2012年全国成人高考数学(一)试卷和详细解答
- 格式:doc
- 大小:464.00 KB
- 文档页数:6
1种种8种(B ) (C ) (D ) 10 9 z2| | 2P2P1z z(A ) (B )(C )(D)P 2P 2P 2 P4P 4P 3P li2 3 4(C)(D)3452a 7 a 5a6(C)(A) (B )(D)755 7苦2) AJ(M)ir2012年普通高等学校招生全国统一考试理科数学 第I 卷其中真命题为第1页共13页一、选择题: 要求的。
本大题共12小题,每小题 5分,在每小题给出的四个选项中,只有一项是符合题目(1 )已知集合A{1,2,3,4,5} ,(B ) 4名学生分成 6( C ) 8( D ) 102个小组,分别安排到甲、乙两地参加社会实践活动,每个小组有 (A ) 3 将2名教师,P 4 : z 的虚部为 1(3 )下面是关于复数 2—的四个命题1 i2i p 3: z 的共轭复数为1 i 和实数印盘,…,a ”输入A, B ,则(A)A B 为印旦,…,a N 的和A B(B )为印总,…,a ”的算式平均数2(C ) A 和B 分别是印忌…,a ”中最大的数和最小的数/输出儿介/(4) 2设F 1,F 2是椭圆E:笃 a 3a直线x 一上的一点,2E 的离心率为1(A)(B)2(5)已知{a n }为等比数列,2吿 1(a b 0)的左、右焦点, bP 为F 2PF 1是底角为30o 的等腰三角形, 则8,则 a 1(6 )如果执行N(NABC 是边长为1的正三角形,SC 为02 (A=(B)乜(c )t(D)_!663 2(12)设点P 在曲线1x ,片 ye 上,点2Q 在曲线y ln(2 x)上,则| PQ |的最小值为(A) 1 In 2(B)-2(1 ln2) (C)1 ln2(D) - 2(1 ln 2)(D ) A 和B 分别是6忌…,a ”中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(C ) 12( D )18x 轴上,C 与抛物线y 2 16x 的准线交于A,B 两点,| AB| 4,3,则 C 的 实轴长为(A ) 2( B )2 2( C )4( D )8(9)已知 0 ,函数f (x)sin( x -)在一,单调递减,则的取值范4 2 (A)1 5 [1,5] (B)[1,3]1 (C) (0,丄](D)2 42 4 21(10)已知函数f(x),则yf(x)的图像大致为In (x 1) x(A )6(B)9(8)等轴双曲线 C 的中心在原点,焦点在(11)已知三棱锥S 的直径,且SC ABC 的所有顶点都在球 0的球面上,2,则此棱锥的体积为y 0,(15 )某一部件由三个电子元件按下图方式连接而成,元件 正常工作,则部件正常工作。
绝密★启用前2012年普通高等学校招生全国统一考试(全国I 卷)(适用地区:河南、吉林、黑龙江、山西、新疆、宁夏、河北、云南、内蒙古)文科数学本试卷共24题,共150分。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅ (2)复数z =-3+i2+i 的共轭复数是(A )2+i (B )2-i (C )-1+i (D )-1-i 3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为(A )-1 (B )0 (C )12 (D )1(4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 1PF 2是底角为30°的等腰三角形,则E 的离心率为( )(A )12 (B )23 (C )34 (D )455、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则 (A )A+B 为a 1,a 2,…,a N 的和(B )A +B2为a 1,a 2,…,a N 的算术平均数(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数 (D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π(9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π4(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为(A ) 2 (B )2 2 (C )4 (D )8(11)当0<x ≤12时,4x <log a x ,则a 的取值范围是(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2) (12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为(A )3690 (B )3660 (C )1845 (D )1830第Ⅱ卷本卷包括必考题和选考题两部分。
成考数学试卷(文史类)题型分类一、集合与简易逻辑2012年(1) 设全集M={1,2,3,4,5}, N={2,4,6}, T={4,5,6}, 则(M T)N I U 是( )(A) }6,5,4,2{ (B) }6,5,4{ (C) }6,5,4,3,2,1{ (D) }6,4,2{(2) 命题甲:A=B, 命题乙:sinA=sinB . 则( )(A) 甲不是乙的充分条件也不是乙的必要条件; (B) 甲是乙的充分必要条件;(C) 甲是乙的必要条件但不是充分条件; (D) 甲是乙的充分条件但不是必要条件。
2013年(1) 设集合}2,1{=A , 集合}5,3,2{=B , 则B A I 等于( )(A ){2} (B ){1,2,3,5} (C ){1,3} (D ){2,5}(2) 设甲:3>x , 乙:5>x , 则( )(A )甲是乙的充分条件但不是必要条件; (B )甲是乙的必要条件但不是充分条件; (C )甲是乙的充分必要条件; (D )甲不是乙的充分条件也不是乙的必要条件. 2014年 (1)设集合{}22(,)1M x y x y =+≤, 集合{}22(,)2N x y x y =+≤, 则集合M 与N 的关系是(A )M N=M U (B )M N=∅I (C )N M Ø (D )M N Ø(9)设甲:1k =, 且 1b =;乙:直线y kx b =+与y x =平行。
则(A )甲是乙的必要条件但不是乙的充分条件; (B )甲是乙的充分条件但不是乙的必要条件; (C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。
2015年(1)设集合{},,,M a b c d =, {},,N a b c =, 则集合M N=U(A ){},,a b c (B ){}d (C ){},,,a b c d (D )∅(2)设甲:四边形ABCD 是平行四边形 ;乙:四边形ABCD 是平行正方, 则(A )甲是乙的充分条件但不是乙的必要条件; (B )甲是乙的必要条件但不是乙的充分条件; (C )甲是乙的充分必要条件; (D )甲不是乙的充分条件也不是乙的必要条件. 2016年(1)设集合{}P=1234,,,,5, {}Q=2,4,6,8,10, 则集合P Q=I(A ){}24, (B ){}12,3,4,5,6,8,10, (C ){}2 (D ){}4(7)设命题甲:1k =, 命题乙:直线y kx =与直线1y x =+平行, 则(A )甲是乙的必要条件但不是乙的充分条件; (B )甲是乙的充分条件但不是乙的必要条件; (C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。
2012年成人高考专升本高等数学一考试真题及参考答案第一篇:2012年成人高考专升本高等数学一考试真题及参考答案2012年成人高考专升本高等数学一考试真题及参考答案一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
参考答案:A参考答案:C参考答案:D参考答案:A参考答案:B参考答案:D参考答案:C参考答案:B参考答案:A参考答案:B二、填空题:本大题共10小题。
每小题4分,共40分,将答案填在题中横线上。
第11题参考答案:0 第12题设y=sin(x+2),则Y'=_________ 参考答案:cos(x+2)第13题设y=ex-3,则dy=_________.第14题参考答案:5sinx+C 第15题第16题曲线Y=x2-x在点(1,0)处的切线斜率为_________.参考答案:1 第17题设y=x3+2,则y''=__________.参考答案:6x 第18题设z=x2-y,则dz=_________.参考答案:2xdx-dy 第19题过点M(1,2,3)且与平面2x—Y+z=0平行的平面方程为_________.参考答案:2x—y+z=3 第20题参考答案:3π三、解答题:本大翘共8个小题,共70分。
解答应写出推理,演算步骤。
第21题参考答案:第22题参考答案:第23题设函数f(x)=x-1nx,求f(x)的单调增区间.参考答案:第24题参考答案:第25题参考答案:第26题参考答案:第27题设L是曲线y=x2+3在点(1,4)处的切线。
求由该曲线,切线L及y轴围成的平面图形的面积S.参考答案:第28题参考答案:第二篇:2013年成人高考专升本高等数学一考试真题及参考答案2013年成人高考专升本高等数学一考试真题及参考答案一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
参考答案:C参考答案:A参考答案:B参考答案:D参考答案:B参考答案:A参考答案:D参考答案:B参考答案:C参考答案:A二、填空题:本大题共10小题。
2012年高考文科数学真题及答案全国卷1注息事项:1•本试卷分第I卷(选择题)和第n卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2•问答第I卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动•用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效3.回答第n卷时。
将答案写在答题卡上.写在本试卷上无效•4•考试结束后.将本试卷和答且卡一并交回。
第1卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1 )已知集合A={ x|x2—x —2<0} , B={ x|— 1<x<1},贝U(A) A』(B) B=A (C) A=B (D) A n B=._【命题意图】本题主要考查一元二次不等式解法与集合间关系,是简单题【解析】A= (—1,2),故B#,故选B..3 :: i(2)复数z= 一的共轭复数是2 +i(A) 2 ' i (B) 2 - i (C) -1 ' i ( D) -1-i【命题意图】本题主要考查复数的除法运算与共轭复数的概念,是简单题一3 +i【解析】••• z= = -1 i ,••• z的共轭复数为-1 -i,故选D.2 +i(3)在一组样本数据(X1, yj, (X2, y2 ),•••, (x., y n)( n》2, x^,…人不全相等)的1 1散点图中,若所有样本点(X i, yj (i=1,2,…,n)都在直线y x 1y=*x+1上,则这组样本2 2数据的样本相关系数为1(A)—1 (B) 0 (C)寸(D) 1【命题意图】本题主要考查样本的相关系数,是简单题【解析】有题设知,这组样本数据完全正相关,故其相关系数为1,故选D.2 2P为直线(4) 设F1, F2是椭圆E :令与=1 ( a> b >0)的左、右焦点,a b点, △ F2PF1是底角为300的等腰三角形,则E的离心率为1234A. B .-C. D .-2345【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题.【解析】•••△ F2PF1是底角为300的等腰三角形,线 l : ^ -x y 过 B 点时,Z max =2,过 C 时,Z min =1 - 3 , • -X y 取值范围为(1 -3, 2),故选 A.(6)如果执行右边的程序框图, 输入正整数N (N > 2)和实数a 1, a 2,…,a ”,输出A , B ,贝UA. A + B 为 a 1, a 2,…,a ” 的和A BB.为a 1, a 2,…,a N 的算术平均数2C . A 和B 分别为a 1, a 2,…,a ”中的最大数和最 小数D . A 和B 分别为a 1, a 2,…,a ”中的最小数和最 大数【命题意图】 本题主要考查框图表示算法的意义, 是 简单题•【解析】由框图知其表示的算法是找 N 个数中的最大值和最小值, A 和B 分别为a 1, a 2,…,a N 中 的最大数和最小数,故选 C.[来…hulihu”et]( 7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为A .6B .9C .12D .18【命题意图】本题主要考查简单几何体的三视图及体积计算,是简 单题•【解析】由三视图知,其对应几何体为三棱锥,其底面为一边长为1 16,这边上咼为3,棱锥的咼为3,故其体积为6 3 3=9 ,3 2故选B.(8)平面a 截球O 的球面所得圆的半径为 1,球心O 到平面a 的距离为.2,则此球的体积 为(A ) ,6n ( B ) 4 .3n(C ) 4.6 n ( D ) 6.3n【命题意图】 【解析】3 3••• . PF 2A=600, |PF 2 |=| F 1F 2 | = 2c ,「. |AF 2 | = c ,••• 2c a ,「・ e =—,故选 C.2 4(5)已知正三角形 ABC 的顶点A(1,1) , B(1,3),顶点C 在第一象限 内部, 则z = _x • y 的取值范围是(A) (1 - 3, 2)(B ) (0, 2) (C ) (D ) (0, 1+ .3)(.3- 1, 2)【命题意图】本题主要考查简单线性规划解法,是简单题【解析】有题设知C(1+ .3 ,2),作出直线10: _x • y = 0,平移直线10,有图像知,直Ifr = t >1 =碣,H =还是函数f (x) = sin(,x :•丨)图像的两条4•••②—①得 a 1 a 3 =2,③ + ②得 a 4 ' a 2=8,同理可得 a 5 ' a 7=2, a 6 ' a 8 =24, a 9 ' a 11=2,a10 ' a 12 =40,…,• a 1 a 3, a 5 • a ?,比'an ,…,是各项均为 2的常数列,a 2 a 4, a 6 a 8,印。
WORD 资料.可编辑2011 年成人高等学校招生全国统一考试试题数学考生注意:本试题分第Ⅰ卷(选择题)第Ⅱ卷(非选择题)两部分,满分150 分,考试时间 120 分钟.第Ⅰ卷(选择题,共85 分)一、选择题:本大题共17 小题,每小题 5 分,共85 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1))函数 2y 4 x 的定义域是( )(A) ( ,0] (B) [ 0,2](C) [ 2,2] (D) ( , 2] [2, )(2)已知向量 a ( 2,4), b (m, 1) ,且 a b ,则实数m ( )(A) 2 (B) 1 (C) 1 (D) 2(3)设角是第二象限角,则()(A) cos 0,且tan 0 (B) cos 0,且tan 0(C)cos 0,且tan 0 (D)cos 0,且tan 0(4)一个小组共有 4 名男同学和 3 名女同学, 4 名男同学的平均身高为 1.72m,3 名女同学的平均身高为 1.61m,则全组同学的平均身高为(精确到0.01m)( )(A) 1.65m (B)1.66m (C) 1.67m (D)1.68m(5)已知集合 A {1,2,3,4} ,B { x 1 x 3},则A B ()(A) {0,1,2} (B) {1,2}(C) {1,2,3} (D) { 1,0,1,2}2 x(6)二次函数y x 4 1( )(A)有最小值-3 (B)有最大值-3(C)有最小值-6 (D)有最大值-6(7)不等式x 2 3的解集中包含的整数共有()(A) 8 个(B) 7 个(C) 6 个(D) 5 个(8)已知函数y f (x)是奇函数,且 f ( 5)3,则f (5)( )(A)5 (B)3 (C) -3 (D) -51m(9)若) 5( ,则a a2 ()m专业技术 .整理分享WORD 资料.可编辑(A)125(B)15(C) 5 (D)251(10)若向量log 4 ( )2 (A) 2 (B)12(C)12(D) 2(11)已知 25 与实数 m的等比中项是1,则 m= ( )(A)125(B)15(C) 5 (D) 252 y2(12)方程36x 25 800的曲线是( )(A)椭圆(B)双曲线(C)圆(D)两条直线(13)在首项是20,公差为 -3 的等差数列中,绝对值最小的一项是( )(A)第 5 项(B)第 6 项(C)第7 项(D)第8 项2 y2 x y(14)设圆x 4 8 4 0的圆心与坐标原点间的距离为 d ,则( )(A) 4 d 5 (B) 5 d 6 (C) 2 d 3 (D) 3 d 4 (15)下列函数中,既是偶函数,又在区间(0,3)为减函数的是( )12 x (A)y cos x (B)y log2 x (C) 4y x (D)y ( )3 (16)一位篮球运动员投篮两次,两投全中的概率为0.375 ,两投一中的概率为0.5,则他两投全不中的概率为(A) 0.6875 (B) 0.625(C) 0.5 (D) 0.1252(17)A,B 是抛物线y 8x 上两点,且此抛物线的焦点在线段AB上,已知AB两点的横坐标之和为10,则AB ( )(A) 18 (B)14(C) 12 (D)10第Ⅱ卷(非选择题,共65 分)二、填空题:本大题共 4 小题,每小题 4 分,共16 分,把答案填在题中横线上。
1成考数学试卷(文史类)题型分类一、集合与简易逻辑2001年(1) 设全集M={1,2,3,4,5},N={2,4,6},T={4,5,6},则(M T)N 是( )(A) }6,5,4,2{ (B) }6,5,4{ (C) }6,5,4,3,2,1{ (D) }6,4,2{ (2) 命题甲:A=B ,命题乙:sinA=sinB . 则( )(A) 甲不是乙的充分条件也不是乙的必要条件; (B) 甲是乙的充分必要条件;(C) 甲是乙的必要条件但不是充分条件; (D) 甲是乙的充分条件但不是必要条件。
2002年(1) 设集合}2,1{=A ,集合}5,3,2{=B ,则B A 等于( )(A ){2} (B ){1,2,3,5} (C ){1,3} (D ){2,5} (2) 设甲:3>x ,乙:5>x ,则( )(A )甲是乙的充分条件但不是必要条件; (B )甲是乙的必要条件但不是充分条件;(C )甲是乙的充分必要条件; (D )甲不是乙的充分条件也不是乙的必要条件. 2003年(1)设集合{}22(,)1M x y x y =+≤,集合{}22(,)2N x y x y =+≤,则集合M 与N 的关系是 (A )MN=M (B )M N=∅ (C )N M Ø (D )M N Ø(9)设甲:1k =,且 1b =;乙:直线y kx b =+与y x =平行。
则(A )甲是乙的必要条件但不是乙的充分条件; (B )甲是乙的充分条件但不是乙的必要条件;(C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。
2004年(1)设集合{},,,M a b c d =,{},,N a b c =,则集合MN=(A ){},,a b c (B ){}d (C ){},,,a b c d (D )∅(2)设甲:四边形ABCD 是平行四边形 ;乙:四边形ABCD 是平行正方,则(A )甲是乙的充分条件但不是乙的必要条件; (B )甲是乙的必要条件但不是乙的充分条件;(C )甲是乙的充分必要条件; (D )甲不是乙的充分条件也不是乙的必要条件. 2005年(1)设集合{}P=1234,,,,5,{}Q=2,4,6,8,10,则集合PQ=(A ){}24, (B ){}12,3,4,5,6,8,10, (C ){}2 (D ){}4 (7)设命题甲:1k =,命题乙:直线y kx =与直线1y x =+平行,则(A )甲是乙的必要条件但不是乙的充分条件; (B )甲是乙的充分条件但不是乙的必要条件;(C )甲不是乙的充分条件也不是乙的必要条件; (D )甲是乙的充分必要条件。
2012 年普通高等学校招生全国统一考试全国课标Ⅰ理科数学一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( )A .3B .6C .8D .102.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( ) A .12种 B .10种 C .9种 D .8种 3.下面是关于复数21iz =-+的四个命题: p 1:|z |=2, p 2:z 2=2i , p 3:z 的共轭复数为1+i , p 4:z 的虚部为-1, 其中的真命题为( )A .p 2,p 3B .p 1,p 2C .p 2,p 4D .p 3,p 44.设F 1,F 2是椭圆E :22221x y a b +=(a >b >0)的左、右焦点,P 为直线32ax =上一点,△F2PF 1是底角为30°的等腰三角形,则E 的离心率为( ) A .12 B .23 C .34 D .455.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( )A .7B .5C .-5D .-76.如果执行右边的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A ,B ,则( )A .A +B 为a 1,a 2,…,a N 的和 B .2A B+为a 1,a 2,…,a N 的算术平均数 C .A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数 D .A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .6B .9C .12D .188.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B两点,||AB =C 的实轴长为( )AB. C .4 D .8 9.已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)单调递减,则ω的取值范围是( ) A .1524⎡⎤⎢⎥⎣⎦, B .1324⎡⎤⎢⎥⎣⎦, C .(0,12] D .(0,2]10.已知函数1()ln(1)f x x x=+-,则y =f (x )的图像大致为( )11.已知三棱锥S -ABC 的所有顶点都在球O 的球面上, △ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.6 B.6 C.3 D.212.设点P 在曲线1e 2xy =上,点Q 在曲线y =ln(2x )上,则|PQ |的最小值为( ) A .1-ln2 B(1-ln2) C .1+ln2 D(1+ln2) 二、填空题:本大题共4小题,每小题5分.13.已知向量a ,b 夹角为45°,且a =1,2a b -=b =__________.14.设x ,y 满足约束条件1300,x y x y x y ≥⎧⎪≤⎪⎨≥⎪⎪≥⎩--,+,,,则z =x -2y 的取值范围为__________.15.某一部件由三个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为__________. 16.数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C a sin C -b -c =0. (1)求A ;(2)若a =2,△ABC b ,c .18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差; ②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(本小题满分12分)如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.20.(本小题满分12分)设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD的面积为p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.21.(本小题满分12分)已知函数f (x )满足f (x )=(1)f 'e x -1-f (0)x +12x 2. (1)求f (x )的解析式及单调区间; (2)若f (x )≥12x 2+ax +b ,求(a +1) b 的最大值.请考生在22、23、24三题中任选一题作答.如果多做,则按所做第一个题计分. 22.(本题满分10分)选修4—1:几何证明选讲如图,D ,E 分别为△ABC 边AB ,AC 的中点,直线DE 交△ABC 的外接圆于F ,G 两点.若CF ∥AB ,证明:(1)CD =BC ; (2)△BCD ∽△GBD .23.(本题满分10分)选修4—4:坐标系与参数方程已知曲线C 1的参数方程是2cos 3sin x y ϕϕ⎧⎨⎩=,=,(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为(2,π3). (1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|PA |2+|PB |2+|PC |2+|PD |2的取值范围.24.(本题满分10分)选修4—5:不等式选讲已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.2012年全国课标Ⅰ理科数学参考答案13.14.[-3,3] 15.816. 1 830 17.解:(1)由a cos C +a sin C -b -c =0及正弦定理得sin A cos C sin A sin C -sin B -sin C =0.因为B =π-A -C , A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以π1sin()62A -=. 又0<A <π,故π3A =. (2)△ABC 的面积1sin 2S bc A ==bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.18.解:(1)当日需求量n ≥16时,利润y =80. 当日需求量n <16时,利润y =10n -80.所以y 关于n 的函数解析式为1080<16()8016n n y n n ⎧∈⎨≥⎩N -,,=.,,(2)①X 可能的取值为60,70,80,并且P (X =60)=0.1,P (X =70)=0.2,P (X =80)=0.7.X 的分布列为X 的数学期望为EX =60×0.1+70×0.2+80×0.7=76.X 的方差为DX =(60-76)2×0.1+(70-76)2×0.2+(80-76)2×0.7=44. ②答案一: 花店一天应购进16枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y 表示当天的利润(单位:元),那么Y 的分布列为Y 的数学期望为EY =55×0.1+65×0.2+75×0.16+85×0.54=76.4. Y 的方差为DY =(55-76.4)2×0.1+(65-76.4)2×0.2+(75-76.4)2×0.16+(85-76.4)2×0.54=112.04.由以上的计算结果可以看出,DX <DY ,即购进16枝玫瑰花时利润波动相对较小.另外,虽然EX <EY ,但两者相差不大.故花店一天应购进16枝玫瑰花. 答案二:花店一天应购进17枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y 表示当天的利润(单位:元),那么Y 的分布列为Y 55 65 75 85 P0.10.20.160.54Y 的数学期望为EY =55×0.1+65×0.2+75×0.16+85×0.54=76.4.由以上的计算结果可以看出,EX <EY ,即购进17枝玫瑰花时的平均利润大于购进16枝时的平均利润.故花店一天应购进17枝玫瑰花.19.解:(1)证明:由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点,故DC =DC 1.又112AC AA =,可得DC 12+DC 2=CC 12,所以DC 1⊥DC . 而DC 1⊥BD ,DC ∩BD =D ,所以DC 1⊥平面BCD .BC平面BCD ,故DC 1⊥BC .(2)由(1)知BC ⊥DC 1,且BC ⊥CC 1,则BC ⊥平面ACC 1, 所以CA ,CB ,CC 1两两相互垂直.以C 为坐标原点,CA 方向为x 轴的正方向,CA 为单位长,建立如图所示的空间直角坐标系C -xyz . 由题意知A 1(1,0,2),B (0,1,0),D (1,0,1),C 1(0,0,2).则1(0,01)A D =,-,(11,1)BD =,-,1(1,0,1)DC =-.设n =(x ,y ,z )是平面A 1B 1BD 的法向量,则10,0,BD A D ⎧⋅=⎪⎨⋅=⎪⎩n n ,即00x y z z ⎧⎨⎩-+=,=, 可取n =(1,1,0).同理,设m 是平面C 1BD 的法向量,10,0.BD DC ⎧⋅=⎪⎨⋅=⎪⎩m m 可取m =(1,2,1). 3cos ,⋅=n m n m n m . 故二面角A 1-BD -C 1的大小为30°20.解:(1)由已知可得△BFD 为等腰直角三角形,|BD |=2p ,圆F 的半径||2FA =.由抛物线定义可知A 到l 的距离=||2d FA =. 因为△ABD 的面积为42所以1||422BD d ⋅=,即122422p ⋅= 解得p =-2(舍去),p =2. 所以F (0,1),圆F 的方程为x 2+(y -1)2=8.(2)因为A ,B ,F 三点在同一直线m 上,所以AB 为圆F 的直径,∠ADB =90°.由抛物线定义知|AD |=|FA |=12|AB |, 所以∠ABD =30°,m 的斜率为3或3-.当m 的斜率为3时,由已知可设n :y =3x +b ,代入x 2=2py ,得x 2-3px -2pb =0. 由于n 与C 只有一个公共点,故∆=43p 2+8pb =0, 解得6pb =-. 因为m 的截距12p b =,1||3||b b =,所以坐标原点到m ,n 距离的比值为3.当m 的斜率为3-时,由图形对称性可知,坐标原点到m ,n 距离的比值为3. 21.解:(1)由已知得f ′(x )=f ′(1)e x -1-f (0)+x . 所以f ′(1)=f ′(1)-f (0)+1,即f (0)=1. 又f (0)=f ′(1)e -1,所以f ′(1)=e. 从而f (x )=e x -x +12x 2. 由于f ′(x )=e x -1+x , 故当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0. 从而,f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)由已知条件得e x -(a +1)x ≥b .①(ⅰ)若a +1<0,则对任意常数b ,当x <0,且11bx a -<+时,可得e x -(a +1)x <b ,因此①式不成立. (ⅱ)若a +1=0,则(a +1)b =0.(ⅲ)若a +1>0,设g (x )=e x -(a +1)x ,则g ′(x )=e x -(a +1).当x ∈(-∞,ln(a +1))时,g ′(x )<0;当x ∈(ln(a +1),+∞)时,g ′(x )>0. 从而g (x )在(-∞,ln(a +1))上单调递减,在(ln(a +1),+∞)上单调递增. 故g (x )有最小值g (ln(a +1))=a +1-(a +1)ln(a +1).所以f (x )≥12x 2+ax +b 等价于 b ≤a +1-(a +1)ln(a +1).② 因此(a +1)b ≤(a +1)2-(a +1)2ln(a +1). 设h (a )=(a +1)2-(a +1)2ln(a +1),则h ′(a )=(a +1)(1-2ln(a +1)).所以h (a )在(-1,12e 1-)上单调递增,在(12e 1-,+∞)上单调递减, 故h (a )在12=e 1a -处取得最大值.从而e ()2h a ≤,即(a +1)b ≤e 2. 当12=e 1a -,12e 2b =时,②式成立,故f (x )≥12x 2+ax +b . 综合得,(a +1)b 的最大值为e 2. 22.证明:(1)因为D ,E 分别为AB ,AC 的中点,所以DE ∥BC . 又已知CF ∥AB ,故四边形BCFD 是平行四边形,所以CF =BD =AD . 而CF ∥AD ,连结AF ,所以ADCF 是平行四边形,故CD =AF . 因为CF ∥AB ,所以BC =AF ,故CD =BC .(2)因为FG ∥BC ,故GB =CF . 由(1)可知BD =CF ,所以GB =BD . 而∠DGB =∠EFC =∠DBC ,故△BCD ∽△GBD .23.解:(1)由已知可得A (π2cos3,π2sin 3),B (ππ2cos()32+,ππ2sin()32+), C (2cos(π3+π),2sin(π3+π)),D (π3π2cos()32+,π3π2sin()32+),即A (1,3),B (3-,1),C (-1,3-),D (3,-1).(2)设P (2cos φ,3sin φ),令S =|PA |2+|PB |2+|PC |2+|PD |2,则S =16cos 2φ+36sin 2φ+16=32+20sin 2φ. 因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].24.解:(1)当a =-3时,25,2,()1,23,25, 3.x x f x x x x -+≤⎧⎪=<<⎨⎪-≥⎩当x ≤2时,由f (x )≥3,得-2x +5≥3,解得x ≤1;当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3,得2x -5≥3,解得x ≥4; 所以f (x )≥3的解集为{x |x ≤1}∪{x |x ≥4}. (2)f (x )≤|x -4||x -4|-|x -2|≥|x +a |.当x ∈[1,2]时,|x -4|-|x -2|≥|x +a |4-x -(2-x )≥|x +a |-2-a ≤x ≤2-a .由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.故满足条件的a 的取值范围为[-3,0].。
绝密★启用前2012年普通高等学校招生全国统一考试(全国新课标卷1)数学(理科)适用地区:海南、宁夏、黑龙江、吉林、山西、河南、新疆、云南、河北、内蒙古 注息事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动.用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3. 回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,2,3,4,5}A =,{(,)|,,}B x y x A y A x y A =∈∈-∈,则B 中所含元素的个数为( )A . 3B . 6C . 8D . 102. 将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A . 12种B . 10种C . 9种D . 8种3. 下面是关于复数21iz =-+的四个命题:1:||2p z =;22:2i p z =; 3:p z 的共轭复数为1i +;4:p z 的虚部为1-.其中的真命题为( )A . 23,p pB . 12,p pC . 24,p pD . 34,p p4. 设1F ,2F 是椭圆E :22221(0)x ya b a b +=>>的左、右焦点,P 为直线32a x =上一点,21F PF △是底角为30的等腰三角形,则E 的离心率为 ( )A . 12B . 23C . 34D . 455. 已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( ) A . 7 B . 5 C . 5-D . 7-6. 如果执行右边的程序框图,输入正整数(2)N N ≥和实数1a ,2a ,,N a ,输出A ,B ,则( )A . AB +为1a ,2a ,,N a 的和B .2A B+为1a ,2a ,,N a 的算术平均数C . A 和B 分别是1a ,2a ,,N a 中最大的数和最小的数D . A 和B 分别是1a ,2a ,,N a 中最小的数和最大的数7. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A . 6B . 9C . 12D . 188. 等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||AB =则C 的实轴长为( )A .B .C . 4D . 89. 已知0ω>,函数π()sin()4f x x ω=+在π(,π)2上单调递减,则ω的取值范围是( )A . 15[,]24B . 13[,]24C . 1(0,]2D . (0,2] 10. 已知函数1()ln(1)f x x x=+-,则()y f x =的图象大致为( )ABCD11. 已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC △是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )A .B .C . 3D . 212. 设点P 在曲线1e 2x y =上,点Q 在曲线ln(2)y x =上,则||PQ 的最小值为()A . 1ln2-B . ln 2)- C . 1ln2+D .ln 2)+第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.13. 已知向量a ,b 夹角为45,且||1=a ,2|-=|a b ,则|=|b _________.14. 设x ,y 满足约束条件1300x y x y x y --⎧⎪+⎪⎨⎪⎪⎩≥,≤,≥,≥,则2z x y =-的取值范围为_________.15. 某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布2(1 000,50)N ,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------小时的概率为_________.16. 数列{}n a 满足1(1)21n n n a a n ++-=-,则{}n a 的前60项和为_________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,cos sin 0a C C b c +--=. (Ⅰ)求A ;(Ⅱ)若2a =,ABC △求b ,c .18.(本小题满分12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;以100天记录的各需求量的频率作为各需求量的概率.(ⅰ)若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(本小题满分12分)如图,直三棱柱111ABC A B C -中,112AC BC AA ==,D 是棱1AA 的中点,1DC BD ⊥. (Ⅰ)证明:1DC BC ⊥;(Ⅱ)求二面角11A BD C --的大小.20.(本小题满分12分)设抛物线C :22(0)x py p =>的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点.(Ⅰ)若90BFD ∠=,ABD △的面积为求p 的值及圆F 的方程;(Ⅱ)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.21.(本小题满分12分)设函数121()(1)e (0)2x f x f f x x -'=-+. (Ⅰ)求()f x 的解析式及单调区间;(Ⅱ)若21()2f x x ax b ++≥,求(1)a b +的最大值.请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4—1:几何证明选讲如图,D ,E 分别为ABC △边AB ,AC 的中点,直线DE 交ABC △的外接圆于F ,G 两点.若CF AB ∥,证明: (Ⅰ)CD BC =;(Ⅱ)BCD GBD △∽△.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程是2cos ,3sin x y ϕϕ=⎧⎨=⎩(ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2ρ=,正方形ABCD 的顶点都在2C 上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为π(2,)3. (Ⅰ)求点A ,B ,C ,D 的直角坐标;(Ⅱ)设P 为1C 上任意一点,求2222||||||||PA PBPC PD +++的取值范围.24.(本小题满分10分)选修4—5:不等式选讲已知函数()|||2|f x x a x =++-.(Ⅰ)当3a =-时,求不等式()3f x ≥的解集; (Ⅱ)若()4|f x x -≤|的解集包含[1,2],求a 的取值范围.G2012年普通高等学校招生全国统一考试(全国新课标卷1)理科数学答案解析可知:该程序的作用是:求出12n a a a ,,,中最大的数和最小的数 其中A 为12n a a a ,,,中最大的数,B 为12n a a a ,,,中最小的数【提示】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出12n a a a ,,中最大的数和最小的数. 【考点】循环结构.7.【答案】B【解析】该几何体是三棱锥,底面是俯视图,三棱锥的高为3; ,102ω>∴,验证三角函数的角的范围,排除选项,得到结22222(2)44|a b|a b a a b b-=-=-+224||4||||cos45||a ab b=-︒+24|||10b b=-+=,解得||32b=【提示】由已知可得,2||||cos45||2ba ab b=︒=,代入2222(2)44a b|ab a a b b-=-=-+2422||||10b b=-+=可求【考点】平面向量数量积的运算,平面向量数量积的坐标表示、模、夹角.[]3,3-60(a++-117++=3159((a a a a=++++奇1770230+⨯=sin0C>,0πA<<222a b caab+-,22a b+-0πA<<(2)ABCS=△,2a A=,22b c=+-.解得b c=,直三棱柱,又1DC BD ⊥1DC D =,2AB a =,1DC ∴(Ⅱ)由(Ⅰ)知,12DC a =90AB ∴30. 30.轴,CB 为1(,0,2,0)(,0,A a a D a ,(,DB a =-(,0,DC a =-(,n x y =11n D B a n D Ca ⎧=-⎪⎨=-⎪⎩,故可取(1,2,1)n =同理,可求得平面的一个法向量2(1,1,0)n =设n 与n 的夹角为1223||||6n n n n =30.由图可知,二面角的大小为锐角,故二面角1A -()e h x '=x →-∞时,(2)当a 10a +>(1)a b ∴+()2u x x '=∥=CF AD,∴=CD AFCF AB∥(Ⅱ)由(Ⅰ)知,BCD∴△∽△。
2012 年高考文科数学真题及答案全国卷1注息事项 :1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷 (非选择题 )两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动 .用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后 .将本试卷和答且卡一并交回。
第1 卷一、选择题:本大题共 12 小题,每小题 5 分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合 A={ x|x2- x- 2<0} , B={ x|- 1<x<1} ,则(A)A B(B)BA(C)A=B(D)A∩B=【命题意图】本题主要考查一元二次不等式解法与集合间关系,是简单题.【解析】 A= (- 1,2),故 B A ,故选 B.( 2)复数 z=3i的共轭复数是2 i( A )2 i( B )2 i(C)1 i( D)1 i【命题意图】本题主要考查复数的除法运算与共轭复数的概念,是简单题.【解析】∵ z =3 ii ,∴ z 的共轭复数为 1 i ,故选D.= 12i(3)在一组样本数据( x1, y1),( x2, y2),⋯,( x n, y n)(n≥ 2, x1,x2, ⋯ ,x n不全相等)的散点图中,若所有样本点(x i,y i)(i=1,2, ⋯, n) 都在直线y 1x 1 y=1x+1上,则这组样本22数据的样本相关系数为(A)- 1(B)0(C)1(D)1 2【命题意图】本题主要考查样本的相关系数,是简单题.【解析】有题设知,这组样本数据完全正相关,故其相关系数为1,故选 D.12x2y2=1(a> b >0)的左、右焦点,P 为直线 x3a(4)设F,F是椭圆E:a2b2上一2点,△ F2PF1是底角为300的等腰三角形,则 E 的离心率为A .1B .2C .3D .4 2345【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题.【解析】∵△F2 PF1是底角为300的等腰三角形,∴ PF 2A600, | PF 2 | | F 1F 2 | 2c ,∴ | AF 2 | = c ,∴2c3a ,∴e =3,故选 C.24( 5)已知正三角形 ABC 的顶点 A(1,1) ,B(1,3) ,顶点 C 在第一象限,若点(x ,y )在△ ABC内部,则 zxy 的取值范围是(A )(1- 3,2)( B ) (0, 2)( C )( 3- 1,2)( D ) (0, 1+ 3)【命题意图】本题主要考查简单线性规划解法,是简单题.【解析】有题设知C(1+ 3 ,2),作出直线l 0:xy 0 ,平移直线l 0,有图像知,直线 l : zx y 过B点时, z max=2,过 C 时,z min =1 3 ,∴ z x y 取值范围为(1-3,2),故选 A.( 6)如果执行右边的程序框图,输入正整数N ( N ≥2)和实数a 1,a 2,⋯,a N ,输出A ,B ,则A . A + B 为a 1,a 2,⋯,a N 的和ABB .为a 1,a 2,⋯,a N 的算术平均数C .A 和B 分别为a 1,a 2,⋯,a N 中的最大数和最小数D . A 和 B 分别为a 1,a 2,⋯,a N 中的最小数和最大数【命题意图】本题主要考查框图表示算法的意义,是 简单题 .【解析】由框图知其表示的算法是找大值和最小值,A 和B分别为 a 1, a 2,⋯, a N 中 的最大数和最小数,故选C.(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为A .6B .9C .12D .18【命题意图】本题主要考查简单几何体的三视图及体积计算,是简单题 .【解析】由三视图知,其对应几何体为三棱锥,其底面为一边长为 6,这边上高为 3,棱锥的高为 3,故其体积为116 33 =9,32故选 B.(8) 平面α截球 O 的球面所得圆的半径为1,球心 O 到平面α的距离为 2,则此球的体积为( A ) 6π( B ) 4 3π(C ) 4 6π( D ) 6 3π【命题意图】【解析】N 个数中的最( 9)已知>0,0,直线x =和x =5是函数f ( x) sin( x ) 图像的两条44相邻的对称轴,则=( A )ππ π 3π4(B )3 (C )2 (D )4【命题意图】本题主要考查三角函数的图像与性质,是中档题.【解析】由题设知,5,∴ =1,∴= k( k Z ),=4442∴= k ( kZ ),∵0,∴ =,故选 A.44( 10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 216x 的准线交于 A 、B 两点,| AB |=4 3,则C 的实轴长为A .2B .2 2C .4D .8.【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题【解析】由题设知抛物线的准线为: x 4 ,设等轴双曲线方程为:x 2 y 2 a 2,将x 4代入等轴双曲线方程解得y =16 a 2 ,∵| AB|=43,∴2 16a 2 = 4 3 ,解得 a =2,∴ C 的实轴长为4,故选 C.(11)当 0< x ≤1时,4xlog a x ,则a 的取值范围是222(A )(0,2 ) (B )( 2 , 1) (C ) (1, 2) (D ) ( 2,2)【命题意图】本题主要考查指数函数与对数函数的图像与性质及数形结合思想, 是中档题 .0 a12 【解析】由指数函数与对数函数的图像知11,解得a2 ,故选 A.loga242( 12)数列 { a n } 满足a n 1( 1)n a n2n 1 ,则{ a n }的前60项和为( A )3690 (B ) 3660( C ) 1845 ( D ) 1830 【命题意图】本题主要考查灵活运用数列知识求数列问题能力,是难题 . 【解析】【法 1】有题设知a 2 a 1=1,① a 3a 2=3②a 4 a 3=5③a 5 a 4=7, a 6 a 5=9, a 7 a 6=11, a 8a 7=13, a 9 a 8=15, a 10 a 9=17, a 11a 10=19, a 12a1121 ,⋯⋯∴②-①得 a 1a 3=2,③+②得 a 4 a 2=8,同理可得 a 5 a 7=2, a 6 a 8=24, a 9a 11=2,a10a 12=40,⋯,∴ a 1 a 3,a 5 a 7,a 9 a 11,⋯,是各项均为 2 的常数列,a 2a 4,a 6a 8,a 10a 12,⋯是首项为8,公差为 16 的等差数列,∴ { a n } 的前 60 项和为 15 215 8116 15 14 =1830.2【法 2】可证明:bn 1a4 n 1a4n 2a4 n 3a4 n 4a4 n 3a4n 2a4 n 2a 4n 16b n16b 1a 1a 2 a 3 a 4 1 01 5 1 4 S 1510 1516 18302第Ⅱ卷二.填空题:本大题共 4 小题,每小题 5 分。