx2﹣ax+c的对称轴为 .【分析】先根据一元二次方程根与系数的关系得到=﹣1,再根据抛物线对称轴公式即可得到抛物线的对称轴为直线x===﹣.【解答】解:∵﹣元二次方程ax2+bx+c=0的两根是﹣1和2,∴﹣1+2=,即=﹣1,∴抛物线y=bx2﹣ax+c的对称轴为直线x===﹣,故答案为:直线x=﹣.16.(4分)如图,在矩形ABCD中,AB=2,AD=2,点E为线段CD的中点,动点F从点C出发,沿C→B→A的方向在CB和BA上运动,将矩形沿EF折叠,点C的对应点为C′,当点C′恰好落在矩形的对角线上时(不与矩形顶点重合),点F运动的距离为 .【分析】分点C′落在对角线BD上和点C′落在对角线AC上两种情况分别进行讨论求解,即可得出点F运动的距离.【解答】解:分两种情况:①当点C′落在对角线BD上时,连接CC′,如图1所示:∵将矩形沿EF折叠,点C的对应点为点C′,且点C'恰好落在矩形的对角线上,∴CC′⊥EF,∵点E为线段CD的中点,∴CE=ED=EC′,∴∠CC′D=90°,即CC′⊥BD,∴EF∥BD,∴点F是BC的中点,∵在矩形ABCD中,AD=2,∴BC=AD=2,∴CF=1,∴点F运动的距离为1;②当点C′落在对角线AC上时,作FH⊥CD于H,则CC′⊥EF,四边形CBFH为矩形,如图2所示:在矩形ABCD中,AD=2,AB=2,∠B=∠BCD=90°,AB∥CD,∴BC=AD=2,tan∠BAC===,∴∠BAC=30°,∵EF⊥AC,∴∠AFE=60°,∴∠FEH=60°,∵四边形CBFH为矩形,∴HF=BC=2,∴EH===,∵EC=CD=,∴BF=CH=CE﹣EH=﹣=,∴点F运动的距离为2+;综上所述:点F运动的距离为1或2+;故答案为:1或2+.三.解答题(共7小题,满分66分)17.(6分)(1)计算:.(2)下面是某同学化简分式的运算过程.解:原式=第①步;=第②步;=第③步;=第④步;=﹣x.第⑤步上面的运算过程从第 步开始出现错误,请你写出正确完整的解答过程.【分析】(1)根据零指数幂、负整数指数幂和特殊角的三角函数值可以解答本题;(2)根据解答过程可知第②错误,第一个分式的分子存在变号错误;然后计算括号内的式子,再算括号外的除法即可.【解答】解:(1)=1+2﹣2×=1+2﹣=3﹣;(2)根据题目中的解答过程可知:从第②步开始出现错误,正确的过程为:原式==•==﹣.故答案为:②.18.(8分)我国男性的体质系数计算公式是:,其中W表示体重(单位:kg,H表示身高(单位:cm),通过计算出的体质系数m对体质进行评价,某中学在九年级学生中随机抽取了n名男生进行体质评价,将体质评价结果分为五组,并绘成了如下统计图表.频数分布表m评价结果结果占比<80%明显消瘦5%80%~90%消瘦b90%~110%正常c110%~120%过重40%>120%肥胖d(1)求n,a,d的值;(2)已知某男生的身高是170cm,体重是75kg,求他的体质评价结果;(3)若该校九年级共有男生400人,试估计该校九年级体质评价结果为“消瘦”和“正常”的男生人数和.【分析】(1)用明显消瘦的人数除以它所占的百分比得出抽查的学生数n的值;再求出过重的人数,然后根据各组人数之和等于数据总数求出a,用肥胖的人数除以总人数求出d;(2)根据我国男性的体质系数计算公式是:m=%,求出m,即可得出评价结果;(3)先求出体质评价结果为“消瘦”与“正常”的男生所占的百分比之和,再乘以400即可.【解答】解:(1)抽查的学生数n=3÷5%=60;过重的人数为60×40%=24(人),a=60﹣(3+16+24+12)=5,d=×100%=20%;(2)∵某男生的身高是170cm,体重是75kg,∴m=×100%≈115%,∴他的体质评价结果是过重;(3)400×=140(人).答:估计该校九年级体质评价结果为“消瘦”和“正常”的男生人数和为140人.19.(8分)如图,在△ABC中,AB=AC,D是BC上一点,延长BC至点E,使得∠DAE=∠BAC,延长AD至点F,使得AF=AE.(1)求证:△ABF≌△ACE.(2)若AD⊥BC,DF=15,BC=16,求CE的长.【分析】(1)根据等式的性质得出∠BAF=∠CAE,再根据SAS证明△ABF与△ACE全等即可;(2)根据等腰三角形的性质和勾股定理得出BF,进而利用全等三角形的性质解答即可.【解答】(1)证明:∵∠DAE=∠BAC,∴∠DAE﹣∠DAC=∠CAE﹣∠DAC,即∠BAF=∠CAE,在△ABF与△ACE中,,∴△ABF≌△ACE(SAS);(2)解:∵AB=AC,AD⊥BC,∴BD=BC=8,由勾股定理可得,BF=,∵△ABF≌△ACE,∴CE=BF=17.20.(10分)如图,在平面直角坐标系xOy中,一次函数y=﹣x+5的图象与反比例函数y=(k>0)的图象相交于A,B两点,与x轴相交于点C,连接OB,且△BOC的面积为.(1)求反比例函数的表达式;(2)将直线AB向下平移,若平移后的直线与反比例函数的图象只有一个交点,试说明直线AB向下平移了几个单位长度?【分析】(1)由一次函数解析式求得C的坐标,根据三角形面积求得B的纵坐标,代入一次函数解析式求得B的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)由于将直线AB向下平移m(m>0)个单位长度得直线解析式为y=﹣x+5﹣m,则直线y=﹣x+5﹣m与反比例函数有且只有一个公共点,即方程=﹣x+5﹣m只有一组解,再根据判别式的意义得到关于m的方程,最后解方程求出m的值.【解答】解:(1)一次函数y=﹣x+5中,令y=0,解得x=5,∴C(5,0),∴OC=5,作BD⊥OC于D,∵△BOC的面积为,∴OC•BD=,即BD=,∴BD=1,∴点B的纵坐标为1,代入y=﹣x+5中,求得x=4,∴B(4,1),∵反比例函数y=(k>0)的图象经过B点,∴k=4×1=4,∴反比例函数的解析式为y=;(2)将直线AB向下平移m(m>0)个单位长度得直线解析式为y=﹣x+5﹣m,∵直线AB向下平移m(m>0)个单位长度后与反比例函数的图象只有一个公共交点,∴=﹣x+5﹣m,整理得x2+(m﹣5)x+4=0,△=(m﹣5)2﹣4×1×4=0,解得m=9或m=1,即m的值为1或9.21.(10分)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且DE=AC,连接CE.(1)求证:四边形OCED为矩形;(2)连接AE,若BD=6,AE=,求菱形ABCD的边长.【分析】(1)先证四边形OCED是平行四边形,再由∠DOC=90°,即可得出结论;(2)根据勾股定理和菱形的性质解答即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=AC,∴∠DOC=90°,∵DE∥AC,DE=AC,∴DE=OC,DE∥OC,∴四边形OCED是平行四边形,又∵∠DOC=90°,∴平行四边形OCED是矩形;(2)解:由(1)可知,平行四边形OCED是矩形,∴∠ECA=90°,EC=OD=BD=3,DE=OC=AC,由勾股定理可得,AC=,∴OC=4,∴DC=,∴菱形ABCD的边长=5.22.(12分)定义:将函数C1的图象绕点P(m,0)旋转180o,得到新的函数C2的图象,我们称函数C2是函数C1关于点P的相关函数.例如:当m=1时,函数y=(x﹣3)2+9关于点P(1,0)的相关函数为y=﹣(x+1)2﹣9.(1)当m=0时,①一次函数y=﹣x+7关于点P的相关函数为 .②点A(5,﹣6)在二次函数y=ax2﹣2ax+a(a≠0)关于点P的相关函数的图象上,求a的值.(2)函数y=(x﹣2)2+6关于点P的相关函数是y=﹣(x﹣10)2﹣6,则m= .(3)当m﹣1≤x≤m+2时,函数y=x2﹣6mx+4m2关于点P(m,0)的相关函数的最大值为8,求m的值.【分析】(1)①由相关函数的定义,将y=﹣x+7旋转变换可得相关函数为y=﹣x﹣7;②先求出二次函数的相关函数,然后求出相关函数,再把点A代入,即可得到答案;(2)两函数顶点关于点P中心对称,可用中点坐标公式获得点P坐标,从而获得m的值;(3)先确定相关函数,然后根据m的取值范围,对m进行分类讨论,以对称轴在给定区间的左侧,中部,右侧,三种情况分类讨论,获得对应的m的值.【解答】解:(1)①根据相关函数的定义,y=﹣x+7关于点P(0,0)旋转变换可得相关函数为y=﹣x﹣7,故答案为:y=﹣x﹣7;②y=ax2﹣2ax+a=a(x﹣1)2,∴y=ax2﹣2ax+a关于点P(0,0)的相关函数为y=﹣a(x+1)2,∵点A(5,﹣6)在二次函数y=﹣a(x+1)2的图象上,∴﹣6=﹣a(5+1)2,解得:a=;(2)y=(x﹣2)2+6的顶点为(2,6),y=﹣(x﹣10)2﹣66的顶点坐标为(10,﹣6);∵两个二次函数的顶点关于点P(m,0)成中心对称,∴m==6,故答案为:6;(3)y=x2﹣6mx+4m2=(x﹣3m)2﹣5m2,∴y=x2﹣6mx+4m2关于点P(m,0)的相关函数为y=﹣(x+m)2+5m2.①当﹣m≤m﹣1,即m≥时,当x=m﹣1时,y有最大值为8,∴﹣(m﹣1+m)2+5m2=8,解得m1=﹣2﹣(不符合题意,舍去),m2=﹣2+;②当m﹣1<﹣m≤m十2,即﹣1≤m<时,当x=﹣m时,y有最大值为8,∴5m2=8,解得:m=±(不合题意,舍去);③当﹣m>m+2,即m<﹣1时,当x=m+2,y有最大值为8,∴﹣(m+2+m)2+5m2=8,解得:m=4﹣2或,m=4+2(不符合题意,舍去),综上,m的值为﹣2+或4﹣2.23.(12分)如图,△ABC内接于⊙O,AC=BC,CD⊥AB,垂足为E,直线CD交⊙O于点D.(1)如图1,求证:CD为⊙O直径;(2)如图2,在CD上截取EG=ED,连接AG并延长交BC于点F,求证:AF⊥BC;(3)如图3,在(2)的条件下,作OH⊥AF,垂足为H,K为AC边中点,连接KH,若HK=4,AE=3,求HF的长.【分析】(1)连接BD,根据等腰三角形的性质可得∠AEC=∠BEC=90°,设∠ACD=∠BCD=α,则∠CAB=∠CDB=90°﹣α,从而得出∠CBD=∠ABC+∠DBE=90°﹣α+α=90°,则CD为⊙O直径;(2)利用SAS证明△AED≌△AEG,得AD=AG,∠DAE=∠GAE,再根据三角形内角和定理可得结论;(3)延长AF交⊙O于点M,连接CM,可知KH是△ACM的中位线,再说明△GCM为等腰三角形,设GE=DE=a,则CE=CG+GE=8+a,根据△AED∽△CEA,可得CE的长,进而解决问题.【解答】(1)证明:连接BD,∵AC=BC,CD⊥AB,∴∠ACD=∠BCD,∠AEC=∠BEC=90°,设∠ACD=∠BCD=α,∴∠CAE=90°﹣α,∵,∴∠CAB=∠CDB=90°﹣α,在Rt△△BED中,∠DBE=90°﹣∠CDB=90°﹣(90°﹣α)=α,∵AC=BC,∴∠CAB=∠ABC=90°﹣α,∴∠CBD=∠ABC+∠DBE=90°﹣α+α=90°,∴CD为⊙O直径;(2)证明:连接AD,在△AED与△AEG中,,∴△AED≌△AEG(SAS),∴AD=AG,∠DAE=∠GAE,∴∠BAD=∠BCD=∠BAG,∵∠CGF=∠AGE,∴∠AFC=90°,∴AF⊥BC;(3)解:延长AF交⊙O于点M,连接CM,∵OH⊥AF,AH=MH,K为AC中点,∴AK=CK,∴KH是△ACM的中位线,∴KH∥CM,CM=2KH=8,∵,∴∠ABC=∠M=90°﹣α,在△CGF中,∠GCF=α,∠GFC=90°,∴∠CGF=90°﹣α,∴∠M=∠CGF=90°﹣α,∴CG=CM=8,∴△GCM为等腰三角形,∵CF⊥GM,∴GF=MF,∠GCF=∠MCF=α,设GE=DE=a,∴CE=CG+GE=8+a,∵△AED∽△CEA,∴,∴AE2=ED•CE,∴32=a(8+a),解得a=1或a=﹣9(舍去),∴CE=9,∴tan,在Rt△AEG中,由勾股定理得,AG==,∵△AEG∽△CFG,∴,∴GF=,∵CD=10,∴OD=,∴OG=OD﹣DG=5﹣2=3,∵sin,在△GOH中,sinα=,∴GH=,∴FH=GF﹣GH=.。
2023年浙江省杭州市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是( ) A .等边三角形B .平行四边形C .正五边形D .菱形2.下面运算正确的是( ) A .234a a a += B .541a a -=C .325x y xy +=D .()222581016xy x xy x --=-+3.如图所示的几何体是由6个大小相同的小正方体组成,它的主视图为( )A .B .C .D .4x 的取值范围是( ). A .2x >B .2x ≥C .2x <D .2x ≤5.点P 的坐标为()6,2,A 是x 轴正半轴上一点,O 为原点,则tan AOP ∠的值为( )A .3B C D .136.如图,在△ABC 中,∠C =90°,∠B =15°,AC =l ,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN 交BC 于点D ,连接AD ,则AD 的长为( )A .l.5 BC .2D 7.多顶式x 2+kx +25是一个完全平方式,则k 的值为( ) A 10B 10C ±10D ±58.一次函数y 1=x +4的图象与一次函数y 2=-x +b 的图象的交点不可能...在( ) A .第一象限B .第二象限C .第三象限D .第四象限9.小明、小亮参加学校运动会800米赛跑;小明前半程的速度为2x 米/秒,后半程的速度为x 米/秒,小亮则用一米32x/秒的速度跑完全程,结果是( ) A .小明先到终点B .小亮先到终点C .同时到达D .不能确定10.如图,已知正方形ABCD 的边长为a ,延长BA ,BC ,使AF =CE =b ,以BE 为边长在正方形ABCD 外围作正方形BFGE ,以点E 为圆心,EG 为半径画弧交BE 的延长线于点H ,连接DH ,交GE 于点M ,延长AD 交GE 于点K ,交圆弧于点J ,连接GJ ,记∠GKJ 的面积为S 1,阴影部分的面积为S 2. 当F ,D ,H 三点共线时,12S S 的值为( )AB .12CD二、填空题11.因式分解:24x -=__________.12.已知一个圆锥的底面半径为3cm ,母线长为10cm,则这个圆锥的侧面积为____________.13.李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个乙种零件共需_______分钟. 14.已知点()1,A m y ,()22,B m y +且0m >,在反比例函数22k y x+=的图像上,则1y _______2y (填><、).15.如图,在四边形ABCD 中,∠A =80°,∠B =120°,∠B 与∠ADC 互为补角,点E 在直线BC 上,将∠DCE 沿DE 翻折,得到△DC E ',若AB ∥C E ',则∠CDE 的度数为_______°.16.如图,是一个“摩天轮”蛋糕架,圆周上均匀分布了8个蛋糕篮悬挂点,圆O 半径为20cm ,O 到MN 的距离为32cm ,A ,B 两个悬挂点之间间隔了一个悬挂点. (1)A 、B 两个悬挂点之间的高度差最大可达到__________cm .(2)当A 在B 的上方且两个悬挂点的高度差为4cm 时,A 到MN 的距离为________________cm .三、解答题17.计算:1013920222sin603-⎛⎫-⨯+++︒ ⎪⎝⎭.18.解不等式组50,31212x x x +≤⎧⎪⎨-≥+⎪⎩.19.如图,已知四边形ABCD 是平行四边形,BE ∠AC , DF ∠A C ,求证:AE =CF .20.“中国梦”关系每个人的幸福生活,为展现巴中人追梦的风采,我市某中学举行“中国梦•我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A ,B ,C ,D 四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有 名,在扇形统计图中,表示“D 等级”的扇形的圆心角为 度,图中m 的值为 ; (2)补全条形统计图;(3)组委会决定从本次比赛中获得A 等级的学生中,选出2名去参加市中学生演讲比赛,已知A 等级中男生有1名,请用“列表”或“画树状图”的方法求出所选2名学生中恰好是一名男生和一名女生的概率.21.北京冬奥会的召开燃起了人们对冰雪运动的极大热情,如图是某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x 轴,过跳台终点A 作水平线的垂线为y 轴,建立平面直角坐标系,图中的抛物线21144:1233C y x x =-++近似表示滑雪场地上的一座小山坡,小雅从点O 正上方4米处的A 点滑出,滑出后沿一段抛物线223:2C y ax x c =++运动.(1)当小雅滑到离A 处的水平距离为6米时,其滑行达到最高位置为172米.求出a ,c 的值;(2)小雅若想滑行到坡顶正上方时,与坡顶距离不低于103米,请求出a 的取值范围. 22.如图,AB 是∠O 的直径,AC 是弦,P 为AB 延长线上一点,∠BCP =∠BAC ,∠ACB 的平分线交∠O 于点D ,交AB 于点E ,(1)求证:PC 是∠O 的切线; (2)若AC +BC =2时,求CD 的长. 23.我们定义:当m ,n 是正实数...,且满足1mm n =-时,就称P ,m m n ⎛⎫ ⎪⎝⎭为“完美点”. (1)m =3时,则n = ,P 点的坐标为 .(2)已知点A (0,5)与点B 都在直线y =-x +b 上,且B 是“完美点”,若C 也是“完美点”且BC ,求点C 的坐标.(3)正方形A 1B 1C 1D 1一边在y 轴上,其他三边都在y 轴的右侧,且点E (1,t )是此正方形对角线的交点,若正方形A 1B 1C 1D 1边上存在“完美点”,求t 的取值范围. 24.如图,在矩形ABCD 中,已知AD =6,CD =8,点H 是直线AB 上一点,连接CH ,过顶点A 作AG ⊥CH 于G ,AG 交直线CB 于点E .(1)如图,当点E 在CB 边上时, ∠求证:∠CGE ~∠ABE ; ∠连接BG ,求tan∠AGB ;(2)作点B 关于直线CH 的对称点F ,连接FG .当直线FG 截∠ADC 所得的三角形是等腰三角形时,求BH 的长.参考答案:1.D 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】解:A 、是轴对称图形,不是中心对称图形.故不符合题意; B 、不是轴对称图形,是中心对称图形.故不符合题意; C 、是轴对称图形,不是中心对称图形.故不符合题意; D 、是轴对称图形,也是中心对称图形.故符合题意. 故选:D . 【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合. 2.D 【解析】 【分析】根据同类项的定义及合并同类项的方法逐项分析即可. 【详解】解:A.34a a a +=,故原式不正确; B.54a a a -=,故原式不正确;C.3x 与2y 不是同类项,不能合并,故原式不正确;D.()222581016xy x xy x --=-+,正确;故选D . 【点睛】本题考查了同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变. 3.B【解析】【分析】首先从正面看几何体得到的平面图形是几个正方形的组合图形;然后再分别得到的图形的列数和每列小正方形的个数,由此可得出答案.【详解】解:根据主视图可知有上下两行,上面一行有1个正方形且在最后边,下面一行有3个正方形,故选B.【点睛】本题主要考查的是简单组合体的三视图,熟练掌握几何体三视图的画法是解题的关键. 4.B【解析】【分析】根据被开方数大于等于0列不等式求解即可.【详解】解:由题意得,x-2≥0,解得x≥2.故选:B.【点睛】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.5.D【解析】【分析】过点P作PB∠x轴于点B,根据点P的坐标可得PB=2,OB=6,利用勾股定理求出OP,然后根据三角函数的概念进行计算.【详解】解:过点P作PB∠x轴于点B,如图所示:∠点P的坐标为(6,2),∠PB=2,OB=6,∠1tan3BPAOPOB∠==,故D正确.故选:D.【点睛】题主要考查了求一个角的正切值,根据正切的定义,将∠AOP放在相应的直角三角形中是解题的关键.6.C【解析】【分析】利用基本作图可判断MN垂直平分AB,则利用线段垂直平分线的性质得到DA=DB,所以∠DAB=∠B=15°,再利用三角形外角性质得∠ADC=30°,然后根据含30度的直角三角形三边的关系可得到AD的长.【详解】解:由作法得MN垂直平分AB,则DA=DB,∠∠DAB=∠B=15°,∠∠ADC=∠DAB+∠B=30°,在Rt△ACD中,AD=2AC=2.故选C.【点睛】本题考查作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.7.C【分析】根据完全平方公式的特点求解即可. 【详解】解:多顶式x 2+kx +25是一个完全平方式, 则2510kx x x =±⨯=±, ∠10k =±, 故选:C 【点睛】此题主要考查完全平方公式的应用,解题的关键是熟知完全平方公式的特点. 8.D 【解析】 【分析】由图象可知一次函数y 1=x+4的图象在第一,二,三象限上;根据一次函数的图象和性质,可知与一次函数y 2=-x+b 的图象的交点不可能在第几象限上. 【详解】因为一次函数y 1=x+4的图象在第一,二,三象限上, 所以与一次函数y 2=-x+b 的图象的交点不可能在第四象限. 故选D. 【点睛】本题主要考查了一次函数的图象和性质的应用,解题的关键是熟练掌握一次函数的图象和性质. 9.B 【解析】根据题意分别求解出两人跑完全程所用的时间,然后利用作差法比较大小即可. 【详解】由题意,小明的总用时为:14004002004006002t x x x x x=+=+=秒, 小亮的总用时为:23160080023x t x=÷=秒, 则126001600180016002003333t t x x x x x-=-=-=, ∠由题意可知,0x >,∠120t t ->,12t t >,即:小亮用时更少,先到达终点, 故选:B . 【点睛】本题考查列分式表示实际问题,并比较大小,理解题意,准确列出分式,掌握比较分式大小的方法是解题关键. 10.D 【解析】 【分析】利用F ,D ,H 三点共线,即有tan∠FDA =tan∠DHC ,即可求得a =2b ,连接EJ ,在Rt ∠KJE 中求出KJ ,则S 1可求,再证∠DKM ∠∠HEM ,即有ME HEMK DK=,进而求出ME ,则S 2可求,则问题得解. 【详解】根据题意可知AB =CD =AD =a ,AF =GK =DK =CE =b , 即EH =a +b ,CH =CE +EH =b +a +b ,∠F ,D ,H 三点共线,在正方形ABCD 中,AD BC ∥, ∠∠FDA =∠DHC , ∠tan∠FDA =tan∠DHC , ∠AF DC AD CH=,即b aa b a b =++,∠2220a ab b --=,即()(2)0a b a b +-=, 显然0a b +≠, ∠20a b -=,如图,连接EJ ,则有EJ =EH =EG =a +b ,∠在Rt ∠KJE 中,KJ,∠S 1=12b ⨯2, ∠AD BC ∥,∠∠DKM ∠∠HEM , ∠ME HE MK DK =,即ME HE EK ME DK =-, ∠ME a b a ME b+=-, ∠ME =2a b a a b +⨯+=2222b b b b b +⨯+=32b , ∠S 2=13(2)322b b b b b ⨯+⨯+⨯=2194b , ∠12S S2÷(2194b故选:D .【点睛】本题考查了解直角三角形、勾股定理、平行的性质、相似三角形的判定与性质等知识,利用F ,D ,H 三点共线可求得a =2b ,是解答本题的关键.11.(x+2)(x-2)【解析】【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-12.30πcm 2.【分析】圆锥的侧面积=π×底面半径×母线长,把相关数值代入即可.【详解】这个圆锥的侧面积=π×3×10=30πcm 2.故答案为30πcm 2.【点睛】考点: 圆锥的计算.13.40.【解析】【详解】设李师傅加工1个甲种零件需要x 分钟,加工1个乙种零件需要y 分钟,依题意得:3555{4985x y x y +=+=①②, 由∠+∠,得:7x+14y=140,所以x+2y=20,则2x+4y=40,所以李师傅加工2个甲种零件和4个乙种零件共需40分钟.故答案为40.考点:二元一次方程组的应用.14.>【解析】【分析】先根据反比例函数中22k +>0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】∠22k +>0∠反比例函数22k y x+=的图象的两个分支分别位于一、三象限,且在每一象限内y 随x 的增大而减小.∠()1,A m y ,()22,B m y +且0m >,∠12y y >故答案为:>.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15.20【解析】【分析】根据补角性质即可求得ADC ∠,利用四边形内角和可求得C ∠,再根据翻折及平行线的性质即可求得答案.【详解】∠B =120°,∠B 与∠ADC 互为补角,18012060ADC ∴∠=︒-︒=︒,又80A ∠=︒,360100C A B ADC ∴∠=︒-∠-∠-∠=︒,又//'AB C E ,'120CEC B ∴∠=∠=︒,将△DCE 沿DE 翻折,得到△DC E ',1''602CED C ED CEC ∴∠=∠=∠=︒, 18020CDE C CED ∴∠=︒-∠-∠=︒,故答案为:20.【点睛】本题考查了翻折变换的性质、平行线的性质、多边形内角和定理及补角性质,熟练掌握翻折变换的性质及平行线的性质是解题的关键.16. 44或48或20或16【解析】【分析】(1)90AOB ∠=︒,勾股定理求得AB =A 、B 两点在同一竖直线上时,A 、B之间高度差达到最大值(2)A 、B 两个悬挂点的高度差为4cm ,需分为两类情况:A 比B 高4cm (情形∠、∠)B 比A 高4cm (情形∠、∠),如图,过点O 作MN 的平行线,过A 、B 分别向该平行线作垂线,垂足记为F 、E ,证明BOE ∆∠AOF ∆.设Rt AOF ∆较短直角边为x (cm ),则较长直角边为(x +4)cm ,勾股定理建立方程,解方程求解,根据O 到MN 的距离为32cm ,结合图形分情况即可求解.【详解】(1)圆周上均匀分布了8个蛋糕篮悬挂点,A ,B 两个悬挂点之间间隔了一个悬挂点. ∴90AOB ∠=︒,如图,连接AB ,圆O 半径为20cm ,∴AB =,当A 、B 两点在同一竖直线上时,A 、B之间高度差达到最大值故答案为:(2)A 、B 两个悬挂点的高度差为4cm ,需分为两类情况:A 比B 高4cm (情形∠、∠)B 比A 高4cm (情形∠、∠).如图,过点O 作MN 的平行线,过A 、B 分别向该平行线作垂线,垂足记为F 、E , 则9090BOE B AOF OAF ∠=︒-∠=︒-∠=∠,在BOE ∆与AOF ∆中,BOE OAF E FOA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴BOE ∆∠AOF ∆.设Rt AOF ∆较短直角边为x (cm ),则较长直角边为(x +4)cm ,在Rt AOF ∆中,由勾股定理可得:()222420x x ++=,解得1212,16x x ==-(舍去). 情形∠、∠中,AF =12cm ,情形∠、∠中,AF =16cm .O 到MN 的距离为32cm ,四个情形中,A 到MN 的距离分别为32+12=44,32+16=48,32-12=20,32-16=16. 故答案为:44或48或20或16∠ ∠∠【点睛】本题考查了圆的性质,勾股定理,全等三角形的性质与判定,旋转的性质,掌握以上知识是解题的关键.17.1【解析】【分析】先化简再计算即可.【详解】原式=339121-⨯++= 【点睛】本题考查实数的混合运算,解题的关键是根据负整数指数幂、实数绝对值、0指数幂、特殊角度三角函数值进行化简.18.5x ≤-【解析】【分析】根据解一元一次不等式组的方法求解即可.【详解】解:解不等式50x +≤得5x ≤-. 解不等式31212x x -≥+得3x ≤-. ∠不等式组的解集为5x ≤-.【点睛】本题考查解一元一次不等式组,熟练掌握该知识点是解题关键.19.见解析【解析】【分析】 可证明ABE ≌CDF ,即可得到结论.【详解】证明:∠四边形ABCD 是平行四边形∠AB =CD ,AB ∥CD∠∠BAC =∠DCA∠BE ⊥AC 于E ,DF ⊥AC 于F∠∠AEB =∠DFC =90°在ABE 和CDF 中 ,BAE DCF AEB CFD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∠ABE ≌CDF (AAS )∠AE =CF【点睛】此题考查平行四边形的性质和全等三角形的判定及性质,掌握平行四边形的性质和全等三角形的判定是解决问题的关键.20.(1)20,72,40;(2)作图见试题解析;(3)23.【解析】【分析】(1)根据等级为A 的人数除以所占的百分比求出总人数,根据D 级的人数求得D 等级扇形圆心角的度数和m 的值;(2)求出等级B 的人数,补全条形统计图即可;(3)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.【详解】(1)根据题意得:3÷15%=20(人),表示“D 等级”的扇形的圆心角为420×360°=72°; C 级所占的百分比为820×100%=40%,故m=40, 故答案为20,72,40.(2)故等级B 的人数为20﹣(3+8+4)=5(人),补全统计图,如图所示;(3)列表如下:所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P (恰好是一名男生和一名女生)=46=23. 考点:1.列表法与树状图法;2.扇形统计图;3.条形统计图.21.(1)18a =-,4c = (2)3032a -≤< 【解析】【分析】(1)根据题意,抛物线2C 的顶点坐标为(6,172),设C 2的解析式为:()21762y a x =-+,代入0,4x y ==,即可求解; (2)求出山坡的顶点坐标为(8,203),根据题意列出不等式,解不等式即可求得a 的取值范围.(1)解:根据题意,抛物线2C 的顶点坐标为(6,172), 设C 2:()21762y a x =-+,代入0,4x y ==,得173642a +=, 解得18a =-, ∴()2117682y x =--+213482x x =-++, 18a ∴=-,4c =; (2)解:抛物线C 1:()2214412081233123y x x x =-++=--+, 因此抛物线C 1的顶点坐标为(8,203), 即当x =8时,运动员到达坡顶, 此时238842a ⨯+⨯+≥103+203, 解得332a ≥-, 根据实际情况,0a <,3032a ∴-≤<. 【点睛】本题考查二次函数的实际应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.22.(1)见解析【解析】【分析】(1)连接OC ,根据AB 为直径,得出∠ACB =90°,则∠ACO +∠OCB =90°,从而得出∠BCP +∠OCB =90°,即∠OCP =90°,即可得出结论;(2)连接BD ,作DM AC DN CB ⊥⊥,,垂足为M ,N ,根据CD 平分ACB ∠,DM AC ⊥,DN CB ⊥,得出DM DN AD BD ==,,推出AD BD =,再利用HL 证明AMD BND ≌,得出四边形CMDN 为矩形,再推出矩形CMDN 为正方形,则CN =,即可得出答案 (1)连接OC ,∠AB 为直径,∠∠ACB =90°,∠∠ACO +∠OCB =90°,∠OA =OC ,∠∠BAC =∠ACO ,∠∠BCP =∠BAC ,∠∠BCP =∠ACO∠∠BCP +∠OCB =90°,即∠OCP =90°,∠PC 是∠O 的切线;(2)连接BD ,作DM AC DN CB ⊥⊥,,垂足为M ,N ,∠CD 平分ACB ∠,DM AC ⊥,DN CB ⊥, ∠DM DN AD BD ==,,∠AD BD =,∠90AMD BND ∠∠==︒,∠AMD BND HL ≌(), ∠90DMC MCN CND ∠∠∠===︒,∠四边形CMDN 为矩形,∠DM DN =,∠矩形CMDN 为正方形,∠CN =, ∠2AC BC CM AM CB CN +=++=,∠AC BC +=,∠2AC BC +=,∠CD =【点睛】本题是圆的综合题,主要考查了圆周角定理,圆的切线的判定与性质,正方形的判定与性质,全等三角形的判定与性质等知识,熟练掌握切线的判定是解题的关键.23.(1)32,(3,2) (2)点C 的坐标(2,1)或(4,3)(3)-1<t ≤2【解析】【分析】(1)根据“完美点”的定义即可求解;(2)先根据A 点坐标求出直线解析式,根据B 点在直线5y x -=+上,设B 点坐标为(,5)-+a a ,再根据B 点是“完美点”,即可求出B 点坐标,设“完美点”C 点坐标为00(,)x y ,即有001y x =-,再利用勾股定理有:22200(3)(2)BC x y =-+-,即可求解出C 点坐标;(3)设正方形1111D C B A 的四个顶点的坐标为1(0,)A p 、1(,)B w p 、1(,)C w q 、1(0,)D q ,即有11111111A B C D A D B C ===,即q p w -=,再根据正方形1111D C B A 对角线交点E 的坐标为(1,)t ,利用中点坐标公式可得到112q t p t w =+⎧⎪=-⎨⎪=⎩,则可用t 表示出1(0,1)A t -、1(2,1)B t -、1(2,1)C t +、1(0,1)D t +,根据题意设“完美点”的坐标为(,)m P m n ,即有1m m n =-,再根据m 、n 时正实数,可知m n也为正实数,即1m >,再分当“完美点”P 点在边长11A D 上时、当“完美点”P 点在边长11A B 上时、当“完美点”P 点在边长11B C 上时、当“完美点”P 点在边长11C D 上时四种情况讨论,即可求出t 的取值范围.(1)∠m =3, ∠1312m m n =-=-=,即P 点坐标为(3,2), ∠32n=, ∠32n =, 故答案为:32,(3,2); (2)∠A (0,5)在直线5y x -=+上,∠5b =,即直线的解析式为:5y x -=+,∠B 点在直线5y x -=+上,∠设B 点坐标为(,5)-+a a ,∠B 点是“完美点”,∠51a a -+=-,解得a =3,∠B 点坐标为(3,2),设C 点坐标为00(,)x y∠C 点是“完美点”,∠001y x =-,∠BC ,∠利用勾股定理有:22200(3)(2)BC x y =-+-,∠代入001y x =-有:2200(3)(12)2x x -+--=,解得02x =或者04x =,∠01y =或者03y =,∠C 点坐标为:(2,1)或(4,3);(3)按题意作图如下,∠四边形1111D C B A 是正方形,则设1(0,)A p 、1(,)B w p 、1(,)C w q 、1(0,)D q ,即有11111111A B C D A D B C ===,即q p w -=,∠正方形1111D C B A 对角线交点E 的坐标为(1,)t ,∠根据中点坐标公式有:0122w p q t +⎧=⎪⎪⎨+⎪=⎪⎩, ∠22w p q t =⎧⎨+=⎩, ∠q p w -=,∠2q p -=,∠联立22q p p q t -=⎧⎨+=⎩,即得:11q t p t =+⎧⎨=-⎩, ∠1(0,1)A t -、1(2,1)B t -、1(2,1)C t +、1(0,1)D t +,根据题意设“完美点”的坐标为(,)m P m n, ∠1m m n =-, ∠m 、n 时正实数, ∠m n也为正实数,∠10m m n=->,即1m >, 当“完美点”P 点在边长11A D 上时,即有m =0,此时不满足1m >,故“完美点”P 点不可能在边长11A D 上;当“完美点”P 点在边长11A B 上时即有02m ≤≤,11m m t n =-=-, 即有m =t ,∠1m >,∠此时2m ≤1<,∠12t <≤;当“完美点”P 点在边长11B C 上时,即有2m =,11m t t n -≤≤+, ∠1m m n =-, ∠1211m m n=-=-=, ∠111t t -≤≤+,即有:02t ≤≤;当“完美点”P 点在边长11C D 上时即有02m ≤≤,11m m t n=-=+, 即有m =t +2,∠1m >,∠此时2m ≤1<,∠22t +≤1<;∠0t ≤-1<,综上所述:t 的取值范围:2t ≤-1<.【点睛】本题考查了一次函数图像上点的坐标特征、勾股定理、正方形的性质、中点坐标公式等知识,利用E 点坐标表示出正方形1111D C B A 四个顶点的坐标是解答本题的关键.24.(1)∠见解析;∠43(2)74,2,8,42 【解析】【分析】(1)∠根据对顶角相等可得CEG AEB ∠=∠,根据,90AG CH ABC ⊥∠=︒,可得BAE GCE ∠=∠,即可得证;∠由90ABC AGC ∠=∠=︒得,,,A B G C 四点共圆,则AGB ACB ∠=∠,即可求解.(2)根据题意画出图形建立平面直角坐标系,分4种情况讨论求解即可.(1)∠证明:,90AG CH ABC ⊥∠=︒,CEG AEB ∠=∠,∠BAE AEB GCE CEG ∠+∠=∠+,即BAE GCE ∠=∠∠∠CGE ~∠ABE ;∠∠90ABC AGC ∠=∠=︒,∠,,,A B G C 四点共圆,∠AGB ACB ∠=∠在矩形ABCD 中,已知AD =6,CD =8,6,8BC AD AB CD ∴====,∴tan tan AGB ACB ∠=∠8463AB BC ===; (2)解:如图1所示,以B 为原点,以BC 所在的直线为y 轴,以AB 所在的直线为x 轴建立平面直角坐标系,设点H 的坐标为(m ,0),由(1)∠可知∠ABE =∠CBH =90°,∠BAE =∠BCH ,∠∠BAE ∠∠BCH , ∠AB BC BE BH =,即86BE m=, ∠43BE m =,∠点E 的坐标为(0,43m ), 设直线AE 的解析式为y kx b =+, ∠8043k b b m -+=⎧⎪⎨=⎪⎩, ∠66m k b ⎧=⎪⎨⎪=⎩,∠直线AE 的解析式为463m y x m =+, 同理可以求出直线CH 的解析式为66y x m =-+, 联立46366m y x m y x m ⎧=+⎪⎪⎨⎪=-+⎪⎩, 解得22223683664836m m x m m m y m ⎧-=⎪⎪+⎨+⎪=⎪+⎩, ∠点G 的坐标为22223686483636m m m m m m ⎛⎫-+ ⎪++⎝⎭,; 过点F 作FT ∠x 轴于T ,设BL FL n ==(轴对称的性质),∠AG ∠CH ,BF ∠CH ,∠AG BF ∥,∠∠BAE =∠LBH ,∠ABE ∠∠BTF , ∠8643BT AB FT BE mm ===, ∠∠ABE =∠BLH =90°(轴对称的性质∠BLH =90°),∠∠ABE ∠∠BLH , ∠BE HL AB BL =,即438m HL n=, ∠6mn HL =, 又∠1122BHF S BH FT OF HL =⋅=⋅△,∠112226mn m FT n ⋅=⋅⋅, ∠213FT n =, ∠222BH BL HL =+, ∠222236m n m n =+, ∠2223636m n m =+, ∠221236m FT m =+, ∠267236m BT FT m m ==+, ∠点F 的坐标为(27236m m +,221236m m +), 设直线FG 的解析式为11y k x b =+, ∠22112221122368648363672123636m m m m k b m m m m k b m m ⎧-++=⎪⎪++⎨⎪+=⎪++⎩, 解得113244182429m k m m b m -⎧=⎪⎪+⎨⎪=⎪+⎩, ∠直线FG 的解析式为3242441829m m y x m m -=+++, 设直线FG 与y 轴交于K ,与AC 交于点M ,与BC 交于点N ,∠点K 的坐标为24029m m ⎛⎫ ⎪+⎝⎭,, ∠24629m CK m =-+, 当6y =时,32424641829m m x m m -=+++, ∠24418629324m m x m m +⎛⎫=-⋅ ⎪+-⎝⎭, ∠24418629243m m CN m m +⎛⎫=-⋅ ⎪+-⎝⎭, 当MN =MC ,即∠MNC =∠MCN 时,如图1所示,∠∠NCK =∠ADC =90°,∠∠ADC ∠∠KCN ,∠43 CN CDCK AD==,∠244186429243243629m mm mmm+⎛⎫-⋅⎪+-⎝⎭=-+,∠12549612m m+=-,解得74m=,∠74 BH=;当CN=CM时,如图2所示,过点M作MQ∠CD于Q,则MQ AD∥,∠CQM CDA△∽△,∠10AC==,∠CM QM CQAC AD CD==,即1068CM QM CQ==,∠4355CQ CM QM CM ==,,∠15NQ CM=,∠13 NQQM=,同理可证NMQ NKC△∽△,∠13 NC NQNK CK==,∠244186129243243629m mm mmm+⎛⎫-⋅⎪+-⎝⎭=-+,∠1254243m m+=-,解得2m=-,即此时的情形如图3所示,∠2BH=;如图4所示,当H运动到与点A重合时,此时,G、H、M三点都与点A重合,由轴对称的性质可知∠F AC=∠BAC,又∠AB CD∥,∠∠ACD=∠BAC,∠∠NAC=∠BCA,∠NA=NC,即∠NAC为等腰三角形,∠当H为点A重合时满足题意,∠此时BH=8;如图5所示,当点H 在A 点左侧时,设直线FG 与x 轴交于J ,与y 轴交于Z , 同理可以求出直线FG 的解析式为3242441829m m y x m m -=+++, ∠∠DMN 是等腰三角形,且∠D =90°,∠∠DMN 是等腰直角三角形,∠∠DNM =45°,∠==45ZJB DNM ︒∠∠,∠∠BZJ =∠BJZ =45°,∠BJ =BZ ,设直线JZ 的解析式为22y k x b =+,∠点Z 的坐标为(0,2b ),点J 的坐标为(22b k -,0), ∠222b BJ BZ b k ===, ∠21k =, ∠3241418m m -=+, ∠324418m m -=+,∠42m =-,∠42BH =,综上所述,当直线FG 截∠ADC 所得的三角形是等腰三角形时,74BH =或2或8或42.【点睛】本题考查了求正切值,相似三角形的性质与判定,圆周角定理,等腰三角形的性质与判定,一次函数与综合等等,利用分类讨论和属性结合的思想求解是解题的关键.答案第26页,共26页。
2024年浙江省中考数学模拟练习试卷(解析版)(考试时间:120分钟 试卷满分:120分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下图是由一个长方体和一个圆柱组成的几何体,它的俯视图是( )A. B. C. D.【答案】D【解析】【分析】根据从上面看得到的图形是俯视图即可解答.【详解】解:从上面看下边是一个矩形,矩形的上边是一个圆,故选:D .2.下列计算正确的是( )A .422a a −=B .842a a a ÷=C .235a a a ⋅=D .()325b b = 【答案】C【分析】根据整式的减法运算,同底数幂的乘法、除法运算,幂的乘方进行运算求解,然后进行判断即可.【详解】解:A 中4222a a a −=≠,错误,故不符合要求;B 中8424a a a a ÷=≠,错误,故不符合要求;C 中235a a a ⋅=,正确,故符合要求;D 中()3265b b b =≠,错误,故不符合要求;故选C .3.截至2022年3月24日,携带“祝融号”火星车的“天问一号”环绕器在轨运行609天,距离地球277000000千米;数据277000000用科学记数法表示为( )A .627710×B .72.7710×C .82.810×D .82.7710× 【答案】D【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同, 当原数绝对值≥10时,n 是正整数数.【详解】解:由题意可知: 8277000000=2.7710×.故选:D .4.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【分析】中心对称是指把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,中心对称,是针对两个图形而言,是指两个图形的(位置)关系;如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.由此即可求解.【详解】解:A 选项,不是轴对称图形,也不是中心对称图形,不符合题意;B 选项,不是轴对称图形,是中心对称图形,不符合题意;C 选项,是轴对称图形,也是中心对称图形,符合题意;D 选项,是轴对称图形,不是中心对称图形,不符合题意;故选:C .5.已知点P (m ﹣3,m ﹣1)在第二象限,则m 的取值范围在数轴上表示正确的是( )A .B .C .D .【答案】D【分析】先根据题意列出不等式组,求出其中各不等式的解集,再求出这些解集的公共部分即可.【详解】解:∵点P (m ﹣3,m ﹣1)在第二象限,∴3010m m −< −> , 解得:1<m <3,故选D .6.化简24142x x −−−的结果是( ) A .12x −+ B .12x −− C .12x + D .12x − 【答案】A【分析】根据题意首先应通分,然后进行分式的加减运算进而上下约分即可得出答案. 【详解】解:24142x x −−− 224244x x x +−−−2424x x −−=− (2)(2)(2)x x x −−=−+ 12x =−+ 故选:A .7 .从甲、乙、丙三人中任选两人参加青年志愿者活动,甲被选中的概率是( )A .13B .12C .23 D .19【答案】C【分析】画出树状图,共有6种等可能的结果,其中甲被选中的结果有4种,由概率公式即可得出结果.【详解】解:根据题意画图如下:共有6种等可能的结果数,其中甲被选中的结果有4种, 则甲被选中的概率为4263=. 故选:C .8. 如图,AB 为O 的直径,C 、D 为O 上的点,AD CD =,若40CAB ∠=°,则CAD ∠=( )A .20°B .35°C .30°D .25°【答案】D【分析】连接 OD 、OC ,如图,利用等腰三角形的性质和三角形内角和定理计算出 100AOC ∠=° ,再根据圆心角、弧、弦的关系得到 50AOD COD ∠=∠=°,然后根据圆周角定理得到 CAD ∠ 的度数; 【详解】连接 OD 、OC ,如图,,OA OC =OCA OAC ∴∠=∠40=°180AOC ∴∠=°4040100−°−°=°AD CD =,AD CD∴= 12AOD COD AOC ∴∠=∠=∠50=° 125.2CAD COD ∴∠=∠=° 故选:D9.如图,在平面直角坐标系xOy 中,直线AB 经过A (4,0)、B (0,4),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( )A B .﹣1 C .2 D .【答案】C 【分析】连接OP 、OQ ,根据勾股定理知 222PQ OP OQ =﹣, 当PO ⊥AB 时,线段PQ 最短,即线段PQ 最小. 【详解】解:如图,连接OP 、OQ .∵PQ 是⊙O 的切线,∴OQ ⊥PQ ;由勾股定理知222PQ OP OQ =﹣,, ∵当PO ⊥AB 时,线段PQ 最短;又∵A (4,0)、B (0,4), ∴OA =OB =4,∴AB ,∴1122OP AB ==× ∵OQ =2,∴2PQ .故选C .10.如图,矩形ABCD 的内部有5个全等的小正方形,小正方形的顶点,,,E F G H 分别落在边,,,AB BC CD DA上,若20,16AB BC ==,则小正方形的边长为( )A.B .5 C.D.【答案】B 【分析】由矩形的性质可得BEG DGE ∠=∠,求出AEH CGF ∠=∠,证得(AAS)AEH CGF ≌,得出AE CG =,过点K 作GK AB ⊥于K ,可证明AEH KGE ∽,利用相似三角形对应边成比例求出144AE KG ==,再求出12EK =,然后利用勾股定理列式求出EG ,然后求解即可. 【详解】解:∵四边形ABCD 是矩形,∴AB CD ,∴BEG DGE ∠=∠, ∴AEH CGF ∠=∠, ∵5个小正方形全等,∴EH GF =,在AEH △和CGF △中,90AEH CGF A C EH GF ∠=∠ ∠=∠=° =, ∴(AAS)AEH CGF ≌, ∴AE CG =,过点K 作GK AB ⊥于K ,如下图所示,则四边形BCGK 为矩形,∴,16BKCG AE KG BC ====, ∵90,90AEH KEGKGE KEG ∠+∠=°∠+∠=°, ∴AEH KGE ∠=∠, ∵90A EKG ∠=∠=°, ∴AEH KGE ∽, ∴14AE EH KG GE ==, ∴144AE KG ==, ∴204412EK AB AE BK −−−−,在Rt KEG 中,20EG ,∴小正方形的边长为5420=÷,故选:B .二、填空题:本题共6小题,每小题3分,共18分。
浙江省杭州市中考数学真题模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,箭头表示投影线的方向,则图中圆柱体的正投影是( )A .圆B .圆柱C .梯形D .矩形 2.如图,梯形护坡石坝的斜坡AB 的坡度i =1:3,坝高BC 为2米,则斜坡AB的长是( )A .25米B .210米C .45米D .6米 3.方程0232=+-x x 的实数根有( )A .4个B .3个C .2个D .1个 4. 如图,宽为 50 cm 的矩形图案由 10个全等的小长方形拼成,其中一个小长方形的面积为( )A .400cm 2B .500 cm 2C .600 cm 2D .4000 cm 25.若))(3(152n x x mx x ++=-+,则m 的值为 ( )A .5-B .5C .2-D .2 6.12x y =⎧⎨=⎩是方程ax -y =3的解,则a 的取值是( )A .5B .-5C .2D .1 7.如图①,在边长为a 的正方形中挖去一个边长为b 的小正方形(a b >),再沿黑线剪开,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( )A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .222()a b a b ⋅-=-8.用代入解方程组52231x y x y -=⎧⎨-=⎩时,下列代入方法正确的是( ) A .231x x -= B .21531x x -+= C .23(52)1x x --= D . 21561x x --=二、填空题9.若函数m mx m y +-=2)1(是二次函数,则m = . -2 10.在实数范围内有意义,则x 的取值范围为: .11.已知一个样本中,50个数据分别落在5个组内,第一,二,三,五的数据个数分别为2,8,15,5,则第四组的频数为 ,频率为 .12.用正十二边形与三角形组合能够铺满地面,每个顶点周围有 个三角形和 个正十二边形.13.若方程02=-m x 有整数根,则m 的值可以是_____ ____(只填一个).14.两个连续自然数的积是156,则这两个数是 .15. 当2x =-时,二次三项式224x mx ++的值等于 18,那么当2x =时,这个二次三项式的值为 .16.已知正比例函数y=kx (k ≠0)的图象经过原点、第二象限与第四象限,请写出符合上述条件的k 的一个值:_________.解答题17.如图是第29届北京奥运会上获得金牌总数前六名国家的统计图:则这组金牌数的中位数是 枚.奥运金牌榜前六名国家18. 已知∠AOB 是由∠DEF 经过平移变换得到的,且∠AOB+∠DEF=120°,则∠AOB= .解答题19.甲、乙两名运动员照镜子时,波波看到他们胸前的号码在镜子中的像分别是和,那么甲胸前的号码是,乙胸前的号码是 .20.判断下列各组图形分别是哪种变换?21.如图,把△ABC沿虚线剪一刀,若∠A=40°,则∠l+∠2= .三、解答题22.如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.23.如图,等腰梯形ABCD 中,上底AD=24 cm ,下底BC=28 cm ,动点P 从A 开始沿AD 边向D 以1 cm /s 的速度运动,动点Q 从点C 开始沿CB 边向B 以3 cm /s 的速度运动,P ,Q 分别从点A ,C 同时出发,当其中一点到端点时,另一点也随之停止运动,设运动时间为t(s).(1)t 取何值时,四边形PQCD 为平行四边形?(2)t 取何值时,四边形PQCD 为等腰梯形?24.解下列方程:(1)()22116x -= (2)390x x -=25.先化简,再求值:(4)(2)(1)(3)x x x x ----+,其中52x =-.26.计算下列各式,结果用幂的形式表示:(1)32(2);(2)54[(3)]-;(3)352()x x ⋅;(4)3443()()a a ⋅;(5)23(5)-;(6)24[()]a b +27.解方程组2345y x x y =⎧⎨-=⎩和124223x y x y ⎧-=⎪⎨⎪+=⎩各用什么方法解比较简便?求出它们的解.28.如图,由火柴棒拼出的一列图形中,第n个图形由n个正方形组成.请问:(1)第4个图形中火柴棒有几根?(2)第n个图形中火柴棒有几根?(3)已知最后一个图形由691根火柴棒组成,那么这个图形由几个正方形组成?29.如图所示,在Rt △ABC中,∠ACB为直角,∠CAD的平分线交BC的延长线于点E,若∠B=35°,求∠BAE和∠E的度数.30.如图,在一个横截面为Rt△ABC的物体中,∠ACB=90°,∠CAB=30°,BC=1米.工人师傅要把此物体搬到墙边,先将AB边放在地面(直线l)上,再按顺时针方向绕点B翻转到△A1BC1的位置(BC1在l上),最后沿射线BC1的方向平移到△A2B2C2的位置,其平移的距离为线段AC的长度(此时A2C2恰好靠在墙边).⑴请直接写出AB、AC的长;⑵画出.......,并求出该路径的长度(精确到0.1米)..在搬动此物体的整个过程中A.点所经过的路径【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.A4.A5.C6.A7.A8.C二、填空题9.10.x≥311.12.1,213.O ,1,4等14.12,1315.616.例如:“-1”17.2118.60°19.96,6920.轴对称,平移,旋转,相似21.220°三、解答题22.(1)画图略;(2)B ′(-6,2),C ′(-4,-2).(3)M ′(-2x ,-2y).23.(1) t 取6 s 时,四边形PQCD 为平行四边形;(2)t 取7s 时,四边形PQCD 为等腰梯形 24.(1)1253,22x x ==- ,(2)1230,3,3x x x ===- 25.811x -+,3126.(1)62;(2)203;(3)16x ;(4)24a ;(5)65-;(6)8()a b +对于方程组2345y x x y =⎧⎨-=⎩,用代入法解得12x y =-⎧⎨=-⎩;对于方程组124223x y x y ⎧-=⎪⎨⎪+=⎩,用加减法解得5412x y ⎧=⎪⎪⎨⎪=⎪⎩28.(1)13 根 (2) (31n +)根 (3)230 个 29.∠E=27.5°,∠BAF=117.5° 30.(1)AB=2(米),AC=3(米);(2)画出A 点经过的路径:经过的路径长4π/3+3≈5.9(米).。
(第4题图)中考模拟试卷数学卷考生须知:1. 本试卷分试题卷和答题卷两部分,满分120分, 考试时间100分钟.2. 答题时, 应该在答题纸指定位置填写学校,班级,姓名,不能使用计算器.3. 所有答案都必须做在答题纸标定的位置上,请务必注意试题序号和答题序号相对应. 一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1.计算4.5⨯105-4.4⨯105,结果用科学记算法表示为( )A .0.1⨯105B .0.1⨯104C .1⨯104D .1⨯105 2.下列运算正确的是( )A .(m 2n )3=m 5n 3B . a 2•a 3=a 6C .(﹣y 2)3=y 6D .﹣2x 2+5x 2=3x 2 3.如图所示图形中,是轴对称图形的为( )A .B .C .D .4.甲、乙、丙、丁四位运动员在“110米栏”训练中,每人各跑5次,据统计,平均成绩都是13.2秒,方差分别是S 甲2=0.11,S 乙2=0.03,S 丙2=0.05,S 丁2=0.02,则这四位运动员“110米栏”的训练成绩最稳定的是( ) A .甲 B .乙 C .丙 D .丁5.如图,AB ∥CD ,∠D=30°,∠E=35°,则∠B 的度数为( ) A .60° B .65° C .70° D .75° 6.下列命题中是真命题的是( )A . 经过直线外一点,有且仅有一条直线与一线与已知直线垂直。
B . 平分弦的直径垂直于弦。
C .对角线互相平分且垂直的四边形是菱形 。
D . 反比例函数xky =,当k <0时,y 随x 的增大而增大。
7.如图是某几何体的三视图,根据图中所标的数据求得该几何体(第9题图)的体积为( )A .136πB .236πC .132πD .120 8.已知关于x 的方程只有一个实数根,则实数a 的取值范围是( )A .a >0B .a <0C .a≠0 D.a 为一切实数9.尺规作图特有的魅力曾使无数人沉湎期中,连当年叱咤风云的拿破仑也不例外,我们可以只用圆规将圆等分。
例如可将圆6等分,如图只需在⊙O 上任取点A ,从点A 开始,以⊙O 的半径为半径,在⊙O 上依次截取点B,C,D,E,F .从而点A,B,C,D,E,F 把⊙O 六等分。
下列可以只用圆规等分的是( )①两等分 ②三等分 ③四等分 ④五等分 A. ② B. ①② C. ①②③ D. ①②③④10. 已知二次函数)0(2>++=a c bx ax y 经过点M (-1,2)和点 N (1,-2),交x 轴于A ,B 两点,交y 轴于C 则①0=+c a ;②无论a 取何值,此二次函数图象与x 轴必有两个交点,函数图象截x 轴所得的线段长度必大于2.;③当函数在101<x 时,y 随x 的增大而减小;④当01<<<-n m 时,an m 2<+ ⑤若2,1OC OB OA a =⋅=则以上说法正确的有:( )A .①②③④⑤B . ①②④⑤C .②③④D .①②③⑤ 二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案 11.在实数范围内因式分解x 4-9= .12.用一个半径为3㎝,圆心角为120ο的扇形围成一个圆锥的侧面,则圆锥的高为 ㎝.13.若不等式⎩⎨⎧>>a x x 3的解集是x >3,则a 的取值范围是 .14.如图,等边三角形OAB 的一边OA 在x 轴上,双曲线xy 3=在第一象限内的图像经过OB 边的中点C ,则点B 的坐标是 .(第7题图)(第14题图) (第15题图) (第16题图)15.如图,在四边形ABCD 中,AB=AD=6,AB ⊥BC ,AD ⊥CD ,∠BAD=60°,点M 、N 分别在AB 、AD 边上,若AM :MB=AN :ND=1:2.则 cos ∠MCN= .16.四边形OBCD 中的三个顶点在⊙O 上,点A 是⊙O 上的一个动点(不与点B 、C 、D 重合)。
若四边形OBCD 是平行四边形时,那么ODA OBA ∠∠和的数量关系是 . 三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤。
如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以。
17.(本小题满分6分) 先化简,再求值:÷﹣(+1),再从0<x<4的范围内选取一个你最喜欢的值代入,求值. 18.(本小题满分8分)如图,在△ABC 中,AD 是∠BAC 的平分线,EF 垂直平分AD 交AB 于E ,交AC 于F .求证:四边形AEDF 是菱形.19.(本小题满分8分)在边长为1的小正方形组成的正方形网格中建立如图片所示的平面直角坐标系,已知格点三角形ABC (三角形的三个顶点都在小正方形上) (1)画出△ABC 关于直线l :x=﹣1的对称三角形△A 1B 1C 1;并写出A 1、B 1、C 1的坐标.(2)在直线x=﹣l 上找一点D ,使BD+CD 最小,满足条件的D 点为 .20.(本小题满分10分)萧山北干初中组织外国教师(外教)进班上英语课,王明同学为了解全校学生对外教的喜爱程度,在全校随机抽取了若干名学生进行问卷调查.问卷将喜爱程度分为A(非常喜欢)、B(喜欢)、C(不太喜欢)、D(很不喜欢)四种类型,根据调查结果绘制成了两幅不完整的统计图,请结合统计图信息解答下列问题:(1)这次调查中,一共调查了名学生,图1中C类所对应的圆心角度数为;(2)请补全条形统计图;(3)在非常喜欢外教的5位同学(三男两女)中任意抽取两位同学作为交换生,请用列表法或画树状图求出恰好抽到一名男生和一名女生作为交换生的概率.21.(本小题满分10分)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.22.(本小题满分12分)在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(﹣5,6)的“关联点”为点(﹣5,﹣6).(1)如果点A(3,﹣1),B(﹣1,3)的“关联点”中有一个在函数的图象上,那么这个点是(填“点A”或“点B”).(2)如果点N*(m+1,2)是一次函数y=x+3图象上点N的“关联点”,求点N的坐标.(3)如果点P在函数y=﹣x2+4(﹣2<x≤a)的图象上,其“关联点”Q的纵坐标y′的取值范围是﹣4<y′≤4,那么实数a的取值范围.23.(本小题满分12分)如图边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P(1) 若AG=AE,证明:AF=AH;(2)若矩形PFCH的面积,恰矩形AGPE面积的两倍,试确定∠HAF的大小;(3)若矩形EPHD的面积为21,求Rt∆GBF的周长.杭州市各类高中招生文化考试模拟试卷数学答题卷姓名贴条形码区(此处贴有A标识条形码)考生禁填缺考考生,由监考员用2B铅笔填涂右面的缺考标记1、答题前,考生先将自己的姓名、准考证号填写清楚,并认真核准条形码上的准考证号、姓名。
2、选择题部分必须使用2B铅笔填涂:非选择题部分必须使用0.5毫米及以上书写黑色字迹的钢笔或签字笔作答,字体工整、笔迹清楚。
3、请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4、保持卡面清洁,不折叠,不破损。
填涂样例注意事项错误填涂正确填涂●○√×11._ 12._____ 13._ _ _14.__ 15._ 16.___17.(本题6分)解:18.(本题8分)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效19.(本题8分)(1)(2)20.(本题10分)(1)(2)(3)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效21.(本题10分)(1)(2)22.(本题12分)(1)(2)(3)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效23.(本题12分)(1)(2)(3)备用图中考模拟试卷数学参考答案及评分标准一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案CDDDBCACDB二、填空题11、()()()3332+-+x x x ;12、22;13、3≤a ;14、()32,2;15、1413; 16、ο120=∠+∠ODA OBA 或ο60=∠+∠ODA OBA 或ο60=∠-∠ODA OBA 或ο60=∠-∠OBA ODA (每个1分)三、解答题 17.解:÷﹣(+1)=11-x ----------------------------3分 把x=2代入的原式=1---------------------------------3分(选值2分,结论1分) 18.证明:∵AD 平分∠BAC,∴∠BAD=∠CAD, 又∵EF ⊥AD ,∴∠AOE=∠AOF=90° 在△AEO 和△AFO 中EAO FAO AO AOAOE AOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEO ≌△AFO (ASA ),------------------------------------------------4分 ∴EO=FO即EF 、AD 相互平分,∴四边形AEDF 是平行四边形---------------------------2分请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效又EF ⊥AD ,∴平行四边形AEDF 为菱形.-----------------------------------2分 考点:全等三角形的性质和判定;平行四边形的判定;菱形的判定.19.(1)所作图形如图所示:---------2分 A 1(3,1),B 1(0,0),C 1(1,3);--3分 (2)作出点B 关于x=﹣1对称的点B 1, 连接CB 1,与x=﹣1的交点即为点D , 此时BD+CD 最小,点D 坐标为(﹣1,1).---------------3分考点:作图-轴对称变换;轴对称-最短路线问题.20.(1)40;54°;----------------------------------------------4分(2分每空) (2)补全条形统计图,如图所示:------------------------------------------2分(3)所有等可能的情况有20种情况,其中一男一女的情况有12种, 则P (一男一女)=53.---------------------------------------------------4分 考点:列表法与树状图法;扇形统计图;条形统计图.21.(1)证明:连结AE ,如图, ∵AC 为⊙O 的直径, ∴∠AEC=90°,--2分 ∴AE ⊥BC , 而AB=AC ,∴BE=CE ;-------2分 (2)连结DE ,如图, ∵BE=CE=3, ∴BC=6,∵∠BED=∠BAC , 而∠DBE=∠CBA , ∴△BED ∽△BAC---3分 ∴=,即=, ∴BA=9, ∴AC=BA=9.-------3分考点:相似三角形的判定与性质;等腰三角形的性质;圆周角定理.22.(1)B ;-----------------------------------------------------------2分 (2)(﹣1,2),(﹣1,﹣2);--------------------------------------4分(3)如果点P 在函数y=﹣x 2+4(﹣2<x≤a)的图象上,().4521,90,,.,.,,.,4222,2,b ,45)2(2222222222222222︒=∠=∠=∠∆≅∆︒=∠+∠=∠+∠=∠=∠=∴∆≅∆==+=+=+=++=++-=+-+-=+--=-⎩⎨⎧=+=+====︒=∠MAH HAF MAF AHF AMF HAD BAH BAH MAB MAH HAD MAB AH AM ADHRt ABM Rt AM DH BM M CB FH BF DH FH x a FH CF CH y b y b x a y bx b x ax a yby b x ax a b y x a by ax y x b a y ED x AE BG a AG HAF 则又可证则因为连接,使到延长即得所以又即代入得把两边平方得有由则,,,设证明如下:Θ当﹣2<x≤0时,0<y≤4,即﹣2<a≤0;--------------------------------2分 当x >0时,y=y′,即﹣4<y≤4,﹣x 2+4>﹣4,解得x <2,即0<a <2,-----------------------------3分综上所述:“关联点”Q 的纵坐标y′的取值范围是﹣4<y′≤4,那么实数a 的取值范围是﹣2<a <2.-------------------------------------------------------1分23.解:(1)证明:连接AF 、AH ,由题意知四边形AGHD 与四边形AEFB 均为矩形, ∴AG=DH ,AE=BF ,∵AG=AE ,∴DH=BF ,∵四边形ABCD 为正方形,∴AB=AD ,∠B=∠D=90°,在Rt △ADH 与Rt △ABF 中,AB=AD ,∠B=∠D=90°,BF=DH ,∴△ABF ≌△ADH ,-----------------------------------------------2分∴AF=AH ;----------------------------------------------------------1分----------------------------1分---------------------2分--------------------2分(3)连接GF ,设BC=x ,BF=y ,则,∴(x-1)(y-1)=,∴xy-x-y+1=,∴xy-x-y=-∴x 2+y 2=x 2+y 2+1+2xy-2x-2y------------------------------------------------------------------------1分 ① ② ① ②∴y x y x --=+122 得122=+++y x y x∴Rt ∆GBF=1------------------------------------------------------------------------------------------2分。