数据挖掘工具(weka教程)详解
- 格式:ppt
- 大小:2.69 MB
- 文档页数:71
Weka 数据挖掘软件使用指南1.Weka简介该软件是WEKA的全名是怀卡托智能分析环境(Waikato Environment for Knowledge Analysis),它的源代码可通过/ml/weka得到。
Weka作为一个公开的数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及在新的交互式界面上的可视化。
如果想自己实现数据挖掘算法的话,可以看一看Weka的接口文档。
在Weka中集成自己的算法甚至借鉴它的方法自己实现可视化工具并不是件很困难的事情。
2.Weka启动打开Weka主界面后会出现一个对话框,如图:主要使用右方的四个模块,说明如下:❑Explorer:使用Weka探索数据的环境,包括获取关联项,分类预测,聚簇等;❑Experimenter:运行算法试验、管理算法方案之间的统计检验的环境;❑KnowledgeFlow:这个环境本质上和Explorer所支持的功能是一样的,但是它有一个可以拖放的界面。
它有一个优势,就是支持增量学习;❑SimpleCLI:提供了一个简单的命令行界面,从而可以在没有自带命令行的操作系统中直接执行Weka命令(某些情况下使用命令行功能更好一些)。
3.主要操作说明点击进入Explorer模块开始数据探索环境。
3.1主界面进入Explorer模式后的主界面如下:3.1.1标签栏主界面最左上角(标题栏下方)的是标签栏,分为五个部分,功能依次是:❑Preprocess(数据预处理):选择和修改要处理的数据;❑Classify(分类):训练和测试关于分类或回归的学习方案;❑Cluster(聚类):从数据中学习聚类;❑Associate(关联):从数据中学习关联规则;❑Select attributes(属性选择):选择数据中最相关的属性;❑Visualize(可视化):查看数据的交互式二维图像。
3.1.2载入、编辑数据标签栏下方是载入数据栏,功能如下:❑Open file:打开一个对话框,允许你浏览本地文件系统上的数据文件(.dat);❑Open URL:请求一个存有数据的URL 地址;❑Open DB:从数据库中读取数据;❑Generate:从一些数据生成器中生成人造数据。
Weka入门教程(1)巧妇难为无米之炊。
首先我们来看看WEKA所用的数据应是什么样的格式。
跟很多电子表格或数据分析软件一样,WEKA所处理的数据集是图1那样的一个二维的表格。
图1 新窗口打开这里我们要介绍一下WEKA中的术语。
表格里的一个横行称作一个实例(Instance),相当于统计学中的一个样本,或者数据库中的一条记录。
竖行称作一个属性(Attrbute),相当于统计学中的一个变量,或者数据库中的一个字段。
这样一个表格,或者叫数据集,在WEKA 看来,呈现了属性之间的一种关系(Relation)。
图1中一共有14个实例,5个属性,关系名称为“weather”。
WEKA存储数据的格式是ARFF(Attribute-Relation File Format)文件,这是一种ASCII文本文件。
图1所示的二维表格存储在如下的ARFF文件中。
这也就是WEKA自带的“weather.arff”文件,在WEKA安装目录的“data”子目录下可以找到。
代码:% ARFF file for the weather data with some numric features%@relation weather@attribute outlook {sunny, overcast, rainy}@attribute temperature real@attribute humidity real@attribute windy {TRUE, FALSE}@attribute play {yes, no}@data%% 14 instances%sunny,85,85,FALSE,nosunny,80,90,TRUE,noovercast,83,86,FALSE,yesrainy,70,96,FALSE,yesrainy,68,80,FALSE,yesrainy,65,70,TRUE,noovercast,64,65,TRUE,yessunny,72,95,FALSE,nosunny,69,70,FALSE,yesrainy,75,80,FALSE,yessunny,75,70,TRUE,yesovercast,72,90,TRUE,yesovercast,81,75,FALSE,yesrainy,71,91,TRUE,no需要注意的是,在Windows记事本打开这个文件时,可能会因为回车符定义不一致而导致分行不正常。
WEKA使用教程目录1. 简介2. 数据格式3.数据准备4. 关联规则(购物篮分析)5. 分类与回归6. 聚类分析1. 简介WEKA的全名是怀卡托智能分析环境(Waikato Environment for Knowledge Analysis),它的源代码可通过/ml/weka得到。
同时weka也是新西兰的一种鸟名,而WEK A的主要开发者来自新西兰。
WEKA作为一个公开的数据挖掘工作平台,集合了大量能承担数据挖掘任务的机器学习算法,包括对数据进行预处理,分类,回归、聚类、关联规则以及在新的交互式界面上的可视化。
如果想自己实现数据挖掘算法的话,可以看一看weka的接口文档。
在weka中集成自己的算法甚至借鉴它的方法自己实现可视化工具并不是件很困难的事情。
2005年8月,在第11届ACM SIGKDD国际会议上,怀卡托大学的Weka小组荣获了数据挖掘和知识探索领域的最高服务奖,Weka系统得到了广泛的认可,被誉为数据挖掘和机器学习历史上的里程碑,是现今最完备的数据挖掘工具之一(已有11年的发展历史)。
Weka的每月下载次数已超过万次。
--整理自/computers/common/info.asp?id=293042. 数据格式巧妇难为无米之炊。
首先我们来看看WEKA所用的数据应是什么样的格式。
跟很多电子表格或数据分析软件一样,WEKA所处理的数据集是图1那样的一个二维的表格。
图1 新窗口打开这里我们要介绍一下WEKA中的术语。
表格里的一个横行称作一个实例(Instance),相当于统计学中的一个样本,或者数据库中的一条记录。
竖行称作一个属性(Attrbute),相当于统计学中的一个变量,或者数据库中的一个字段。
这样一个表格,或者叫数据集,在WEKA看来,呈现了属性之间的一种关系(Rela tion)。
图1中一共有14个实例,5个属性,关系名称为“weather”。
WEKA存储数据的格式是ARFF(Attribute-Relation File Format)文件,这是一种ASCII文本文件。
如何使用Weka进行机器学习和数据挖掘1. 引言机器学习和数据挖掘是当今计算机科学领域中非常热门的技术,它们的应用已经渗透到各个行业。
Weka是一个功能强大且易于使用的开源软件工具,广泛应用于机器学习和数据挖掘任务中。
本文将介绍如何使用Weka进行机器学习和数据挖掘,帮助读者快速上手。
2. 安装与配置Weka是使用Java编写的跨平台软件,可以在Windows、Linux 和Mac OS等操作系统上运行。
首先,从Weka官方网站上下载最新版本的Weka软件包。
下载完成后,按照官方提供的安装指南进行安装。
安装完成后,打开Weka软件,在"Tools"菜单下找到"Package Manager",确保所有必需的包(例如data-visualization)都已被安装。
3. 数据预处理在进行机器学习和数据挖掘任务之前,通常需要对原始数据进行预处理。
Weka提供了许多强大的工具来处理数据。
首先,可以使用Weka的数据编辑器加载并查看原始数据集。
然后,可以进行数据清洗,包括处理缺失值、异常值和重复数据等。
Weka还提供了特征选择和降维等功能,帮助提取有意义的特征。
4. 分类与回归分类和回归是机器学习中的两个重要任务。
Weka支持多种分类和回归算法,包括决策树、朴素贝叶斯、支持向量机和神经网络等。
在Weka主界面中,选择"Classify"选项卡,选择相应的算法,并配置参数。
然后,可以使用已经预处理的数据集进行模型训练和测试。
Weka提供了丰富的性能评估指标和可视化工具,帮助分析模型的效果。
5. 聚类分析聚类是一种无监督学习方法,用于将样本划分到不同的组或簇中。
Weka提供了各种聚类算法,如K均值、层次聚类和基于密度的聚类。
在Weka主界面中,选择"Cluster"选项卡,选择相应的算法,并配置参数。
然后,使用预处理的数据集进行聚类分析。