概率统计复习讲义
- 格式:doc
- 大小:587.50 KB
- 文档页数:9
统计概率讲义(总27页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--临夏志成中学985班统计概率讲义统计学与概率论的区别与联系区别:统计学反应已经发生的事实的结果,概率论研究未来发生的随机事件的可能性联系:概率论以统计学的研究为基础统计学普查收集数据简单随机抽样抽样调查分层抽样系统抽样统茎叶图整理数据频率分布直方图计集中分析样本分析学分析数据离散分析总体估计线性回归应用数据独立性检验一、收集数据1.普查:需要耗费大量的人力、物力、财力,一般在总体很少时采用2.抽样调查:从调查的总体中抽取一部分个体组成一个样本进行研究其中样本中含有的个体数称为该样本的样本容量①简单随机抽样适用条件:总体数较少,且没有明显的结构差异常用方法:随机数表法,抽签法,抓阄法例:用随机数表从300个调查对象中抽出10个个体个体进行研究随机数表如下:0332975007021则抽取出的10个个体的编号为②分层抽样适用条件:总体数较多,且有明显的结构差异本质:样本中各层次的比例与总体中各层次的比例相同例:志成中学从小学600,初中300,高中100抽取20人进行校长访谈,则分别抽取的人数为③系统抽样适用条件:总体数很多,无明显结构差异操作步骤:第一步:编号,将总体中所有的个体从1开始编号,一直到N(N为最后一个人编号)第二步:确定组数,样本容量n即为组数第三步:确定间隔T(此步较为重要):int()NT n=[即T 为N 除以n 的商的整数部分,不管小数部分多大,只取整数]第四步:分组,从编号1开始,每T 个个体构成一组,共n 组,多余的人省略第五步:在第一组中抽取:采取随机抽样的方法抽取到编号为*(1,)a a T a N ≤≤∈的个体第六步:抽取样本:在剩下的n-1组中每组只抽取一个个体,遵循以下原则:编号分别为:,2,(1)a T a T a n T +++-例:从320个学生中采用系统抽样的方法抽取10个学生参加篮球赛,请你写出一组满足条件的学生编号:例2:志成中学840人参加野外宿营,其中编号为1-360的360人在I 区宿 营,依次下来280人在A 区,其余人在B 区,先采用系统抽样的方法抽取 28位同学作为区安全员,若在第一组中抽到的编号为12,则三区的区安全 员人数分别为最后需要特别强调的是,不管采用哪一种抽样方法,每个个体被抽到的概率始终是相等的。
第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。
)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。
例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。
例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。
例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
第九章概率与统计9.1 两个计数原理、排列与组合1.通过实例,了解分类加法计数原理、分步乘法计数原理及其意义.2.通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式.【教材梳理】1.分类加法计数原理与分步乘法计数原理(1)分类加法计数原理①定义:完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.②拓展:完成一件事,如果有n类方案,且:第1类方案中有m1种不同的方法,第2类方案中有m2种不同的方法,… ,第n类方案中有m n种不同的方法,那么完成这件事共有N=m1+m2+⋯+m n种不同的方法.(2)分步乘法计数原理①定义:完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.②拓展:完成一件事,如果需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,… ,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.2.排列与组合(1)排列:一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.两个排列相同的充要条件是:两个排列的元素完全相同,且元素的排列顺序也相同.(2)排列数做从n 个不同元素中取出m 个元素的一个组合.(4)组合数3.A n m =(n −m +1)A n m−1=nA n−1m−1 ;(n +1)!−n!=n ⋅n! .4.kC n k =nC n−1k−1 ;C n m =C n−1m−1+C n−2m−1+⋯+C m−1m−1 .1. 判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.(1) 在分类加法计数原理中,每类方案中的方法都能直接完成这件事.( √ ) (2) 在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.( × )(3) 所有元素完全相同的两个排列为相同排列.( × )(4) (n +1)!−n !=n ⋅n ! .( √ )(5) kC n k =nC n−1k−1 .( √ )2. 公共汽车上有10位乘客,沿途5个车站,所有乘客下车的可能方式有( D )A. A 105 种B. C 105 种C. 105 种D. 510 种[解析]解:所有乘客下车的可能方式有510 种.故选D.3. (教材改编题)已知集合M ={1,−2,3} ,N ={−4,5,6,−7} ,从M ,N 这两个集合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是( C )A. 12B. 8C. 6D. 4[解析]解:分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是3×2=6 .故选C.4. 已知n ,m 为正整数,且n ≥m ,则下列各式中正确的个数是( C )①A 63=120 ;②A 127=C 127A 77 ;③C n m +C n+1m =C n+1m+1 ;④C n m =C n n−m .A. 1B. 2C. 3D. 4[解析]解:对于①,A 63=6×5×4=120 ,故①正确;对于②,因为C 127=A 127A 77 ,所以A 127=C 127A 77 ,故②正确;对于③,因为C n m +C n m−1=C n+1m ,所以C n m+1+C n m =C n+1m+1 ,故③错误;对于④,C n m =C n n−m ,故④正确.故选C.考点一 分类加法计数原理与分步乘法计数原理例1 (1) 满足a ,b ∈{−1,0,1,2} ,且关于x 的方程ax 2+2x +b =0 有实数解的有序数对(a,b) 的个数为13.[解析]解:当a =0 时,b 的值可以是−1 ,0 ,1 ,2 ,故(a,b) 的个数为4;当a ≠0 时,要使方程ax 2+2x +b =0 有实数解,需使Δ=4−4ab ≥0 ,即ab ≤1 .若a =−1 ,则b 的值可以是−1 ,0 ,1 ,2 ,(a,b) 的个数为4;若a =1 ,则b 的值可以是−1 ,0 ,1 ,(a,b) 的个数为3;若a =2 ,则b 的值可以是−1 ,0 ,(a,b) 的个数为2.由分类加法计数原理可知,(a,b) 的个数为4+4+3+2=13 .故填13.(2) 某旅游景区有如图所示A 至H 共8个停车位,现有2辆不同的白色车和2辆不同的黑色车,要求相同颜色的车不停在同一行也不停在同一列,则不同的停车方法总数为( B )A. 288B. 336C. 576D. 1 680[解析]解:第一步:排白车,第一行选一个位置,则第二行有三个位置可选,由于车是不相同的,故白车的停法有4×3×2=24(种).第二步:排黑车,若白车选AF,则黑车有BE,BG,BH,CE,CH,DE,DG共7种选择,黑车是不相同的,故黑车的停法有2×7=14(种).根据分步计数原理,共有24×14=336(种),故选B.(3)(教材改编题)某儿童游乐园有5个区域要涂上颜色,现有四种不同颜色的油漆可供选择,要求相邻区域不能涂同一种颜色,则符合条件的涂色方案种数为( D )A. 36B. 48C. 54D. 72[解析]解:如图,将五个区域分别记为①,②,③,④,⑤.涂色分为5步完成,前三步涂区域①②③,有4×3×2=24(种)方法.后两步涂区域④⑤,可分为两类:区域②④涂色相同,有1×2种方案;区域②,④涂色不相同,有1×1种方案.所以不同的涂色方案共有24×(1×2+1×1)=72(种).故选D.【点拨】解答计数应用问题的总体思路:根据完成事件所需的过程,对事件进行整体分类,确定可分为几大类,整体分类以后,再确定在每类中完成事件要分几个步骤,这些问题都弄清楚了,就可以根据两个基本原理解决问题了.此外,还要掌握一些非常规计数方法,如:①枚举法:将各种情况一一列举出来,它适用于种数较少且计数对象不规律的情况;②转换法:转换问题的角度或转换成其他已知问题;③间接法:若用直接法比较复杂,难以计数,则可考虑利用正难则反的策略,先计算其反面情形,再用总数减去即得.变式1.(1)从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为( D )A. 56B. 54C. 53D. 52[解析]解:在8个数中任取2个不同的数共有8×7=56个对数值,但在这56个数值中,log24=log39,log42=log93,log23=log49,log32=log94,即满足条件的对数值共有56−4=52(个).故选D.(2)某学校有东、南、西、北四个校门.翻新改造期间,学校对进入四个校门做出如下规定:学生只能从东门或西门进入校园,教师只能从南门或北门进入校园.现有3名教师和4名学生要进入校园(不分先后顺序),请问进入校园的方式共有128种.(用数字作答)[解析]解:因为学生只能从东门或西门进入校园,所以4名学生进入校园的方式共24=16种.因为教师只能从南门或北门进入校园,所以3名教师进入校园的方式共有23=8种.所以3名教师和4名学生要进入校园的方式共有16×8= 128种.故填128.(3) [2023届湖南长郡中学高三入学考试]某城市在中心广场建造一个花圃,花圃分为6个部分,如图所示.现要栽种4种不同颜色的花,每部分栽种一种,且相邻部分不能栽种同样颜色的花,则不同的栽种方法有( B )A. 80种B. 120种C. 160种D. 240种[解析]解:第一步,对1号区域栽种,有4种选择.第二步,对2号区域栽种,有3种选择.第三步,对3号区域栽种,有2种选择.第四步,对5号区域栽种,分为三种情况:①5号与2号颜色相同,则4号仅有1种选择,6号有2种选择;②5号与3号颜色相同,情况与①类似;③5号与2,3号颜色都不同,则4,6号只有1种选择.所以共有4×3×2×(1×2×2+1×1)=120(种).故选B.考点二排列、组合的基本问题命题角度1 排列的基本问题例2 有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数. (1)选其中5人排成一排;[答案]解:从7个人中选5个人排,排法总数有A75=7×6×5×4×3=2 520(种).(2)排成前后两排,前排3人,后排4人;[答案]分两步完成,先选3人排在前排,有A73种方法,余下4人排在后排,有A44种方法,故共有A73A44=5 040(种).另解:本题即为7人排成一排的全排列.(3)全体排成一排,甲不站排头也不站排尾;[答案](优先法)(方法一)甲为特殊元素.先排甲,有5种方法,其余6人有A66种方法,故共有5×A66=3 600(种).(方法二)排头与排尾为特殊位置.排头与排尾从除甲的其余6个人中选2个排列,有A62种方法,中间5个位置由余下4人和甲进行全排列,有A55种方法,共有A62×A55=3 600(种).(4)全体排成一排,女生必须站在一起;[答案](捆绑法)将女生看成一个整体,与3名男生一起全排列,有A44种方法,再将4名女生进行全排列,也有A44种方法,故共有A44A44=576(种).(5)全体排成一排,男生互不相邻;[答案](插空法)男生不相邻,而女生不作要求,所以应先排女生,有A44种方法,再在女生之间及首尾空出的5个空位中任选3个空位排男生,有A53种方法,故共有A44A53=1 440(种).(6)全体排成一排,甲、乙两人中间恰好有3人;[答案](捆绑法)把甲、乙及中间3人看作一个整体,第一步:先排甲乙两人,有A22种方法;第二步:从余下5人中选3人排在甲乙中间,有A53种;第三步:把这个整体与余下2人进行全排列,有A 33 种方法.故共有A 22A 53A 33=720(种).(7) 全体排成一排,甲必须排在乙前面(可不相邻);[答案](消序法)7人的全排列有A 77 种,其中甲在乙前面与乙在甲前面各占12 ,故共有A 772=2 520 (种).另解:7个位置中任选5个排除甲、乙外的5人,余下的两个位置甲、乙的排法即定,故有A 75=2 520 (种).(8) 全部排成一排,甲不排在左端,乙不排在右端.[答案]甲、乙为特殊元素,左、右两端为特殊位置.(方法一)(特殊元素法)甲在最右端时,其他的可全排,有A 66 种;甲不在最右端时,可从余下5个位置中任选一个,有A 51 种,而乙可排在除去最右端位置后剩余的5个中的任意一个上,有A 51 种,其余人全排列,共有A 51A 51A 55 种.由分类加法计数原理,共有A 66+A 51A 51A 55=3 720 (种).(方法二)(特殊位置法)先排最左端,除去甲外,有A 61 种,余下6个位置全排,有A 66 种,但应剔除乙在最右端时的排法A 51A 55 种,因此共有A 61A 66−A 51A 55=3 720 (种).方法三(间接法):7个人全排,共A 77 种,其中,不合条件的有甲在最左端时,有A 66 种,乙在最右端时,有A 66 种,其中都包含了甲在最左端,同时乙在最右端的情形,有A 55 种.因此共有A 77−2A 66+A 55=3 720 (种).【点拨】有约束条件的排列问题一般有以下几种基本类型与方法:①特殊元素优先考虑;②对于相邻问题采用“捆绑法”,整体参与排序后,再考虑“捆绑”部分的排序;③对于不相邻问题,采用“插空”法,先排其他元素,再将不相邻元素插入空档;④对于定序问题,可先不考虑顺序限制,排列后再除以定序元素的全排列数.变式2. 【多选题】某学院学生会的3名男生和2名女生在社区参加志愿者活动,结束后这5名同学排成一排合影留念,则下列说法正确的是( BCD )A. 若让其中的男生甲排在两端,则这5名同学共有24种不同的排法B. 若要求其中的2名女生相邻,则这5名同学共有48种不同的排法C. 若要求其中的2名女生不相邻,则这5名同学共有72种不同的排法D. 若要求其中的1名男生排在中间,则这5名同学共有72种不同的排法[解析]解:对于A,男生甲排在两端,共有2A44=48(种)不同的排法,A错误.对于B,2名女生相邻,共有A22A44=48(种)不同的排法,B正确.对于C,2名女生不相邻,共有A33A42=72(种)不同的排法,C正确;对于D,要求1名男生排在中间,则这5名同学共有3A44=72(种)不同的排法,D正确.故选BCD.命题角度2 组合的基本问题例3 课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有1名女生;[答案]解:1名女生,4名男生,故共有C51C84=350(种).(2)两队长当选;[答案]将两队长作为一类,其他11个作为一类,故共有C22C113=165(种).(3)至少有1名队长当选;[答案]至少有1名队长当选含有两类:只有1名队长和2名队长.故共有C21C114+ C22C113=825(种).或采用间接法:C135−C115=825(种).(4)至多有2名女生当选;[答案]至多有2名女生含有三类:有2名女生、只有1名女生、没有女生,故选法有C52C83+C51C84+C85=966(种).(5)既要有队长,又要有女生当选.[答案]分两类:第一类女队长当选,有C124种选法;第二类女队长不当选,有C41C73+C42C72+C43C71+C44种选法.故选法共有C124+C41C73+C42C72+C43C71+C44=790(种).【点拨】解组合问题时要注意:①分类时不重不漏;②注意间接法的使用,在涉及“至多”“至少”等问题时,多考虑用间接法(排除法);③应防止出现如下常见错误:如第3小题,先选1名队长,再从剩下的人中选4人得C21C124≠825,请同学们自己找错因.变式3. 【多选题】为响应政府部门号召,某红十字会安排甲、乙、丙、丁四名志愿者奔赴A,B,C三地参加健康教育工作,则下列说法正确的是( BCD )A. 不同的安排方法共有64种B. 若恰有一地无人去,则不同的安排方法共有42种C. 若甲必须去A地,且每地均有人去,则不同的安排方法共有12种D. 若甲、乙两人都不能去A地,且每地均有人去,则不同的安排方法共有14种[解析]解:四人到三地去,一人只能去一地,方法数为34=81,A错误.若恰有一地无人去,则不同的安排方法数是C31(C41+C42+C43)=42,B正确.若甲必须去A地,且每地均有人去,则不同的安排方法数为A33+C31+C32= 12,C正确.若甲、乙两人都不能去A地,且每地均有人去,分甲、乙去同一个地方和不去同一个地方,则不同的安排方法数为2×5+2A22=14,D正确.故选BCD.考点三排列、组合的综合问题命题角度1 分堆与分配问题例4 按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;[答案]解:无序不均匀分组问题.先选1本,有C61种选法;再从余下的5本中选2本,有C52种选法;最后余下3本全选,有C33种选法.故共有C61C52C33=60(种).(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;[答案]有序不均匀分组问题.由于甲、乙、丙是不同的三人,在(1)题基础上,还应考虑再分配,共有C 61C 52C 33A 33=360 (种).(3) 平均分成三份,每份2本;[答案]无序均匀分组问题.先分三步,则应是C 62C 42C 22 种方法,但是这里出现了重复.不妨记六本书为A ,B ,C ,D ,E ,F ,若第一步取了AB ,第二步取了CD ,第三步取了EF ,记该种分法为(AB,CD,EF) ,则C 62C 42C 22 种分法中还有(AB,EF,CD) ,(CD,AB,EF) ,(CD,EF,AB) ,(EF,CD,AB) ,(EF,AB,CD) ,共有A 33 种情况,而这A 33 种情况仅是AB ,CD ,EF 的顺序不同,因此只能作为一种分法,故分配方式有C 62C 42C 22A 33=15 (种).(4) 平均分配给甲、乙、丙三人,每人2本;[答案]有序均匀分组问题.在(3)的基础上再分配给3个人,共有分配方式C 62C 42C 22A 33⋅A 33=C 62C 42C 22=90 (种).(5) 分成三份,1份4本,另外两份每份1本;[答案]无序部分均匀分组问题.共有C 64C 21C 11A 22=15 (种).(6) 甲、乙、丙三人中,一人得4本,另外两人每人得1本;[答案]有序部分均匀分组问题.在(5)的基础上再分配给3个人,共有分配方式C 62C 21C 11A 22⋅A 33=90 (种).(7) 甲得1本,乙得1本,丙得4本.[答案]直接分配问题.甲选1本,有C 61 种方法;乙从余下的5本中选1本,有C 51 种方法,余下4本留给丙,有C 44 种方法,故共有分配方式C 61C 51C 44=30 (种).【点拨】平均分配给不同人的分法等于平均分堆的分法乘以堆数的全排列.分堆到位相当于分堆后各堆再全排列,平均分堆不到指定位置,其分法数为:平均分堆到指定位置.对于分堆与分配问题应注意:①处理分配问题要注意先分堆再堆数的阶乘分配;②被分配的元素是不同的(如“名额”等则是相同元素,不适用),位置也应是不同的(如不同的“盒子”);③分堆时要注意是否均匀,如6分成(2,2,2)为均匀分组,分成(1,2,3)为非均匀分组,分成(4,1,1)为部分均匀分组.变式4.(1) [2020年新高考Ⅰ卷]6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( C )A. 120种B. 90种C. 60种D. 30种[解析]解:首先从6名同学中选1名去甲场馆,方法数为C61;然后从其余5名同学中选2名去乙场馆,方法数为C52;最后剩下的3名同学去丙场馆.故不同的安排方法共有C61C52=6×10=60种.故选C.(2)【多选题】2022年北京冬奥会吉祥物“冰墩墩”有着可爱的外表和丰富的寓意,现有5个不同造型的“冰墩墩”,则下列说法正确的是( BCD )A. 把这5个“冰墩墩”装入3个不同的盒内,共有129种不同的装法B. 从这5个“冰墩墩”中选出3个分别送给3位志愿者,每人1个,共有60种选法C. 从这5个“冰墩墩”中随机取出3个,共有10种不同的取法D. 把这5个“冰墩墩”装入3个不同的盒内,每盒至少装一个,共有150种不同的装法[解析]解:对于A,每个“冰墩墩”可选择3个盒子中的任意一个,根据分步乘法原理共有35=243(种)不同的装法,故A错误.对于B,共有C53A33=60(种)选法,故B正确.对于C,共有C53=10(种)不同的取法,故C正确.对于D,若3个盒子中“冰墩墩”的数量为1,1,3,则有C53C31A22=60(种)不同的装法;若3个盒子中“冰墩墩”的数量为1,2,2,则有C51C31C42=90(种).共有60+90=150(种),故D正确.故选BCD.命题角度2 数字排列问题例5 用0,1,2,3,4,5这六个数字:(1)能组成多少个无重复数字的四位奇数?[答案]解:先排个位数,有C31种方法,然后排千位数,有C41种方法,剩下百位和十位任意排,有A42种方法,故所求为C41C31A42=144个.(2)能组成多少个无重复数字且比1 325大的四位数?[答案]分为三类,第一类是千位是2,3,4,5中任意一个,有A41A53个数;第二类是千位是1,且百位是4,5中的一个,有A21A42个数;第三类是千位是1,且百位是3和十位是4,5中的一个,有A21A31个数.故所求为A41A53+A21A42+A21A31=270个.【点拨】对于有限制条件的数字排列问题,先满足特殊元素或特殊位置的要求,再考虑其他元素或位置,同时注意隐含条件:0不能在首位.变式5.(1)设集合A={0,2,4} ,B={1,3,6} .现分别从A,B中任取2个元素组成无重复数字的四位数,其中不能被5整除的数共有( C )A. 64个B. 96个C. 144个D. 152个[解析]解:所求的四位数中,数字含0的数有C21C32C21A33=72个,数字不含0的数有C22C32A44=72个,共有72+72=144个.故选C.(2)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2不相邻,这样的六位数的个数是32.(用数字作答)[解析]解:任何相邻两个数字的奇偶性不同,且1和2相邻,可分三步:第一步:先将3,5排列,共有A22种排法;第二步:再将4,6插空排列,共有2A22种排法;第三步:将1,2捆绑放到3,5,4,6形成的空中,共有C51种排法.共有A222A22C51=40(种)排法.又任何相邻两个数字的奇偶性不同,共有2A33A33=72(种)排法,所以所求为72−40=32.故填32.【巩固强化】1. 体育场南侧有3个大门,北侧有2个大门,某学生到该体育场练跑步,每个门都可进出,则他进出体育场的方案共有( D )A. 6种B. 10种C. 5种D. 25种[解析]解:该学生进出体育场都有5种可能,故他进出体育场的方案共有5×5=25(种).故选D.2. 某学校为落实“双减政策”,在每天放学后开设拓展课程供学生自愿选择,开学第一周的安排如下表.周内选择编程、书法、足球三门课,则不同的选课方案共有( A )A. 15种B. 10种C. 8种D. 5种[解析]解:若周二选编程,则选课方案有C31C31=9(种);若周三选编程,则选课方案有C21C31=6(种).综上,不同的选课方案共有9+6=15(种).故选A.3. [2023届安徽高三开学考试]如图,“天宫空间站”是我国自主建设的大型空间站,其基本结构包括天和核心舱、问天实验舱和梦天实验舱三个部分. 假设有6名航天员(4男2女)在天宫空间站开展实验,其中天和核心舱安排4人,问天实验舱与梦天实验舱各安排1人,且两名女航天员不在一个舱内,则不同的安排方案种数为( B )A. 14B. 18C. 30D. 36[解析]解:将6名航天员安排在3个实验舱的方案种数为C64C21C11=30(种),其中两名女航天员在一个舱内的方案种数为C42C21C11=12(种).所求为30−12=18(种).故选B.4. 给如图所示的5块区域A,B,C,D,E涂色,要求同一区域用同一种颜色,有公共边的区域使用不同的颜色,现有红、黄、蓝、绿、橙5种颜色可供选择,则不同的涂色方法有( D )A. 120种B. 720种C. 840种D. 960种[解析]解:A有5种颜色可选,B有4种颜色可选,D有3种颜色可选,C,E 均可涂除D的涂色外的其它颜色,均有4种可选.故共有5×4×3×4×4= 960(种)不同的涂色方法.故选D.5. 语文里流行一种特别的句子,正和反读起来都一样的,比如:“清水池里池水清”“中山自鸣钟鸣自山中”,那么在所有的四位数中符合这个规律且四个数字不能都相同的四位数有( A )A. 81个B. 90个C. 100个D. 729个[解析]解:设符合题意的四位数为xyyx,则当x=1时,y=0,2,3,…,9,共9个;当x=2时,y=0,1,3,…,9,共9个;…当x=9时,y=0,1,2,…,8,共9个.由分类加法计数原理可知满足条件的四位数有9×9=81(个).故选A.6. 某校选定甲、乙、丙、丁、戊共5名教师去3个边远地区支教(每地至少1人),其中甲和乙一定不同地,甲和丙必须同地,则不同的选派方案共有( D ) A. 27种 B. 36种 C. 33种 D. 30种[解析]解:因为甲和乙一定不同地,甲和丙必须同地,所以有(2,2,1)和(3,1,1)两种分配方案:①分成(2,2,1)三组,其中甲和丙为一组,从余下3人选出2人组成一组,然后排列,有C32A33=3×3×2=18(种);②分成(3,1,1)三组,在丁、戊中选出1人,与甲丙组成一组,然后排列,有C21A33=2×3×2=12(种).共有18+12=30(种).故选D.7.(1)若C n4>C n6,则n的取值集合是{6,7,8,9} .[解析]解:因为C n4>C n6,所以n≥6,且n!4!(n−4)!>n!6!(n−6)!,所以30>(n−4)(n−5),即(n−10)(n+1)<0,解得−1<n<10.综上,6≤n<10.故n 的取值集合是{6,7,8,9}.(2)C22+C32+C42+⋯+C102=165 .[解析]解:C22+C32+C42+⋯+C102=C33+C32+C42+⋯+C102=C43+C42+⋯+ C102=⋯=C102+C103=C113=165.8. 【多选题】上海某校举办了主题为“党在我心中”的诗歌朗诵比赛.该校高三年级准备从包括甲、乙、丙在内的7名学生中选派4名学生参加,要求甲、乙、丙这3名同学中至少有1人参加,且当这3名同学都参加时,甲和乙的朗诵顺序不能相邻,则下列结论正确的是( BCD )A. 若甲、乙、丙三名同学全参加,则不同的朗诵排列顺序有36种B. 若甲、乙、丙三名同学恰有一人参加,则不同的朗诵排列顺序有288种C. 若甲、乙、丙三名同学恰有二人参加,则不同的朗诵排列顺序有432种D. 选派的4名学生不同的朗诵排列顺序有768种[解析]解:对于A,甲、乙、丙三名同学全参加,有C41A44=96(种)情况,由捆绑法易得其中甲、乙相邻的有C41A22A33=48(种)情况.所以甲、乙、丙三名同学全参加时,甲和乙的朗诵排列顺序不能相邻有96−48=48(种)情况,故A错误.对于B,甲、乙、丙三名同学恰有一人参加,不同的朗诵排列顺序有C43C31A44= 288(种)情况,故B正确.对于C,甲、乙、丙三名同学恰有二人参加时,不同的朗诵排列顺序有C42C32A44=432(种)情况,故C正确.对于D,选派的4名学生不同的朗诵排列顺序有288+432+48=768(种)情况,故D正确.故选BCD.【综合运用】9. 直线l:xa +yb=1,a∈{1,3,5,7},b∈{2,4,6,8} .若l与坐标轴围成的三角形的面积不小于10,则这样的直线的条数为( B )A. 6B. 7C. 8D. 16[解析]解:l与坐标轴围成的三角形的面积为S=12ab≥10,即ab≥20.当a= 1时,不满足;当a=3时,b=8,即1条;当a∈{5,7}时,b∈{4,6,8},此时a的取法有2种,b的取法有3种,则直线l的条数为2×3=6.故满足条件的直线的条数为1+6=7.故选B.10. 洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上有此图象(如图),结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数(图中白圈表示的数为阳数,黑点表示的数为阴数).现利用阴数和阳数构成一个四位数,规则如下:(从左往右数)第一位数是阳数,第二位数是阴数,第三位数和第四位数一阴一阳和为7,则这样的四位数的个数有( A )A. 120个B. 90个C. 48个D. 12个[解析]解:根据题意,阳数为1,3,5,7,9,阴数为2,4,6,8.第一位数的选择有5种,第二位数的选择有4种,第三位数和第四位数的组合可以为(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)共6种选择,根据分步乘法计数原理,这样的四位数共有5×4×6=120(个).故选A.11. 如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( D )A. 48B. 18C. 24D. 36[解析]解:第1类,对于每一条棱,都可以与两个面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).故选D.12. 【多选题】从1,2,3,4,5,6中任取三个不同的数组成一个三位数,则在所组成的数中( ACD )A. 偶数有60个B. 比300大的奇数有48个C. 个位和百位数字之和为7的数有24个D. 能被3整除的数有48个[解析]解:对于A,先从2,4,6中任取一个数放在个位,再任取两个数放在十位和百位,共有3A52=60(个),故A正确.对于B,若百位数字为3或5,有2×2×4=16(个)三位奇数;若百位数字为4或6,有2×3×4=24(个)三位奇数.则符合题意的三位数有16+24=40(个),故B错误.对于C,个位和百位的数可以是{1,6},{2,5},{3,4}顺序可以交换,再从剩下的数中任选一个放在十位上,共有A22C31C41=24(个),故C正确.对于D,要使组成的数能被3整除,则各位数之和为3的倍数,取出的数有{1,2,3},{1,2,6},{1,3,5},{1,5,6},{2,3,4},{2,4,6},{3,4,5},{4,5,6},共8种情况,所以组成的能被3整除的数有8A33=48(个),故D正确.故选ACD.13. 中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图是利用算筹表示数1-9的一种方法.例如:3可以表示为“”,26可以表示为“”.现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数的个数为16. [解析]解:根据题意,6根算筹可以表示的数字组合为15,19,24,28,33,37,46,68,77.数字组合15,19,24,28,37,46,68中,每组可以表示2个两位数,则可以表示2×7=14(个)两位数;数字组合33,77共可表示2个两位数.则共可表示14+2=16(个)两位数.故填16.【拓广探索】。
《概率论与数理统计》总复习提纲第一块随机事件及其概率内容提要基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,几何概率,条件概率,与条件概率有关的三个公式,事件的独立性,贝努里试验.1、随机试验、样本空间与随机事件(1)随机试验:具有以下三个特点的试验称为随机试验,记为:,.1)试验可在相同的条件下重复进行;2)每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果;3)每次试验前不能确定哪一个结果会出现.(2)样本空间:随机试验F的所有可能结果组成的集合称为F的样本空间;记为Q;试验的每一个可能结果,即Q中的元素,称为样本点,记为「(3)随机事件:在一定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的子集,必然事件(记为「)和不可能事件(记为-).2、事件的关系与运算(1)包含关系与相等:“事件一发生必导致匸'发生”,记为二一「或丄-J ; A=B^AcB 且鸟匚乂.(2)互不相容性-互为对立事件1 :、「-门且一 :.(3)独立性:(i)设丄:'为事件,若有匸二-匸二y 口‘,则称事件-与F相互独立.等价于:若* 1 2 3 4(2)多个事件的独立:设一……;是n个事件,如果对任意的乂山二口匚,任意的1■\ ',具有等式,称;个事件…人相互独立.3、事件的运算(1)和事件(并):“事件一与匸'至少有一个发生”,记为」一丄.(2)积事件(交):“ 事件」与匸'同时发生”,记为』丄「或丄.(3)差事件、对立事件(余事件):“事件发生一而匸'不发生”,记为」「称为一与匚'的差事件;…二二称为T的对立事件;易知:二】匸.4、事件的运算法则1 交换律:亠二一二一 _」,二土;2结合律:』u0uO = (£u仍uC,(曲)0 =玫蜀;3分配律:(心―2此,的uC = (g(S;4 对偶()律:丸匸二丄,,一二二一1,十十u A=n n©u血可推广* ■'5、概率的概念(1)概率的公理化定义:i厂存v「J的f事件域.恥F隹义在F上的一个集值函数P(備足;1)菲负性:旳1)20;2)规范性:卩⑼訂3)可列可加性;设力岀,…是可列个互不相容事件,则则称P")为事件胡概率.(2)频率的定义:事件」在「次重复试验中出现11次,则比值」称为事件」在[次重复试验中出现的频率,记为 ,即— 」.即随旳的増大越来越韋近基个常数戸切丹斗审冲 n 称W 为事件一的(统计)概率在实际问题中,当「很大时,取f 一,“(4)古典概率:若试验的基本结果数为有限个, 且每个事件发生的可能性相等,则(试验对应古典概型)事件 」发生的概率为:—A 中所含样本点数」/(占) c 中样本点总数n(5)几何概率:若试验基本结果数无限,随机点落在某区域 g 的概率与区域g的测度(长度、面积、体积等)成正比,而与其位置及形状无关,则(试验对应几何概型),“在区域「中随机地取一点落在区域-中”这一事件二发生的概率为:1丿Q 的测度. (6)主观概率:人们根据经验对该事件发生的可能性所给出的个人信念6、概率的基本性质(3)统计概率: 频率具有稳定性, 9 QD(1)不可能事件概率零:= 0.(2)有限可加性:设\ \ -是n个两两互不相容的事件,即」•.=;,(;) 丄,12…j 则有= + 酗)+…+P⑷.(3)单调不减性:若事件口—上「」「—」,且冊卜附也).(4)互逆性:丿二】且H上-(5)加法公式:对任意两事件二:,有二二-匚—二二I-P匚.—厂扑;此性质可推广到任意个事件的情形.(6)可分性:对任意两事件二:,有门上二:,且AAu3)<PU) + ?(3)7、条件概率与乘法公式(1)条件概率:设丄E是两个事件,即」.,则P(AB)称为事件一发生的条件下事件匸'发生的条件概率.(2)乘法公式:设丄H 且「一•〕「"」则W = P(^P(B| X) = P^)P(A13)称为事件二-的概率乘法公式.8全概率公式与贝叶斯()公式(1)全概率公式:设-…二是异的一个划分,且S,•厂亠,…,则对任何事件”」,有p(s)=^mwi4)2-1称为全概率公式(2)贝叶斯()公式:设是打的一个划分,且■ 1 ' 1 _'\ ,则对任何事件丄「一,有P(AAP(B\JL)mi月)=丨宀心=1,…⑻i-L称为贝叶斯公式或逆概率公式9、贝努里()概型(1)只有两个可能结果的试验称为贝努里试验,常记为丄.丄也叫做“成功—失败”试验,“成功”的概率常用/ " L:/表示,其中」成功”.(2)把匚重复独立地进行•.次,所得的试验称为!重贝努里试验,记为匸.(3)把::'重复独立地进行可列多次,所得的试验称为可列重贝努里试验,记为孑.以上三种贝努里试验统称为贝努里概型.(4)匸中成功卜次的概率是二」mi其中—1 1:--/--1.疑难分析1、必然事件与不可能事件必然事件是在一定条件下必然发生的事件,不可能事件指的是在一定条件下必然不发生的事件•它们都不具有随机性,是确定性的现象,但为研究的方便,把它们看作特殊的随机事件.2、互逆事件与互斥(不相容)事件如果两个事件」与厂必有一个事件发生,且至多有一个事件发生,则J、'为互逆事件;如果两个事件」与1不能同时发生,则J、'为互斥事件.因而,互逆必定互斥,互斥未必互逆.区别两者的关键是:当样本空间只有两个事件时,两事件才可能互逆,而互斥适用与多个事件的情形•作为互斥事件在一次试验中两者可以都不发生,而互逆事件必发生一个且只发生一个3、两事件独立与两事件互斥两事件」、T独立,则」与T中任一个事件的发生与另一个事件的发生无关,这时「'' ■:' 1;而两事件互斥,则其中任一个事件的发生必然导致另一个事件不发生,这两事件的发生是有影响的,这时二一二二二.可以用图形作一直观解释.在图1.1左边的正方形中,图1.1咖)二.P⑷丄F(B) 一、^ 亠、4 2 ,表示样本空间中两事件的独立关系,而在右边的正方形中,丄匸•,表示样本空间中两事件的互斥关系.4、条件概率''与积事件概率「卜是在样本空间「内,事件二的概率,而’'''是在试验丄增加了新条件发生后的缩减的样本空间中计算事件』的概率.虽然都发生,但两者是不同的,一般说来,当」、-同时发生时,常用「加,而在有包含关系或明确的主从关系时,用"八二.如袋中有9个白球1个红球,作不放回抽样,每次任取一球,取2次,求:(1)第二次才取到白球的概率;(2)第一次取到的是白球的条件下,第二次取到白球的概率•问题(1)求的就是一个积事件概率的问题,而问题(2)求的就是一个条件概率的问题.5、全概率公式与贝叶斯()公式当所求的事件概率为许多因素引发的某种结果,而该结果又不能简单地看作这诸多事件之和时,可考虑用全概率公式,在对样本空间进行划分时,一定要注意它必须满足的两个条件•贝叶斯公式用于试验结果已知,追查是何种原因(情况、条件)下引发的概率.第二块随机变量及其分布内容提要基本内容:随机变量,随机变量的分布的概念及其性质,离散型随机变量的概率分布,连续型随机变量的概率分布,常见随机变量的分布,随机变量函数的分布.1、随机变量设「是随机试验的样本空间,如果对于试验的每一个可能结果二一X,都有唯一的实数'与之对应,则称为定义在「上的随机变量,简记为.随机变量通常用大写字母二-■-等表示.设g,F*)是一t概率空间,若枷W R有珂紋是-个随腋氢离散型随机喪量(可能取值至多可列)随机变量连续型随机变量(可育諏值充满某个区间〉奇异型随机变量■-2、离散型随机变量及其分布列如果随机变量二只能取有限个或可列个可能值,贝淋二为离散型随机变量.如果」的一切可能值为〔1 ,并且負取:;的概率为X,则称儿":一:一】“:为离散型随机变量的概率函数(概率分布或分布律).也称分布列,常记为其中常见的离散型随机变量的分布有:(1)两点分布(0-1分布):记为匸:日,分布列为丄工卜;■'■-■'!5 P或(2)二项分布:记为'-,,概率函数尸区胡乂”(1-卩严北二0「也0<^<1(3)泊松分布,记为'-',概率函数iJtP&"}二斗,"Oh, 4 0<1泊松定理设“::是一常数,J是任意正整数,设’人',则对于任一固定的非负整数i,有八,■-.当〔很大且|很小时,二项分布可以用泊松分布近似代替,即切(1宀年,其中5(4) 超几何分布:记为概率函数(5) 几何分布:记为上•「心口,概率函数> ;< :匚 ‘ .;■..3、分布函数及其性质分布函数的定义:设"为随机变量,:为任意实数,函数阳=P{X <X)(-0O<X< +oo)称为随机变量負的分布函数.分布函数完整地描述了随机变量取值的统计规律性,具有以下 性质: (1) 有界性(-00 < X <松);⑵ 单调性 如果:'< ,则旳g(xj ;(3) 右连续, 即戸;7C(4) 极限性 血 F(i) = 0> 陀)二127 W-Hfi ;(5)完美性 Pg fXSxj =P{X “卜P{X 二F(xj-F(xj .4、连续型随机变量及其分布分布如果对于随机变量二的分布函数门「,存在非负函数「九,使对于任一实数:, 有宀'",则称;为连续型随机变量.函数—称为;的概率密度函数.P{X "}= pJtr k- 0丄…,min (丹,M) ,其中匚暑为正整数,且:二「- \n 当:「很大,且'1较小时,有马軒泌"(1十严概率密度函数具有以下 性质:(1)工沁〕;⑵二(3) - ' _、「 7 '■ ' ; ( 4)丄;二 11 ;(5) 如果在:处连续,则.常用连续型随机变量的分布:(1) 均匀分布:记为- ; ,概率密度为a①其它分布函数为Q,x <a-f a<x<bl, x(2) 指数分布:记为工- ,概率密度为分布函数为0, A<0(3) 正态分布:记为--,概率密度为p(x) = -=^ 2f2 ? -DO <z < +CO* ?相应的分布函数为di当"-"■■■-1时,即「时,称負服从标准正态分布.这时分别用」:和 _1表示二的密度函数和分布函数,即具有性质:①」:i .jPW = 加-X >Q0,其它②一般正态分布]」严丁的分布函数门与标准正态分布的分布函数■' 有关系:陀)二①¥5、随机变量函数的分布(1)离散型随机变量函数的分布设;为离散型随机变量,其分布列为(表2-2):则亠— if任为离散型随机变量,其分布列为(表2-3):表2-3h有相同值时,要合并为一项,对应的概率相加.(2)连续型随机变量函数的分布设;为离散型随机变量,概率密度为'-'1,贝L 「二的概率密度有两种方法可求.1)定理法:若f在丄的取值区间内有连续导数「,且:单调时,X⑷ 是连续型随机变量,其概率密度为11 / 27• ①其它其中二一匸「7二「代汕匚一二1二;I—]:门是]:的反函数.2)分布函数法:先求的分布函数F,(y) = P(Y<y^P(g(X)<y)=X[人何必 &止心)然后求疑难分析1、随机变量与普通函数随机变量是定义在随机试验的样本空间沐上,对试验的每一个可能结果:,都有唯一的实数•「与之对应.从定义可知:普通函数的取值是按一定法则给定的,而随机变量的取值是由统计规律性给出的,具有随机性;又普通函数的定义域是一个区间,而随机变量的定义域是样本空间2、分布函数的连续性定义左连续或右连续只是一种习惯.有的书籍定义分布函数门「左连续,但大多数书籍定义分布函数「二为右连续.左连续与右连续的区别在于计算「二时,二二点的概率是否计算在内.对于连续型随机变量,由于,故定义左连续或右连续没有什么区别;对于离散型随机变量,由于 '負-^ ,则定义左连续或右连续时门值就不相同,这时,就要注意对定义左连续还是右连续.第三块多维随机变量及其分布内容提要基本内容:多维随机变量及其分布函数二维离散型随机变量的联合分布列,二维连续型随机变量的联合分布函数和联合密度函数,边际分布,随机变量的独立性和不相关性,常用多维随机变量,随机向量函数的分布1、二维随机变量及其联合分布函数如果随机变量血(讥血(町…,血@)定义在同一概率空间(Q FQ上则称恥)心⑷兀(叭-北3)为n维(n元)随机变量或随机向量.当沪2时诽为二维随戕氢常记为工儿联合分布函数的定义设—-匸丄二一「赴随机变量,心"为随机向量1■的联合分布函数特别卄血称为二淼合分布函数即恥』)訂(淞汀幻)二维联合分布函数具有以下基本性质:(1)单调性是变量:或;的非减函数;(2)有界性一―]I:* ;(3)极限性” 7」,:',一,厂「.一(?」丨一■.- -」.-工-1「-工,亠二(3)连续性l I;.关于:右连续,关于^也右连续;(4)非负性对任意点 =.「_.「,若「;二,贝V式表示随机点二门落在区域内的概率为:二…2、二维离散型随机变量及其联合分布列如果二维随机变量所有可能取值是有限对或可列对,则称■'为二维离散型随机变量.设「「为二维离散型随机变量,它的所有可能取值为匸- 将f 一—°厂一」或表3.1称为「「的联合分布列.表3.1(1)「「';( 2)肴' 联合分布列具有下列性质:3、二维连续型随机变量及其概率密度函数如果存在一个非负函数和乩门,使得二维随机变量的分布函数‘八「对任意实数「有 'f,则称 — 是二维连续型随机变量,称u为的联合密度函数(或概率密度函数)联合密度函数具有下列性质:设…丄|为二维随机变量,则称F x (x ) = P (X<^<Y <+oo ) 的0)二 P 卜00 <X <4007<7) 分别为关于二和关于「的边缘(边际)分布函数当为离散型随机变量,则称(1) 非负性对一切实数",有■" 1;(3) *-ho在任意平面域-上,「厂 取值的概率F {(工二[“(砂)如y Q ;3细(兀刃=Xj 为如果小」在;’处连续,则 「八一八 规范性(4)4、二维随机变量的边缘分布P 广乞珂(八12…):-1分别为关于;和关于『的边缘分布列当为连续型随机变量,则称內A )二ph 』)必分别为关于二和关于「的边缘密度函数5、二维随机变量的条件分布(了解)(1)离散型随机变量的条件分布设为二维离散型随机变量,其联合分布律和边缘分布列分别为P(X = ip/ = - p^,P(X= f P(Y -y^} = (ij = 12…),则当 j 固定P{f = ”} = Pj>Ci 时,称---------------------------------- 二——为'「条件下随机变量匚的条件分布律.同理,有吃讪|XrJ 二丝八12…Pi(2)连续型随机变量的条件分布设■= 为二维连续型随机变量,其联合密度函数和边缘密度函数分别为:心.则当’•时,在和门,的连续点处,-在条件’下,】的条件概率密度函数为曲力)=畔 Px Wp^\y)=p (兀力p^y) 同理,6、随机变量的独立性设;」’及匚:'1分别是的联合分布函数及边缘分布函数.如果对任何实数「有『上=则称随机变量;与「相互独立.设:;'|为二维离散型随机变量,..与『相互独立的充要条件是廿妝血=12…).设为二维连续型随机变量,二与[相互独立的充要条件是对几乎一切实数,有7、两个随机变量函数的分布设二维随机变量的联合概率密度函数为」;」,「—“ —「是;'的函数,则匚的分布函数为马⑵二\\p(x t yyixdy.(1);'二的分布若.1;|为离散型随机变量,联合分布列为',则】的概率函数为:易仇)=£临耳-吗)&仇)=5>%巩-为);或>若丄八为连续型随机变量,概率密度函数为W,则匚的概率函数为:严r-Ko旳⑵二p^z-x)dx=\ p(z-y r y)dy的分布若I为连续型随机变量,概率密度函数为小乩门,则]的概率函数为:8.最大值与最小值的分布曲”冊勺)畝阿〔兀…兀)勺厂P©)畅)胡旳)*血吃…北)勺)4*(卜恥))9.数理统计中常用的分布(1)正态分布:设随机变劉諾厂也相互紐,肮广N仏口;),心谊…也则2也皿左的加巾其中用心…尼为常黏(2)宀 *:设随机变就“血…也相互從,且丫厂M(叮〉心12…”则(3)「• 卄:亡*……-厂\ L書让二I(4)「—--:亡「疑难分析1、事件=-丄二「表示事件梟•丄「与的积事件,为什么二计不一定等于'■■■'■ :■■■.■ ?如同仅当事件二f相互独立时,才有「二-1三匚二一样,这里依乘法原理只有事件一与1「■'/.相互独立时,才有P{X<x t Y<y) = P(X<^ P(Y<y\,因为P{Y<y\X<x} = P{Y <y).2、二维随机变量「厂的联合分布、边缘分布及条件分布之间存在什么样的关系?由边缘分布与条件分布的定义与公式知,联合分布唯一确定边缘分布,因而也唯一确定条件分布.反之,边缘分布与条件分布都不能唯一确定联合分布.但由「丄丫二心」宀「7 r知,一个条件分布和它对应的边缘分布,能唯一确定联合分布.但是,如果二『相互独立,贝V「仁―t —:,即卩宀二;丄J •:'.说明当二『独立时,边缘分布也唯一确定联合分布,从而条件分布也唯一确定联合分布.3、两个随机变量相互独立的概念与两个事件相互独立是否相同?为什么?两个随机变量二〕相互独立,是指组成二维随机变量•厂的两个分量二〕中一个分量的取值不受另一个分量取值的影响,满足儿」—匸-:匚-.而两个事件的独立性,是指一个事件的发生不受另一个事件发生的影响,故有「二—L匚.两者可以说不是一个问题.但是,组成二维随机变量I的两个分量二「是同一试验丄的样本空间上的两个一维随机变量,而丄f也是一个试验的样本空间的两个事件.因此,若把“匸土”、”看作两个事件,那么两者的意义近乎一致,从而独立性的定义几乎是相同的第四块随机变量的数字特征内容提要基本内容:随机变量的数学期望和方差、标准差及其性质,随机变量函数的数学期望,原点矩和中心矩,协方差和相关系数及其性质1、随机变量的数学期望设离散型随机变量負的分布列为「工二:!亠,如果级数台"'绝对收敛,则称级数的和为随机变量J丄的数学期望.设连续型随机变量x的密度函数为p⑴,如果广义积分L腴R处绝对收敛,则f-HD称此积分值」为随机变量匚的数学期望•数学期望有如下性质:(1)设「是常数,则"'■;(2)设]'是常数,则和(3)若-1:'是随机变量,则-[丄:_:丄-';对任意〔个随机变量■ ' - ■ ',有(4)若-亠相互独立,贝U -七--'-.1 ;对任意「个相互独立的随机变量 u :•,有2、随机变量函数的数学期望设离散型随机变量 負的分布律为■"丄|丄,则」的函数一1 一的设连续型随机变量 負的密度函数为;;|,则負的函数'■_ ■的数学期望为i +®购恥讥讷,式中积分绝对收敛 3、随机变量的方差设匚是一个随机变量,贝V 丄一匸「L - - 称为匚的方差-一“称为;的标准差或均方差.计算方差也常用公式 方差具有如下性质:(1)设一1是常数,则\ '-; (2)设「是常数,则--------;(3)若分1、*2相互独立,则0区+托)=D(X])+°(為);对任意〔个相互独立的随机变量■' -■' ,有- ;(4) 的充要条件是:存在常数 「,使- - - -二八 4、几种常见分布的数学期望与方差 (1)匸;.「匸;二:.:;(2) 「——数学期望为亟(②卜另欽亦)久朮=12…jt-i 式中级数绝对收敛(3)(4)匸」已匸二2 1 ;(5)「一 -'■- :丫;(6)—「二 < 匚一,「I」门一:■汀匸⑺—:'二一;:.;;(8)八“血刊凤& = “23)=代5、矩设;是随机变量,贝y L 「2;* 4称为;的一阶原点矩.如果f存在,则■ ■ _ ' ' ■ '■■ - - - | "'-称为負的;阶中心矩.设「「是二维随机变量,贝y心亠;止【;;「工称为的I 阶混合原点矩;址=E ([X-E(Q*•[『-占(別),灯=1,2,…称为(x,y)的七+]阶混合中心矩.6、协方差与相关系数随机变量(XQ的协方差为^f Y^E{[X-E^Y-£(『)]).它是i+i阶混合中心矩,有计算公式:沏(工『)二E(沼)・E(x)E(y).随机变量■= 的相关系数为_ cov(xn呛二亦页相关系数具有如下性质:(1)卜冷」;(2)卜」存在常数•:',使";-汇+「=1,即二与1以概率1线性相关;(3)若;独立,则L •,即不相关.反之,不一定成立.(4)() 设()是二维随机变量,若X与Y的方差都存在,则[Cau(X r^<DX DY疑难分析1、随机变量的数字特征在概率论中有什么意义?知道一个随机变量的分布函数,就掌握了这个随机变量的统计规律性•但求得一个随机变量的分布函数是不容易的,而且往往也没有这个必要.随机变量的数字特征则比较简单易求,也能满足我们研究分析具体问题的需要,所以在概率论中很多的应用,同时也刻画了随机变量的某些特征,有重要的实际意义例如,数学期望反映了随机变量取值的平均值,表现为具体问题中的平均长度、平均时间、平均成绩、期望利润、期望成本等;方差反映了随机变量取值的波动程度;偏态系数、峰态系数则反映了随机变量取值的对称性和集中性.因此,在不同的问题上考察不同的数字特征,可以简单而切实地解决我们面临的实际问题.2、在数学期望定义中为什么要求级数和广义积分绝对收敛?首先,数学期望是一个有限值;其次,数学期望反映随机变量取值的平均值.因此,对级数和广义积分来说,绝对收敛保证了值的存在,且对级数来说,又与项的次序无关,从而更便于运算求值.而由于连续型随机变量可以离散化,从而广义积分与无穷级数有同样的意义.要求级数和广义积分绝对收敛是为了保证数学期望的存在与求出.3、相关系数1■二反映了随机变量二和「之间的什么关系?相关系数;I是用随机变量就和[的协方差和标准差来定义的,它反映了随机变量二和『之间的相关程度.当时,称二'与丁依概率1线性相关;当匚二I 时,称免与『不相关;当时,又分为强相关与弱相关.4、两个随机变量二与]相互独立和不相关是一种什么样的关系?(1)若、相互独立,则、不相关.因为、独立,则川;「厂小.,故心二-一,从而七j,所以J、r不相关.(2)若不相关,则门、「不一定独立.如:f —]"兀x2+y2 <}rPW= 1 o, 其它一因为TO = £(y)= 0,TO=1/4-1'1二•,知」、」不相关.但U ;1「’L,加y)二2尸加,瞼J)HP占)P0 ,知乂、『不独立.(3)若相关,则匚、[一定不独立.可由反证法说明.(4)若匚、)不相关,则二、不一定不相关.因为二、不独立,二—〕,但若汇-厂m时,可以有―,从而可以有」、不相关.但是,也有特殊情况,如服从二维正态分布时,不相关与;、J 独立是等价的第五块大数定律和中心极限定理内容提要基本内容:切比雪夫()不等式,切比雪夫大数定律,伯努里()大数定律,辛钦()大数定律,棣莫弗-拉普拉斯()定理,列维-林维德伯格()定理.1、切贝雪夫不等式设随机变量二的数学期望m—工,方差匸,则对任意正数「,有不等刊■心沪召或刊,小"-召成立2、大数定律(1)切贝雪夫大数定律:设…是相互独立的随机变量序列,数学期望J. 1和方差’二都存在,且「二」〔|,则对任意给定的I「,有1丄如列-乞凶-欧扎)]|<沪1“讯i-i .(2)贝努利大数定律:设L是「次重复独立试验中事件d发生的次数,:是事limP(|^-^|<F)=l件丿在一次试验中发生的概率,则对于任意给定的:'.■丨,有…贝努利大数定理给出了当[很大时,」发生的频率一=依概率收敛于d的概率,证明了频率的稳定性.(3)辛钦大数定律:设相互独立,服从同一分布的随机变量序列且匸也〕卫(:=匚),则对任意给定的:,I,有3、中心极限定律(1) 林德贝格-勒维中心极限定理:设〔芒〕,…丄 是独立同分布的随机变量 序列,有有限的数学期望和方差,「二-「,「..「一、:.则对任意实数刀(血-“)刀疋厂冲“Y _ ____:,随机变量■■,'■--■的分布函数二-满足 Em 氏⑵二曲尸也<i} = fJ2/T(2) 李雅普诺夫定理:设是不同分布且相互独立的随机变量,它护—y 2 们分别有数学期望和方差:小1 一畀,■'■■'■■<;「厂-八-■-;亠文欧因-丛角TO正数$,,使得当心谕时,有盯口,则随机变量»X屋据F7 _ i-1 H _ J-1 X的分布函数对于任意的x ,满足当〔很大时,爲』㈣总拓』(也昭.(3)德莫佛一拉普拉斯定理:设随机变量'■. 1 " 1 1服从参数为匚时卩J 匸;的二项分布,则对于任意的:,恒有疑难分析D 乞逊!-1lim 坨(打=lira <>=r 加 J 十矩rlimP\%-® J 誓(D<x1、依概率收敛的意义是什么?依概率收敛即依概率1收敛.随机变量序列J依概率收敛于,,说明对于任给的£>0,当"很大时,事件“”的概率接近于1•但正因为是概率,所以不排除小概率事件“ 1八_2卜6”发生.依概率收敛是不确定现象中关于收敛的一种说法.2、大数定律在概率论中有何意义?大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律.3、中心极限定理有何实际意义?许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据.4、大数定律与中心极限定理有何异同?相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.。
概率论与数理统计总复习第一讲 随机事件及其概率一 随机事件,事件间的关系及运算 1.样本空间和随机事件 2.事件关系,运算和运算律 ⑴事件的关系和运算⑶运算律:交换律,结合律,分配律;对偶律: B A B A ⋂=⋃,B A B A ⋃=⋂; 二 概率的定义和性质 1.公理化定义(P8)2.概率的性质(P8-9.五个)⑴)(1)(A P A P -=; ⑵)()()()(AB P B P A P B A P -+=⋃; 3.古典概型和几何概型 4.条件概率 )()()|(A P AB P A B P =三 常用的计算概率的公式1.乘法公式 )()()()()(B A P B P A B P A P AB P ==2.全概率公式和贝叶斯公式(P20-22.) 四 事件的独立性1.定义:A 和B 相互独立 )()(B P A B P =或)()()(B P A P AB P ⋅=,2.贝努利试验 在n 重贝努利试验中,事件=k A {A 恰好发生k 次})0(n k ≤≤的概率为:k n nk n k p p C A P --=)1()(第二讲 随机变量及其概率分布一 随机变量及其分布函数1.随机变量及其分布函数 }{)(x X P x F ≤=)(+∞<<-∞x2.分布函数的性质(P38.四个)⑴0)(lim =-∞→x F x ;1)(lim =+∞→x F x ;(常用来确定分布函数中的未知参数)⑵)()(}{a F b F b X a P -=≤<(常用来求概率) 二 离散型随机变量及其分布律1.分布律2.常用的离散型分布 三 连续型随机变量 1.密度函数 ⎰∞-=xdt t f x F )()(2.密度函数的性质(P42-43.七个) ⑴1)(=⎰+∞∞-dx x f ;(常用来确定密度函数中的未知参数) ⑵⎰=≤<badx x f b X a P )()(;(计算概率的重要公式) ⑶对R x ∈∀,有0)(==c X P (换言之,概率为0的事件不一定是不可能事件). 3.常用连续型分布 重点:正态分布:)0,(21)(22)(>=--σσμσπσμ都是常数,x ex f标准正态分布)1,0(N :2221)(x e x -=πϕ, ⎰∞--=Φxt dt ex 2221)(π四 随机变量函数的分布1.离散情形 设X 的分布律为则)(X g Y =的分布律为2.连续情形 设X 的密度函数为)(x f X ,若求)(X g Y =的密度函数,先求Y 的分布函数,再通过对其求导,得到Y 的密度函数。
⑴求Y 的分布函数:=≤=≤=))(()()(y X g P y Y P y F Y dx x f yx g X ⎰≤)()(⑵求Y 的密度函数:)()(y F y f Y Y '=第三讲 二维随机变量及其概率分布一 二维随机变量的联合分布函数及边缘分布函数1.二维随机变量及其联合分布函数:),(),(y Y x X P y x F ≤≤=2.联合分布函数的性质(P58.三个);3.边缘分布函数:),(lim )(y x F x F y X +∞→= , ),(lim )(y x F y F x Y +∞→=二 二维离散型随机变量的联合分布律和边缘分布律三 1.联合密度函数:ds dt t s f y x F xy⎰⎰∞-∞-=),(),(2.联合密度函数的性质(P62.四个) ⑴1),(=⎰⎰+∞∞-+∞∞-dxdy y x f ;(常用来确定联合密度函数中的未知参数) ⑵dxdy y x f D Y X P D⎰⎰=∈),()),((,其中2R D ⊂;(计算概率的重要公式) 3.边缘密度函数:⎰+∞∞-=dy y x f x f X ),()( )(+∞<<-∞x⎰+∞∞-=dx y x f y f Y ),()( )(+∞<<-∞x四 随机变量的独立性Y X ,相互独立:)()(),(y F x F y x F Y X =离散情形:j i ij p p p ∙∙= ),2,1,( =j i 连续情形:)()(),(y f x f y x f Y X = 五 二维均匀分布和二维正态分布1.二维均匀分布:⎪⎩⎪⎨⎧⊂∈=other R G y x G y x f ,0),(,1),(2的面积2.二维正态分布结论 ⑴设),,,,(~),(222121ρσσμμN Y X ,则X 和Y 相互独立0=⇔ρ;⑵设),,,,(~),(222121ρσσμμN Y X ,则),(~211σμN X ,),(~222σμN Y ; ⑶设X 和Y 相互独立,且),(~211σμN X ,),(~222σμN Y ,b a ,为常数,则),(~22221221σσμμb a b a N bY aX +++特别地,),(~2121σμa b a N b aX ++,)1,0(~11N X σμ-;六 二维随机变量的函数及其分布 1.),(Y X 为二维离散型随机变量 2.),(Y X 为二维连续型随机变量设),(Y X 为二维连续型随机变量,其联合密度函数为),(y x f ,则),(Y X g Z = 的密度函数的计算方法为:⑴先计算联合分布函数:)),(()()(z Y X g P z Z P z F Z ≤=≤=dxdy y x f zy x g ⎰⎰≤=),(),(⑵再对联合分布求导得到联合密度: )()(z F z f ZZ '=第四讲 随机变量的数字特征一 数学期望的定义 ⑴离散情形 iiip x X E ∑=)( , iiip x g X g E ∑=)())((⑵连续情形 ⎰+∞∞-=dx x xf X E )()( , ⎰+∞∞-=dx x f x g X g E )()())((⑶二维随机变量的函数的期望 ①离散情形 ij ji jip yx g Y X g E ∑=,),()),((②连续情形 ⎰⎰+∞∞-+∞∞-=dxdy y x f y x g Y X g E ),(),()),((二 期望的性质⑴c c E =)( ⑵)()()(Y bE X aE bY aX E +=+ ⑶若X 和Y 独立,则)()()(Y E X E XY E =; 三 方差和标准差1.方差:222))(()(]))([()(X E X E X E X E X D -=-=;22))(()()(X E X D X E += 标准差:)()(X D X =σ;2.方差的性质⑴0)(=c D ; ⑵)()(2X D a aX D =; ⑶),(2)()()(Y X Cov Y D X D Y X D ±+=±)]}()][({[2)()(Y E Y X E X E Y D X D --±+= )]()()([2)()(Y E X E XY E Y D X D ⋅-±+=⑷若X 和Y 独立,则)()()(Y D X D Y X D +=±; 3.四 协方差和相关系数1.协方差 )()()())]())(([(),cov(Y E X E XY E Y E Y X E X E Y X -=--=2.相关系数:)()(),cov(,Y D X D Y X Y X ⋅=ρ四 原点矩与中心矩:k 阶原点矩:)(k X E ;k 阶中心矩:]))([(kX E X E -;第五讲 大数定律和中心极限定理一 切比雪夫不等式设随机变量X 的期望μ和方差2σ存在,则对0>∀ε,22)|(|εσεμ≤≥-X P 或221)|(|εσεμ-≥<-X P二 棣莫弗-拉普拉斯中心极限定理 设),(~p n B X ,则对R x ∈∀,总有)())1((lim x x p np np X P n Φ=≤--∞→这里)(x Φ是标准正态分布的分布函数。
五 林德贝格-列维中心极限定理设 ,,21X X 是独立同分布的随机变量序列,且μ=)(i X E ,2)(σ=i X D ,),2,1( =i ,记∑==ni i n X Y 1,则对R x ∈∀,总有)()(lim x x n n Y P n n Φ=≤-∞→σμ这里)(x Φ是标准正态分布的分布函数。
第六讲 样本与抽样分布一 统计学中的基本概念总体,个体,样本,简单随机样本,样本值,样本容量; 二 常见统计量样本均值:∑==ni i X n X 11;样本方差:∑=--=ni i X X n S 122)(11; 样本标准差: 2S S =;k 阶样本原点矩 ,2,1,11==∑=k X n A n i ki kk 阶样本中心矩 ,3,2,)(11=-=∑=k X X n B n i ki k第七讲 参数估计一 矩估计 设n X X X ,,,21 是来自总体X 的简单样本,),,(~21θθx f X ,未知待估参数为221),(R ⊂Θ∈θθ。
令⎪⎩⎪⎨⎧==∑=)(1)(212X E X n X E X ni i 解出21ˆ,ˆθθ,即为21,θθ的矩估计。
二 最大似然估计(R.A.Fisher )设n X X X ,,,21 为来自总体),(θx f ,Θ∈θ的简单样本,则),,,(21n X X X 的联合分布,即似然函数为∏===ni in x f x f x f x f L 121),(),(),(),()(θθθθθ ⑴在⑴式两边取对数得∑==ni i x f L 1),(ln )(ln θθ然后对θ求导并令其为零0),(ln )(ln 1=∂∂=∂∂∑=ni i x f L θθθθ 解出θˆ即为θ的最大似然估计。
☆两道超级无敌概率题☆离散版 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球。
以X 表示取到黑球的只数,以Y 表示取到红球的只数。
求⑴X 和Y 的联合分布律,关于X 及Y 的边缘分布律,判断X 和Y 是否独立;⑵2X ,2Y 及XY 的分布律; ⑶概率}{Y X P >;⑷)(X E ,)(Y E ,)(2X E ,)(2Y E ,)(XY E ,)(X D ,)(Y D ,),cov(Y X ,Y X ,ρ。
连续版 设区域G 由x 轴、y 轴及直线1=+y x 所围成,),(Y X 服从区域G 上的均匀分布。
试求:⑴ ),(Y X 的联合密度函数;⑵ 关于X 及Y 的边缘密度)(x f X 、)(y f Y ,判断X 和Y 是否独立;⑶ 概率}{Y X P <;⑷ )(X E ,)(Y E ,)(2X E ,)(2Y E ,)(XY E ,)(X D ,)(Y D ,),cov(Y X ,Y X ,ρ。