信息安全第3章_同余式
- 格式:ppt
- 大小:747.50 KB
- 文档页数:141
信息安全数学基础答案【篇一:信息安全数学基础习题答案】xt>第一章整数的可除性1.证明:因为2|n 所以n=2k , k?z5|n 所以5|2k ,又(5,2)=1,所以5|k 即k=5 k1 ,k1?z 7|n 所以7|2*5 k1 ,又(7,10)=1,所以7| k1 即k1=7 k2,k2?z 所以n=2*5*7 k2 即n=70 k2, k2?z因此70|n32.证明:因为a-a=(a-1)a(a+1)3当a=3k,k?z 3|a 则3|a-a3当a=3k-1,k?z 3|a+1 则3|a-a3当a=3k+1,k?z 3|a-1 则3|a-a3所以a-a能被3整除。
3.证明:任意奇整数可表示为2 k0+1, k0?z22(2 k0+1)=4 k0+4 k0+1=4 k0 (k0+1)+1由于k0与k0+1为两连续整数,必有一个为偶数,所以k0(k0+1)=2k2所以(2 k0+1)=8k+1 得证。
34.证明:设三个连续整数为a-1,a,a+1 则(a-1)a(a+1)= a-a3由第二题结论3|(a-a)即3|(a-1)a(a+1)又三个连续整数中必有至少一个为偶数,则2|(a-1)a(a+1)又(3,2)=1所以6|(a-1)a(a+1) 得证。
5.证明:构造下列k个连续正整数列:(k+1)!+2, (k+1)!+3, (k+1)!+4,……, (k+1)!+(k+1), k?z对数列中任一数 (k+1)!+i=i[(k+1)k…(i+1)(i-1)…2*1+1],i=2,3,4,…(k+1) 所以i|(k+1)!+i即(k+1)!+i为合数所以此k个连续正整数都是合数。
1/26.证明:因为191<14 ,小于14的素数有2,3,5,7,11,13经验算都不能整除191所以191为素数。
1/2因为547<24 ,小于24的素数有2,3,5,7,11,13,17,19,23经验算都不能整除547所以547为素数。
《信息安全数学基础》课后作业及答案第1章课后作业答案 (2)第2章课后作业答案 (6)第3章课后作业答案 (13)第4章课后作业答案 (21)第5章课后作业答案 (24)第6章课后作业答案 (27)第7章课后作业答案 (33)第8章课后作业答案 (36)第9章课后作业答案 (40)第10章课后作业答案 (44)第11章课后作业答案 (46)第12章课后作业答案 (49)第13章课后作业答案 (52)第1章课后作业答案习题1:2, 3, 8(1), 11, 17, 21, 24, 25, 312. 证明:存在整数k,使得5 | 2k + 1,并尝试给出整数k的一般形式。
证明k = 2时,满足5 | 2k + 1。
5 | 2k + 1,当且仅当存2k + 1 = 5q。
k, q为整数。
即k = (5q– 1)/2。
只要q为奇数上式即成立,即q = 2t + 1,t为整数即,k = 5t + 2,t为整数。
3. 证明:3 3k + 2,其中k为整数。
证明因为3 | 3k,如果3 | 3k + 2,则得到3 | 2,矛盾。
所以,3 3k + 2。
8. 使用辗转相除法计算整数x, y,使得xa + yb = (a, b):(1) (489, 357)。
解489 = 357×1 + 132,357 =132 × 2 + 93,132 = 93 × 1 + 39,93 = 39 × 2 + 15,39 = 15 × 2 + 9,15 = 9 × 1 + 6,9 = 6 × 1 + 3,6 = 3 × 2 + 0,所以,(489, 357) = 3。
132 = 489 – 357×1,93 = 357 – 132 × 2 = 357 – (489 – 357×1) × 2 = 3 × 357 – 2 ×489,39 = 132 – 93 × 1 = (489 – 357×1) – (3 × 357 – 2 ×489) × 1 = 3 ×489 – 4× 357,15 = 93 – 39 × 2 = (3 × 357 – 2 × 489) – (3 ×489 – 4× 357) × 2 = 11× 357 – 8 × 489,9 = 39 – 15 × 2 = (3 ×489 – 4× 357) – (11× 357 – 8 × 489) × 2 = 19 × 489 – 26× 357,6 = 15 – 9 × 1 = (11× 357 –8 × 489) – (19 × 489 – 26× 357) = 37 ×357 – 27 × 489,3 = 9 – 6 × 1 = (19 × 489 – 26× 357) – (37 × 357 – 27 × 489) = 46 ×489 – 63 × 357。
第一章(1)5,4,1,5.(2)100=22*52, 3288=23*3*137.(4)多种解法,其中一种:a,b可以表示成多个素因子的乘积a=p1p2––p r, b=q1q2––q s,又因为(a, b)=1,表明a, b没有公共(相同)素因子. 同样可以将a n, b n表示为多个素因子相乘a n=(p1p2––p r)n, b n=(q1q2––q s)n明显a n, b n也没有公共(相同)素因子.(5)多种解法,其中一种:由算术基本定理:a,b可分解为有限个素数的乘积,得:a=p1^r1*p2^r2*……*pn^rn, b= p1^r1’*p2^r2’*……*pn^rn’,若a|b不成立,则存在素数pi使得pi在a中的幂ri大于pi在b中的幂ri‘,即:ri>ri’a^n=p1^r1n*p2^r2n*…*pi^rin*…*pn^rnn, b^n= p1^r1’n*p2^r2’n*…* pi^ri’n *…*pn^rn’n,则ri*n>ri’*n,所以a^n|b^n不成立。
(6)多种解法,其中一种:由于a,b,c互素且非零所以(a,b)=1,(b,c)=1所以存在u,v,r,s使ua+vc=1,rb+sc=1两式相乘得:(ur)ab+(usa+vrb+vsc)c=1所以(ab,c)=(a,b)(a,c)=1(7)2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107, 109, 113, 127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199.(11)对两式进行变形有21=0(mod m), 1001=0(mod m),可以看出要求满足的m即使求21和1001的公约数, 为7和1.(12)多种解法,其中一种:70!=(70*69*68*67*66*65*64*63*62)*61!70*69*68*67*66*65*64*63*62≡(-1)(-2)…(-9) (mod71) ≡1mod71所以70!≡61!(13)多种解法,其中一种:当n是奇数时,不妨设n=2k+1,k为整数则2^n+1≡(-1)^(2k+1)+1≡0(mod3)当n是偶数时,不妨设n=2k,k为整数则2^n+1≡(-1)^(2k)+1≡2(mod3)综上,n是奇数时,3整除2^n+1,n是偶数时,3不整除2^n+1(14)第一个问题:因为(c,m)=d.假设ac=k1m+r, bc=k2m+r,有ac=k1d(m/d)+r, bc=k2d(m/d)+r 所以ac=bc(mod m/d),因为(c,m/d)=1,所以两边可以同除以一个c, 所以结论成立.第二个问题:因为a=b(mod m), 所以a-b=k i*m i,a-b是任意m i的倍数,所以a-b是m i公倍数,所以[m i]|a-b.(15)将整数每位数的值相加, 和能被3整除则整数能被3整除, 和能被9整除则整数能被9整除, (1)能被3整除, 不能被9整除,(2)都不能,(3)都不能,(4)都不能常见问题:1.写出构成群和不构成群的原因13.证明ab-1∈A∩B即可14.用群的定义证明(题意是证明映射后的集合为一个群)第二章1.判断方法:分别验证1.对运算是否封闭,2.对任意的a, b, c是否满足结合律,3.对任意a是否存在单位元,4.对任意a是否存在逆元. 可以得出在(1)-(10)中(2),(3),(6), (7) (10)构成群(1)不满足结合律,不存在逆元, (4)不存在单位元(5)不满足结合律(8)不构成,不存在逆元(9)不构成,不存在逆元2. a-b-c≠a-(b-c),所以不构成,不满足结合律5.证明:显然在群中单位元e满足方程x2=x, 假设存在一个元素a满足方程x2=x, 则有a2=a, 两边同乘以a-1有a=e. 所以在群中只有单位元满足方程x2=x.6.证明:因为群G中每个元素都满足方程x2=e, 所以对群中任意元素a,b有aa=e, bb=e, (ab)2=abab=e. 对abab=e, 方程两边左乘以a, 右乘以b有aababb=(aa)ba(bb)=ba=aeb=ab, 有ab=ba, 所以G是交换群.7.证明:充分性:因为在群中对任意元素a,b有(ab)2=a2b2即abab=aabb, 方程两边左乘以a 的逆元右乘以b的逆元, 有a-1ababb-1= a-1aabbb-1, 有ab=ba, 所以G是交换群.必要性:因为群G是交换群, 所以对任意元素a,b有ab=ba, 方程两边左乘以a右乘以b 有abab=aabb, 有(ab)2=a2b2.8.证明:方程xaxba=xbc两边同时左乘a-1x-1,右乘a-1b-1有a-1x-1xaxbaa-1b-1=a-1x-1xbc a-1b-1,化简得x=a-1bc a-1b-1,可知方程有解。
信息安全数学基础习题答案第三章.同余式1.(1)解:因为(3,7)=1 | 2 故原同余式有一个解又3x ≡1(mod7) 所以 特解x 0`≡5(mod7)同余式3x ≡2(mod7)的一个特解x 0≡2* x 0`=2*5≡3(mod7)所有解为:x ≡3(mod7)(2)解:因为(6,9)=3 | 3故原同余式有解又2x ≡1(mod3) 所以 特解x 0`≡2(mod3)同余式2x ≡1(mod3)的一个特解x 0≡1* x 0`=1*2≡2(mod3)所有解为:x ≡2+3t (mod9)t=0,1,2所以解分别为x ≡2,5, 8(mod9)(3)解:因为(17,21)=1 | 14 故原同余式有解又17x ≡1(mod 21) 所以 特解x 0`≡5(mod 21)同余式17x ≡14(mod 21)的一个特解x 0≡14* x 0`=14*5≡7(mod 21) 所有解为:x ≡7(mod 21)(4)解:因为(15,25)=5 不整除9,故原同余式无解2.(1)解:因为(127,1012)=1 | 833 故原同余式有解又127x ≡1(mod1012) 所以 特解x 0`≡255(mod1012)同余式127x ≡833(mod1012)的一个特解x 0≡833* x 0`=833*255≡907(mod1012) 所有解为:x ≡907(mod1012)3.见课本3.2例14.设a,b,m 是正整数,(a,m )=1,下面的方法可以用来求解一次同余方程ax ≡b(mod m)(3)6x ≡7(mod 23)解:依据题意可知,原式与(a%m)x ≡-b[m/a](mod m)同解即与5x ≡-7*3(mod 23)同解,化简得5x ≡2(mod 23).重复使用上述过程,5x ≡2(mod 23)->3x ≡-8(mod 23)->2x ≡10(mod 23)->x ≡5(mod 23). x ≡5(mod 23)即为方程的解。
信息安全数学基础习题答案第一章整数的可除性1.证明:因为2|n 所以n=2k , k∈Z5|n 所以5|2k ,又(5,2)=1,所以5|k 即k=5 k1,k1∈Z7|n 所以7|2*5 k1 ,又(7,10)=1,所以7| k1即k1=7 k2,k2∈Z 所以n=2*5*7 k2即n=70 k2, k2∈Z因此70|n2.证明:因为a3-a=(a-1)a(a+1)当a=3k,k∈Z 3|a 则3|a3-a当a=3k-1,k∈Z 3|a+1 则3|a3-a当a=3k+1,k∈Z 3|a-1 则3|a3-a所以a3-a能被3整除。
3.证明:任意奇整数可表示为2 k0+1,k0∈Z(2 k0+1)2=4 k02+4 k0+1=4 k0 (k0+1)+1由于k0与k0+1为两连续整数,必有一个为偶数,所以k0 (k0+1)=2k所以(2 k0+1)2=8k+1 得证。
4.证明:设三个连续整数为a-1,a,a+1 则(a-1)a(a+1)= a3-a由第二题结论3|(a3-a)即3|(a-1)a(a+1)又三个连续整数中必有至少一个为偶数,则2|(a-1)a(a+1)又(3,2)=1 所以6|(a-1)a(a+1) 得证。
5.证明:构造下列k个连续正整数列:(k+1)!+2, (k+1)!+3, (k+1)!+4,……, (k+1)!+(k+1), k∈Z对数列中任一数 (k+1)!+i=i[(k+1)k…(i+1)(i-1)…2*1+1], i=2,3,4,…(k+1)所以i|(k+1)!+i 即(k+1)!+i为合数所以此k个连续正整数都是合数。
6.证明:因为1911/2<14 ,小于14的素数有2,3,5,7,11,13经验算都不能整除191 所以191为素数。
因为5471/2<24 ,小于24的素数有2,3,5,7,11,13,17,19,23经验算都不能整除547 所以547为素数。
由737=11*67 ,747=3*249 知737与747都为合数。