已核七年级下数学第六章实数(9)----单元测试题
- 格式:doc
- 大小:162.50 KB
- 文档页数:4
人教版七年级数学下册第六章实数。
单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。
$n=0.13$,求 $m-n$ 的值。
19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。
讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。
”小军说:“面积和长宽比例是确定的,肯定可以围得出来。
”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。
20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。
人教版七年级下册第六章实数单元同步测试一、选择题1、以下说法正确的选项是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.假如一个数有立方根,则它必有平方根D.不为 0 的任何数的立方根,都与这个数自己的符号同号2、以下语句中正确的选项是()A.-9 的平方根是 -3B.9 的平方根是 3C.9 的算术平方根是3D.9 的算术平方根是 33、以下说法中正确的选项是()A、若 a 为实数,则a0 B 、若 a 为实数,则 a 的倒数为1aC、若 x,y 为实数,且x=y ,则x y D 、若 a 为实数,则a204、估量287 的值在A. 7和8之间B. 6和 7之间C. 3和4之间D. 2和 3之间5、以下各组数中,不可以作为一个三角形的三边长的是()A、 1、 1000、 1000B、 2、 3、5C、32,42,52D、38 , 327 , 3646、以下说法中,正确的个数是()(1)- 64 的立方根是- 4;( 2)49的算术平方根是7 ;(3)1的立方根为1;(4)1是27341的平方根。
16A 、1B 、2C 、3D 、47、一个数的平方根与立方根相等,则这个数是( )A.1B. ±1C.0D. —18、假如 3 2.37 1.333 , 3 23.7 2.872 ,那么 3 0.0237 约等于().A. 13.33B. 28.72C. 0.1333D. 0.28729、若x 1 +( y+2 ) 2=0,则( x+y ) 2017=( )A .﹣ 1B . 1C . 32017D .﹣ 3201710、若 0a 1,则 a, a 2, 1的大小关系是 ()a二、填空题11、 0.0036 的平方根 是,81 的算术平方根是.12、若a 的平方根为 3 ,则 a=.13、假如一个数的平方根是 a+6 和 2a-15 ,则这个数为。
14、比较大小:5 11(填“>”、“<”或“ =”).15、比较大小: 3 10 ________5 ( 填“>”或 “<” ) .16、立方等于它自己的数是。
七年级初一数学 第六章 实数单元测试附解析一、选择题1.下列式子正确的是( )A .25=±5B .81=9C .2(10)-=﹣10D .±9=3 2.下列说法中正确的是( )A .若a a =,则0a >B .若22a b =,则a b =C .若a b >,则11a b> D .若01a <<,则32a a a << 3.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .ac >0B .|b |<|c |C .a >﹣dD .b +d >04.下列各数-(-3),0,221(-)--2--42π,,,中,负数有( ) A .1个 B .2个 C .3个 D .4个 5.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式(代数式中a 换成b ,b 换成a ,代数式保持不变).下列三个代数式:①2()a b -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( ) A .①② B .①③ C .②③ D .①②③6.对于两数a 、b ,定义运算:a*b=a+b —ab ,则在下列等式中,①a*2=2*a ;②(-2)*a=a*(-2);③(2*a )*3=2*(a*3);④0*a=a ,正确的为( ) ①a*2=2*a ②(-2)*a=a*(-2) ③(2*a )*3=2*(a*3) ④0*a=aA .① ③B .① ② ③C .① ② ③ ④D .① ② ④7.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17-是17的平方根.其中正确的有( )A .0个B .1个C .2个D .3个 8.4的平方根是( )A .±16B .2C .﹣2D .±2 9.估计25+的值在( )A .1到2之间B .2到3之间C .3到4之间D .4到5之间1016 ) A .4 B .4- C .4±D .2± 二、填空题11.如果一个有理数a 的平方等于9,那么a 的立方等于_____.12.若实数a 、b 满足240a b +-=,则a b=_____.13.一个正数的平方根是21x -和2x -,则x 的值为_______.14.数轴上表示1、2的点分别为A 、B ,点A 是BC 的中点,则点C 所表示的数是____.15.313312+333123++33331234+++333312326++++=__________.16.对于有理数a ,b ,规定一种新运算:a ※b=ab +b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上).17.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____.18.已知:103<157464<1003;43=64;53<157<63,则315746454=,请根据上面的359319=_________.19.已知实数x 的两个平方根分别为2a +1和3-4a ,实数y 的立方根为-a 2x y +的值为______.20.如果36a =b 7的整数部分,那么ab =_______.三、解答题21.观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为 ,又由203<19000<303,猜想19683的立方根十位数为 ,验证得19683的立方根是(2)请你根据(1)中小明的方法,猜想 ; .请选择其中一个立方根写出猜想、验证过程。
七年级初一数学第二学期第六章实数单元测试题一、选择题1.已知: 表示不超过的最大整数,例: ,令关于的函数(是正整数),例:=1,则下列结论错误..的是()A.B.C.D.或12.圆的面积增加为原来的m倍,则它的半径是原来的()A.m倍B.2m倍C.m倍D.2m倍3.25的算术平方根是()A.5±B.5C.52±D.54.下列计算正确的是()A.21155⎛⎫-=⎪⎝⎭B.()239-=C.42=±D.()515-=-5.已知|x|=2,y2=9,且xy<0,则x+y的值为()A.1或﹣1 B.-5或5 C.11或7 D.-11或﹣7 6.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=ac C.b<d D.c+d>0 7.下列命题中,是真命题的有()①两条直线被第三条直线所截,同位角的角平分线互相平行;②立方根等于它本身的数只有0;③两条边分别平行的两个角相等;④互为邻补角的两个角的平分线互相垂直A.4个B.3个C.2个D.1个8.下列说法中不正确的是( )A.2-是2的平方根B22的平方根C.22D.229.下列说法:①±3都是27的立方根;②116的算术平方根是±1438-216的平方根是±4;⑤﹣9是81的算术平方根,其中正确的有()A.1个B.2个C.3个D.4个10.下列各数中,介于6和7之间的数是( )A43B50C58D339二、填空题11.若已知()2120a b -++=,则a b c -+=_____. 12.若x +1是125的立方根,则x 的平方根是_________.13.与0.5_____0.5.(填“>”、“=”、“<”) 14.若|x |=3,y 2=4,且x >y ,则x ﹣y =_____.15.=__________.16.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.17.49的平方根是________,算术平方根是______,-8的立方根是_____.18.已知2(21)0a ++=,则22004a b +=________.19.任何实数,可用[a]表示不超过a 的最大整数如[4]=4,=2,现对72进行如下操作:72821→=→=→=,这样对72只需进行3次操作后变为1,类似地,对正整数x 只进行3次操作后的结果是1,则x 在最大值是_____.20.若x ,y 为实数,且|2|0x +=,则(x+y) 2012的值为____________.三、解答题21.探究与应用: 观察下列各式: 1+3= 2 1+3+5= 2 1+3+5+7= 2 1+3+5+7+9= 2 ……问题:(1)在横线上填上适当的数; (2)写出一个能反映此计算一般规律的式子;(3)根据规律计算:(﹣1)+(﹣3)+(﹣5)+(﹣7)+…+(﹣2019).(结果用科学记数法表示) 22.观察下来等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, ……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”:52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a,十位数字为b,且2≤a+b≤9,则用含a,b 的式子表示这类“数字对称等式”的规律是_______.23.阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用21-来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵22<(7)2<32,即2<<3,7的整数部分为27-2).请解答:(110的整数部分是__________,小数部分是__________(2)5a37的整数部分为b,求a+b5的值;24.已知:b是立方根等于本身的负整数,且a、b满足(a+2b)2+|c+12|=0,请回答下列问题:(1)请直接写出a、b、c的值:a=_______,b=_______,c=_______.(2)a、b、c在数轴上所对应的点分别为A、B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,则化简|m+12|=________.(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点B、点C都以每秒1个单位的速度向左运动,同时点A以每秒2个单位长度的速度向右运动,假设t秒钟过后,若点A与点C之间的距离表示为AC,点A与点B之间的距离表示为AB,请问:AB−AC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求出AB−AC 的值.25.你会求(a﹣1)(a2012+a2011+a2010+…+a2+a+1)的值吗?这个问题看上去很复杂,我们可以先考虑简单的情况,通过计算,探索规律:()()2111a a a-+=-,()()23111a a a a-++=-,()()324111a a a a a-+++=-,(1)由上面的规律我们可以大胆猜想,得到(a﹣1)(a2014+a2013+a2012+…+a2+a+1)=利用上面的结论,求:(2)22014+22013+22012+…+22+2+1的值是.(3)求52014+52013+52012+…+52+5+1的值.26.在已有运算的基础上定义一种新运算⊗:x y x y y ⊗=-+,⊗的运算级别高于加减乘除运算,即⊗的运算顺序要优先于+-⨯÷、、、运算,试根据条件回答下列问题. (1)计算:()53⊗-= ; (2)若35x ⊗=,则x = ;(3)在数轴上,数x y 、的位置如下图所示,试化简:1x y x ⊗-⊗;(4)如图所示,在数轴上,点A B 、分别以1个单位每秒的速度从表示数-1和3的点开始运动,点A 向正方向运动,点B 向负方向运动,t 秒后点A B 、分别运动到表示数a 和b 的点所在的位置,当2a b ⊗=时,求t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据新定义的运算逐项进行计算即可做出判断. 【详解】 A. ==0-0=0,故A 选项正确,不符合题意;B. ===,=,所以,故B 选项正确,不符合题意;C.=,= ,当k=3时,==0,==1,此时,故C 选项错误,符合题意;D.设n 为正整数, 当k=4n 时,==n-n=0,当k=4n+1时,==n-n=0,当k=4n+2时,==n-n=0,当k=4n+3时,==n+1-n=1,所以或1,故D选项正确,不符合题意,故选C.【点睛】本题考查了新定义运算,明确运算的法则,运用分类讨论思想是解题的关键.2.C解析:C【分析】设面积增加后的半径为R,增加前的半径为r,根据题意列出关系式计算即可.【详解】设面积增加后的半径为R,增加前的半径为r,根据题意得:πR2=mπr2,∴m,m故选:C.【点睛】此题主要考查了实数的运算,要注意,圆的面积和半径之间是平方关系而非正比例关系.3.B解析:B【分析】直接根据算术平方根的定义计算即可.【详解】25,∴55255故选B.【点睛】此题主要考查了算术平方根,关键是掌握算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.4.B解析:B【分析】根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-=⎪⎝⎭,所以,选项A运算错误,不符合题意;B.()239-=,正确,符合题意;2=,所以,选项C运算错误,不符合题意;D.()511-=-,所以,选项D运算错误,不符合题意;故选:B.【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则.5.A解析:A【分析】根据题意,利用平方根定义,绝对值的代数意义,以及有理数的乘法法则判断确定出x与y的值即可.【详解】解:∵|x|=2,y2=9,且xy<0,∴x=2或-2,y=3或-3,当x=2,y=-3时,x+y=2-3=-1;当x=-2,y=3时,原式=-2+3=1,故选:A.【点睛】此题考查了有理数的乘方,绝对值,以及有理数的加法,熟练掌握运算法则是解本题的关键.6.B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.7.D解析:D【分析】利用平行线的性质、立方根及互补的定义分别判断后即可确定正确的选项.【详解】解:①两条平行直线被第三条直线所截,同位角的角平分线互相平行,故错误,是假命题;②立方根等于它本身的数有0,±1,故错误,是假命题;③两条边分别平行的两个角相等或互补,故错误,是假命题;④互为邻补角的两个角的平分线互相垂直,正确,是真命题,真命题有1个,故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、立方根及互补的定义等知识,难度不大.8.C解析:C【详解】解:A. 是2的平方根,正确;是2的平方根,正确;C. 2的平方根是±,故原选项不正确;D. 2,正确.故选C.9.A解析:A【分析】根据平方根,算术平方根,立方根的定义找到错误选项即可.【详解】①3是27的立方根,原来的说法错误;②116的算术平方根是14,原来的说法错误;2是正确的;4,4的平方根是±2,原来的说法错误;⑤9是81的算术平方根,原来的说法错误.故其中正确的有1个.故选:A.【点睛】本题考查了立方根,平方根,算术平方根的知识;用到的知识点为:一个正数的正的平方根叫做这个数的算术平方根;一个正数的平方根有2个;任意一个数的立方根只有1个.10.A解析:A 【分析】求出每个根式的范围,再判断即可. 【详解】解:A 、67,故本选项正确;B 、78,故本选项错误;C 、78,故本选项错误;D 、34,故本选项错误; 故选:A . 【点睛】本题考查了估算无理数的大小的应用,关键是求出每个根式的范围.二、填空题 11.6 【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可. 【详解】 解:因为, 所以, 解得, 故,故答案为:6. 【点睛】本题考查非负数的性质,主要考查绝对值、平方解析:6 【分析】分别根据绝对值、平方和算术平方根的非负性求得a 、b 、c 的值,代入即可. 【详解】解:因为()2120a b -+++=, 所以10,20,30a b c -=+=-=, 解得1,2,3a b c ==-=, 故1(2)36a b c -+=--+=,故答案为:6. 【点睛】本题考查非负数的性质,主要考查绝对值、平方和算术平方根的非负性.理解几个非负数(式)的和为0,那么这几个数或(式)都为0是解题关键.12.±2 【分析】先根据立方根得出x 的值,然后求平方根. 【详解】∵x+1是125的立方根 ∴x+1=,解得:x=4 ∴x 的平方根是±2 故答案为:±2 【点睛】本题考查立方根和平方根,注意一个正解析:±2 【分析】先根据立方根得出x 的值,然后求平方根. 【详解】∵x+1是125的立方根∴x=4 ∴x 的平方根是±2 故答案为:±2 【点睛】本题考查立方根和平方根,注意一个正数的平方根有2个,算术平方根只有1个.13.> 【解析】∵ . , ∴ , ∴ ,故答案为>.解析:> 【解析】∵10.52-=-=20-> , ∴0> , ∴0.5> ,故答案为>.14.1或5. 【分析】根据题意,利用绝对值的代数意义及平方根定义求出x 与y 的值,代入原式计算即可得到结果. 【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1解析:1或5.【分析】根据题意,利用绝对值的代数意义及平方根定义求出x与y的值,代入原式计算即可得到结果.【详解】解:根据题意得:x=3,y=2或x=3,y=﹣2,则x﹣y=1或5.故答案为1或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=1=3=6=10发现规律:1+2+3+∴1+2+3=351故答案为:351【点解析:351【分析】先计算题干中四个简单式子,算出结果,找出规律,根据规律得出最后式子的的值.【详解】=10+=1+2+3+n=1+2+326+=351故答案为:351【点睛】 本题考查找规律,解题关键是先计算题干中的4个简单算式,得出规律后再进行复杂算式的求解.16.﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x )=0,[x )=-1或0,∴[x]+(x )+[x )=-2或-1;②当时,[x]=0,(x )=0,[x )=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10x -<<时,[x ]=-1,(x )=0,[x )=-1或0,∴[x ]+(x )+[x )=-2或-1;②当0x =时,[x ]=0,(x )=0,[x )=0,∴[x ]+(x )+[x )=0;③当01x <<时,[x ]=0,(x )=1,[x )=0或1,∴[x ]+(x )+[x )=1或2;综上所述,化简[x ]+(x )+[x )的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.【详解】请在此输入详解!17.±7 7 -2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.解析:±7 7 -2【解析】试题解析:∵(±7)2=49,∴49的平方根是±7,算术平方根是7;∵(-2)3=-8,∴-8的立方根是-2.18.【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵,∴2a +1=0,b−1=0,∴a =,b =1,∴,故答案为:.【点睛】本题考查了非负数 解析:54【分析】根据非负数的性质列方程求出a 、b 的值,然后代入代数式进行计算即可得解.【详解】解:∵2(21)0a +=,∴2a +1=0,b−1=0,∴a =12-,b =1, ∴222004200411511244a b ⎛⎫+=-+=+= ⎪⎝⎭, 故答案为:54. 【点睛】本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.19.255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵,,,∴只解析:255【分析】根据规律可知,最后的取整是1,则操作前的一个数字最大是3,再向前一步推,操作前的最大数为15,再向前一步推,操作前的最大数为255;据此得出答案即可.【详解】解:∵1=,3=,15=,∴只进行3次操作后变为1的所有正整数中,最大的是255,故答案为:255.【点睛】本题考查了估算无理数大小的应用,主要考查学生的阅读能力和逆推思维能力. 20.1【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:解得则故答案为:1.【点睛】本题考查了解析:1【分析】先根据绝对值的非负性、算术平方根的非负性求出x 、y 的值,再代入计算有理数的乘方即可.【详解】由绝对值的非负性、算术平方根的非负性得:2030x y +=⎧⎨-=⎩解得23x y =-⎧⎨=⎩则201220122012()(23)11x y +=-+==故答案为:1.【点睛】本题考查了绝对值的非负性、算术平方根的非负性、有理数的乘方运算,利用绝对值的非负性、算术平方根的非负性求解是常考知识点,需重点掌握.三、解答题21.(1)2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=n 2;(3)﹣1.008016×106.【分析】(1) 根据从1开始连续n 各奇数的和等于奇数的个数的平方即可得到.(2) 根据规律写出即可.(3) 先提取符号,再用规律解题.【详解】解:(1)1+3=221+3+5=321+3+5+7=421+3+5+7+9=52……故答案为:2、3、4、5;(2)第n 个等式为1+3+5+7+…+(2n+1)=2(1)n +(3)原式=﹣(1+3+5+7+9+ (2019)=﹣10102=﹣1.0201×106.【点睛】本题考查数字变化规律,解题的关键是找到第一个的规律,然后加以运用即可.22.(1)275,572;(2)(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a].【分析】(1)观察等式,发现规律,等式的左边:两位数所乘的数是这个两位数的个位数字变为百位数字,十位数字变为个位数字,两个数字的和放在十位;等式的右边:三位数与左边的三位数字百位与个位数字交换,两位数与左边的两位数十位与个位数字交换然后相乘,根据此规律进行填空即可;(2)按照(1)中对称等式的方法写出,然后利用多项式的乘法进行写出即可.【详解】解:(1)∵5+2=7,∴左边的三位数是275,右边的三位数是572,∴52×275=572×25,(2)左边的两位数是10b+a ,三位数是100a+10(a+b )+b ;右边的两位数是10a+b ,三位数是100b+10(a+b )+a ;“数字对称等式”为:(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a]. 故答案为275,572;(10b+a )[100a+10(a+b )+b]=(10a+b[100b+10(a+b )+a].【点睛】本题是对数字变化规律的考查,根据已知信息,理清利用左边的两位数的十位数字与个位数字变化得到其它的三个数字是解题的关键.23.(1)33;(2)4【解析】分析:求根据题目中所提供的方法求无理数的整数部分和小数部分.详解:(1的整数部分是3,3;(2)∵∴a2,∵∴6b=,∴a b+264+=.点睛:求无理数的整数部分和小数部分,需要先给这个无理数平方,观察这个数在哪两个整数平方数之间.需要记忆1-20平方数,1² = 1, 2² = 4 ,3² = 9, 4² = 16, 5² = 25, 6² = 36 ,7² = 49 ,8² = 64 ,9² = 81 ,10² = 100,11² = 121, 12² = 144 ,13² = 169 ,14²= 196 ,15² = 225, 16² = 256, 17² = 289 ,18² = 324, 19² = 361 ,20² = 400.24.(1)2;-1;12-;(2)-m-12;(3)AB−AC的值不会随着时间t的变化而改变,AB-AC=1 2【分析】(1)根据立方根的性质即可求出b的值,然后根据平方和绝对值的非负性即可求出a和c 的值;(2)根据题意,先求出m的取值范围,即可求出m+12<0,然后根据绝对值的性质去绝对值即可;(3)先分别求出运动前AB和AC,然后结合题意即可求出运动后AB和AC的长,求出A B−AC即可得出结论.【详解】解:(1)∵b是立方根等于本身的负整数,∴b=-1∵(a+2b)2+|c+12|=0,(a+2b)2≥0,|c+12|≥0∴a+2b=0,c+12=0解得:a=2,c=1 2 -故答案为:2;-1;12 -;(2)∵b=-1,c=12-,b、c在数轴上所对应的点分别为B、C,点D是B、C之间的一个动点(不包括B、C两点),其对应的数为m,∴-1<m<1 2 -∴m+12<0∴|m+12|= -m-12故答案为:-m-12;(3)运动前AB=2-(-1)=3,AC=2-(12 -)=52由题意可知:运动后AB=3+2t+t=3+3t,AC=52+2t+t=52+3t∴AB-AC=(3+3t)-(52+3t)=12∴AB−AC的值不会随着时间t的变化而改变,AB-AC=12.【点睛】此题考查的是立方根的性质、非负性的应用、利用数轴比较大小和数轴上的动点问题,掌握立方根的性质、平方、绝对值的非负性、利用数轴比较大小和行程问题公式是解决此题的关键.25.(1)a2015﹣1;(2)22015﹣1;(3)2015514-.【分析】(1)根据已知算式得出规律,即可得出答案.(2)先变形,再根据规律得出答案即可.(3)先变形,再根据规律得出答案即可.【详解】(1)由上面的规律我们可以大胆猜想,(a﹣1)(a2012+a2011+a2010+…+a2+a+1)=a2015﹣1,故答案为:a2015﹣1;(2)22014+22013+22012+…+22+2+1=(2﹣1)×(22014+22013+22012+…+22+2+1)=22015﹣1,故答案为:22015﹣1;(3)52014+52013+52012+…+52+5+1=14×(5﹣1)×(52014+52013+52012+…+52+5+1)=2015514-.【点睛】本题考查了实数运算的规律题,掌握算式的规律是解题的关键.26.(1)5;(2)5或1;(3)1+y-2x ;(4)t 1=3;t 2=53 【分析】(1)根据题中的新运算列出算式,计算即可得到结果;(2)根据题中的新运算列出方程,解方程即可得到结果;(3)根据题中的新运算列出代数式,根据数轴得出x 、y 的取值范围进行化简即可;(4)根据A 、B 在数轴上的移动方向和速度可分别用代数式表示出数a 和b ,再根据(2)的解题思路即可得到结果.【详解】解:(1)5(3)5(3)(3)5⊗-=--+-=;(2)依题意得:335-+=x , 化简得:3=2-x ,所以32x -=或32x -=-,解得:x =5或x =1;(3)由数轴可知:0<x <1,y <0,所以1x y x ⊗-⊗ = (1)()-+--+x x y x x=1-++--x x y x x=12+-y x(4)依题意得:数a =−1+t ,b =3−t ;因为2a b ⊗=, 所以(1)(3)32-+--+-=t t t , 化简得:241-=-t t ,解得:t =3或t =53, 所以当2a b ⊗=时,t 的值为3或53. 【点睛】本题主要考查了定义新运算、有理数的混合运算和解一元一次方程,根据定义新运算列出关系式是解题的关键.。
一、选择题 (每题3分,共24分。
每题只有一个正确答案,请将正确答案的代号填在下面的表格中)A .39±=B .33-=-C .39-=-D .932=- 2. 下列各组数中互为相反数的是( )A .-2B .-2C .-2 与12- D .2与2-3. 下列实数317,π-,14159.3,,21中无理数有( ) A.2个 B.3个 C.4个 D.5个4. 实数a,b 在数轴上的位置如图所示,则下列结论正确的是( )A . 0a b +>B . 0a b ->C . 0>abD .0>ba5. 有如下命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0。
其中错误的是( )A .①②③B .①②④C .②③④D .①③④ 6. 若a 为实数,则下列式子中一定是负数的是( )A .2a -B .2)1(+-aC .2a -D .)1(+--a 7. a =-,则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧8. 请你观察、思考下列计算过程: 因为112=121,所以121=11 ; 因为1112=12321,所以11112321=;……,由此猜想76543211234567898= ( )A .111111B .1111111C .11111111D .111111111 二、填空题(每题3分,共30)9.81的平方根是 。
10. _________。
11. 化简:332-= 。
12. 写出1到2之间的一个无理数___________。
13. 计算:3200989)1(+-- =____________。
14. 当x ≤0时,化简1x --的结果是 。
15. 若10<<x ,则x xx x 、、、12中,最小的数是 。
七年级数学《实数》测试卷、选择题(每小题3分,共30分)1、C 、下列说法不正确的是(丄的平方根是125 50.2的算术平方根是0.04、—9是81的一个平方根D 、—27的立方根是—32、若的算术平方根有意义,a的取值范围是一切数B 、正数、非负数D非零数3、若x是9的算术平方根,则x是(814、在下列各式中正确的是(、.(2)2=—2 B D 、22= 2 5、估计.76的值在哪两个整数之间75 和77 B6、F列各组数中,互为相反数的组是—2 与(2)2 B 、一2 和3 8)C 、一-与227、在一2, 4,‘ 2 , 3.14 ,4个B 、3个3 27,-,这6个数中,无理数共有()5、2个8、F列说法正确的是(数轴上的点与有理数对应、数轴上的点与无理数对应C、数轴上的点与整数—对应 D 、数轴上的点与实数--- 对应9、以下不能构成三角形边长的数组是()2 2A、1, 5, 2 B 、 3 , ,4 , ,5 C 、3, 4, 5 D 、3 , 4 ,5210、若有理数a和b在数轴上所表示的点分别在原点的右边和左边,则拓2- I a—b I等于()A、a B 、一a C 、2b + a D 、2b—a二、填空题(每小题3分,共18分)11、81的平方根是 _________ , 1.44的算术平方根是____________ 。
12、一个数的算术平方根等于它本身,则这个数应是_____________ 。
13、厂8的绝对值是 __________ 。
14、__________________ 比较大小:2" 4匹。
15、________________________________________________________ 若J25.36 = 5.036 , <253.6 = 15.906 ,贝y J253600 = ____________________ 。
第六章实数单元测试题一、选择题(每小题 3分,共30分)1.下列各式中无意义的是()4.1的立方根是(642 C. 2,7 3 D. 3 27.已知 3 1.51 =1.147,3 15.1 =2.472,30.151 =0.532 5 ,贝U 3 1510 的值是(A.C.心2 1D.x 2 2x2.在下列说法中:8的平方根是土 ,8 ;-3 是9的一个平方根;4-的平方根是9④0.01的算术平方根是 0.1 :⑤..a 4 其中正确的有(A.1 个B.2 个 2.下列说法中正确的是(A.立方根是它本身的数只有 C.平方根是它本身的数只有C.3 )D.4B. D.算数平方根是它本身的数只有 1和 绝对值是它本身的数只有 1和0 A.2 B.C.D.5.现有四个无理数6,,7,其中在实数--2+1与'.3+1之间的有 A.1 个 B.2 C.3 个 D.4 6.实数-7 ,-2,-3的大小关系是(A.24.72B.53.25C.11.47D.114.78. 若a 、3b | VF|,c辿2)3,则a,b,c的大小关系是()A. a b cB. c a bC. b a cD. c b a9. 已知x是169的平方根,且2x 3y x2,则y的值是()143A.11B. ± 11C. ± 15D.65 或310. 大于2\5且小于3-.2的整数有()A.9个B.8 个C .7 个D.5 个二、填空题(每小题3分,共30分)11. - 5绝对值是 ________ , - 5的相反数是.12. ,81的平方根是___________ , 3 64 的平方根是___________ ,-343的立方根是_________-256的算术平方根是13.比较大小: (1) .10 2 ;( 3)"01—;(4) .. 2 2.1014.当 时,3 2x x 2 3 5x 4有意义。
人教版数学七年级下册第六章实数单元测试题(含答案)一.选择题(共10小题)1.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣52.﹣8的立方根是()A.±2B.2C.﹣2D.243.用计算器求35值时,需相继按“3”,“y x”,“5”,“=”键,若小颖相继按“”,“4”,“y x”“3”,“=”键,则输出结果是()A.6B.8C.16D.484.下列几个数中,属于无理数的数是()A.0.1 B.C.πD.5.﹣的相反数是()A.﹣B.C.D.﹣6.下列计算正确的是()A.B.=﹣2C.D.(﹣2)3×(﹣3)2=727.化简的结果为()A.±5B.25C.﹣5D.58.已知,则a+b的值是()A.1B.﹣1C.3D.﹣39.下列结论正确的是()A.无限不循环小数叫做无理数B.有理数包括正数和负数C.0是最小的整数D.两个有理数的和一定大于每一个加数10.实数a,b在数轴上的位置如图,则|a﹣b|﹣|a+b|等于()A.﹣2a B.﹣2b C.2b﹣2a D.2a+2b二.填空题(共8小题)11.已知2x﹣1的平方根是±3,则5x+2的立方根是.12.已知+=0,则x y的值为.13.如果一个正方形的面积是3,那么它的边长是.14.比较大小:﹣3﹣2(填“<”或“>”).15.的倒数是,的平方根是.16.在数﹣,0,(﹣1)4,,﹣,,3.14159,,,﹣中,整数有个,负分数有个,无理数有个.17.若a2=9,=﹣1,则a﹣b的值是.18.已知一个正数x的两个平方根分别是2a﹣2和a﹣4,则a=,x=.三.解答题(共8小题)19.计算下列各题:①|1﹣|+×②(﹣1)2019+﹣3+×20.求下列方程中x的值:(1)4x2=1;(2)﹣8(1﹣x)3=27.21.在数轴上表示下列各数,并把这些数按从小到大的顺序用“<”连接.﹣(﹣1.5),3,﹣,|﹣4|22.(1)若x,y为实数,且x=+4,求(x﹣y)2的平方根;(2)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.23.已知2a﹣1的算术平方根是5,a+b﹣2的平方根是±3,c+1是﹣8的立方根,求a+b+c的值.24.已知:x+3的平方根是±3,3x+y﹣1的立方根是3,求x+y的算术平方根.25.天气晴朗时,一个人能看到大海的最远距离S(单位:km)可用公式S2=1.7h米估计,其中h (单位:m)是眼睛离海平面的高度.(1)如果一个人站在岸边观察,当眼睛离海平面的高度是1.7m时,能看到多远?(2)若登上一个观望台,使看到的最远距离是(1)中的3倍,已知眼睛到脚底的高度为1.7m,求观望台离海平面的高度?26.阅读下面的材料,解答问题====2,即=2====3,即=3…(1)猜想的值,并根据上面的材料写出计算过程(2)用含n(n为正整数)的式子表示其规律.参考答案与试题解析一.选择题(共10小题)1.解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.2.解:﹣8的立方根是﹣2.故选:C.3.解:计算器按键转为算式=23=8,故选:B.4.解:A.0.1是有限小数,属于有理数,故本选项不合题意;B.,是整数,属于有理数,故本选项不合题意;C.π是无理数,故本选项符合题意;D.是分数,属于有理数,故本选项不合题意.故选:C.5.解:﹣的相反数是,故选:C.6.解:A、=3,故选项A错误;B、=﹣2,故选项B正确;C、=,故选项C错误;D、(﹣2)3×(﹣3)2=﹣8×9=﹣72,故选项D错误.故选:B.7.解:∵表示25的算术平方根,∴=5.故选:D.8.解:根据题意得a﹣2=0,b+1=0,解得a=2,b=﹣1,则a+b=2﹣1=1.故选:A.9.解:A、无限不循环小数叫做无理数,正确,故本选项符合题意;B、有理数包括正有理数、0和负有理数,不正确,故本选项不符合题意;C、0不是最小的整数,没有最小的整数,不正确,故本选项不符合题意;D、一个数同0相加仍得这个数,所以两个有理数的和不一定大于每一个加数,不正确,故本选项不符合题意.故选:A.10.解:由数轴可得:a<0<b,|a|<|b|∴|a﹣b|﹣|a+b|=b﹣a﹣a﹣b=﹣2a故选:A.二.填空题(共8小题)11.解:∵2x﹣1的平方根是±3,∴2x﹣1=9,∴x=5,∴5x+2=27,∴5x+2的立方根是3,故答案为:312.解:∵+=0,∴x﹣y+1=0,x﹣3=0,解得:x=3,y=4,故x y=34=81.故答案为:81.13.解:∵正方形的面积是3,∴它的边长是.故答案为:14.解:∵3=,2=,∴﹣3>﹣2,故答案为:>.15.解:﹣=﹣,它的倒数是:﹣=﹣;=的平方根是:±=±.故答案为:﹣;±.16.解:在数﹣,0,(﹣1)4,,﹣,,3.14159,,,﹣中,整数有5个,负分数有1个,无理数有2个.故答案为:5,1,2.17.解:∵a2=9,=﹣1,∴a=±3,b=﹣1,当a=3时,原式=3﹣(﹣1)=4,当a=﹣3时,原式=﹣3﹣(﹣1)=﹣2,故答案为:4或﹣218.解:根据题意得:2a﹣2+a﹣4=0,解得:a=2,则x=(2﹣4)2=4.故答案为:2;4.三.解答题(共8小题)19.解:①|1﹣|+×=﹣1﹣×﹣=﹣;②(﹣1)2019+﹣3+×=﹣1+2﹣3+1=﹣1.20.解:(1)∵4x2=1,∴x2=,∴x=±;(2)∵﹣8(1﹣x)3=27,∴(1﹣x)3=,∴1﹣x=,∴x=.21.解:﹣<﹣(﹣1.5)<3<|﹣4|.22.解:(1)由题意得:,解得y=3,∴x=4,∴(x﹣y)2=1,∴(x﹣y)2的平方根是±1.(2)由x﹣2的平方根是±2,2x+y+7的立方根是3,得x﹣2=4,2x+y+7=27,解得x=6,y=8.∴x2+y2=100,∴x2+y2的算术平方根是10.23.解:∵2a﹣1的算术平方根是5,∴2a﹣1=52=25,∴a=13,∵a+b﹣2的平方根是±3∴a+b﹣2=(±3)2=9,∴b=﹣2,又∵c+1是﹣8的立方根,∴c+1=﹣2,∴c=﹣3,∴a+b+c=13﹣2﹣3=8.24.解:∵x+3的平方根是±3,∴x+3=9,x=6,∵3x+y﹣1的立方根是3,∴3x+y﹣1=27,∴3×6+y﹣1=27,∴y=10,∴x+y的算术平方根为.25.解:(1)当h=1.7时,S2=1.7×1.7,∴S=﹣1.7(舍)或S=1.7,答:当眼睛离海平面的高度是1.7m时,能看到1.7m远;(2)当S=1.7×3=5.1时,可得5.12=1.7h,解得h=15.3,15.3﹣1.7=13.6(米),答:观望台离海平面的高度为13.6米.26.解:(1)===5,即=5;(2)=n.。
第六章 实数 单元测试题一 选择题(每小题3分 共30分)1.圆的面积增加为原来的n 倍,则它的半径是原来的( )A. n 倍; 2nB.C. n 倍D. 2n 倍.2.下列各组数中互为相反数的是( )A. -2与B. -2与38-C. -2与21- D.2-与2 3.下列说法中:(1)无理数就是开方开不尽的数;(2)无理数是无限小数;(3)无理数包括正无理数、零、负无理数;(4)无理数可以用数轴上的点来表示,共有( )个是正确的。
A. 1B. 2C. 3D. 44.-8的立方根与的4算术平方根的和是 ( )A. 0B. 4C. 2±D.4±5.下列实数中,无理数有( )A.1个B.2个C.3个D.4个6.下列语句中正确的是( )A.49的算术平方根是7B.49的平方根是-7C.-49的平方根是7D.49的算术平方根是7±7.实数在数轴上的位置如图,那么化简的结果是( )A. 2a-bB. bC. -bD.-2a+b8.若一个数的平方根是它本身,则这个数是( )A 、1B 、-1C 、0D 、1或09.一个数的算术平方根是x ,则比这个数大的数的算术平方根是( )A.B 、C 、D 、 10.若,则的关系是 ( )A. B. 互为相反数 C. 相等 D. 不能确定二 填空题 (每小题3分 共18分)1. 如果=5,则x=_________. 2.的平方根是__________. 3.________________.4.当x________时,32 x 有意义.5.若x-12是225的算术平方根,则x 的立方根是__________.6.2-5的相反数是___________三 解答题(本大题 共72分)1.(6分)计算: +﹣+|1﹣|. 2.(8分)已知A =是m+n+4的算术平方根,B =是m+2n 的立方根,求B ﹣A 的立方根.3.(8分)已知下列一组数:,. (1)将这组数分类填入相应的大括号内.1分数集合:{ …};2无理数集合:{ …};3非负数集合:{ …}.(2)在数轴上标出这组数对应的点的大致位置,并用“<”把它们连接起来.4.(6分)已知2(x ﹣1)2﹣8=0,求x 的值.5.(10分)(1)计算:; (2)若 (2x ﹣1)3=﹣8,求x 的值.6.(10分)6﹣5的整数部分是a ,小数部分是b .(1)a =______,b =______.(2)求3a ﹣b 2的值.7.(12分)下图是一个无理数筛选器的工作流程图.(1)当x为16时,y值为_______;(2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x 值可能是什么情况;(4)当输出的y值是时,判断输入的x值是否唯一,如果不唯一,请写出其中的两个.8.(12分)阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.那么和我们所学的实数对应起来就叫做复数,表示为a+bi(a,b为实数),a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3﹣4i)=5﹣3i.(1)填空:i3=______,i4=_______.(2)计算:①(2+i)(2﹣i);②(2+i)2;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下面问题:已知:(x+y)+3i=(1﹣x)﹣yi,(x,y为实数),求x,y的值.参考答案一选择题CBBACACDDB二填空题1.52. x+3和3-x3. 0.00014.为任意实数5. 36. 2-5三解答题1.解:原式=3+2﹣2+﹣1=4﹣1.2.解:根据题意得:,解得:,∴A==2,B==﹣1,则B﹣A=﹣1﹣2=﹣3,﹣3的立方根为﹣.3.(1)3.1415926,,﹣;;,0,3.1415926,,.(2)﹣3<<﹣<0<<<3.1415926<.4.解:方程整理得:(x﹣1)2=4,开方得:x﹣1=2或x﹣1=﹣2,解得:x=3或x=﹣1.5.解:(1)原式=5+(﹣3)﹣(4﹣)=2﹣4+=﹣2+;(2)由题意可知:2x﹣1=﹣2,∴x=.6.解:(1)∵4<<9,∴2<<3.∴﹣2>﹣>﹣3.∴6﹣2>6﹣>6﹣3,∴4>6﹣>3.∴a=3,b=3﹣.(2)3a﹣b2=3×3﹣(3﹣)2=9﹣(9﹣6+5)=6﹣5.7.解:(1)当x=16时,=4,=2,则y=;故答案是:.(2)当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;(3)当x<0时,导致开平方运算无法进行;(4)x的值不唯一.x=3或x=9.解:(1)i3=﹣i,i4=1;故答案为:﹣i;1;(2)①原式=4﹣i2=4+1=5;②原式=4+4i+i2=3+4i;(3)由已知等式得:x+y=1﹣x,﹣y=3,解得:x=2,y=﹣3.。
第六章《实数》检测题 一、选择题(每小题只有一个正确答案) 1.4的平方根是( ).A. 2B. 2C. 2±D. 2± 2.下列运算正确的是( ) A. 9=±3 B. |﹣3|=﹣3 C. ﹣9=﹣3 D. ﹣32=93.在实数227, 3-, 32π, 39,3.14中,无理数有A. 2个B. 3个C. 4个D. 5个4.估计131+的值在( )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.如果一个实数的平方根与它的立方根相等,则这个数是( ).A. 0和1B. 正实数C. 0D. 16.对于实数a ,b ,给出以下4个判断:①若a b =,则a b =;②若a b <,则a b <; ③若281x =,则9x =;④若5m =-,则225m =,其中正确的判断有( )A. 4个B. 3个C. 2个D. 1个7.64的立方根等于( )A. 8B. 4C. 2D. ﹣28.下列说法不正确的是( )A. 214⎛⎫- ⎪⎝⎭的平方根是±14 B. -5是25的一个平方根 C. 0.9的算术平方根是0.3 D.3273-=- 9.若()225a =-, ()335b =-,则a b +的所有可能值为( ).A. 0B. -10C. 0或-10D. 0或±1010.若将三个数-3,7, 11表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A. 3B. 7C. 11D. 71111.下列运算中,正确的个数是( )①25114451222-=﹣22﹣2111116442+=+ ()24-=±4;⑤3125-=﹣5.A. 0个B. 1个C. 2个D. 3个12.用计算器探索:已知按一定规律排列的20个数:1,, …, ,.如果从中选出若干个数,使它们的和<1,那么选取的数的个数最多是( ) A. 4个 B. 5个 C. 6个 D. 7个二、填空题13.计算: 101()(5)32π-----= .14.9的平方根是____;___的立方根为﹣2.15.已知a <b ,且a ,b 为两个连续整数,则a+b= __.16.若x ,y 为实数,且|x ﹣2|+(y+1)2=0的值是 __.17.观察下面的规律:0.1414≈0.4472≈,1.414≈ 4.472≈,14.14≈44.72≈≈ ;0.5477≈ 1.732≈,则≈ .三、解答题18.计算: ()201201723π-⎛⎫--- ⎪⎝⎭.19.计算:(1)201232-⎛⎫-+ ⎪⎝⎭ (2)((3)-(4)-(5)32224a ab b⎛⎫⎛⎫-÷-⎪ ⎪⎝⎭⎝⎭(6)2221111a a a aa a a-+⎛⎫÷⋅ ⎪---⎝⎭20.求x的值:(1)(x-1)2=9;(2)8x3-27=021.已知某正数的两个平方根分别是2a﹣7和a+4,b﹣12的立方根为﹣2.( 1)求a、b的值;( 2)求a+b的平方根.22.张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2.他不知能否裁得出来,正在发愁.李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?参考答案1.C 2.C 3.B 4.C 5.C 6.D 7.C 8.C 9.C 10.B 11.B 12.A13.2-14. ±3 ﹣8.15.91617.141.4;0.1732.18.9.19.解:(1)原式=214+5;(2)原式=((22- =4×3 - 9×2 =12 – 18 =-6;(3)原式=6-1+12(4)原式--=43- (5)原式= -368a b ÷2216a b = - 368a b ×2316b a = - 42a b; (6)原式=()()()111a a a a -+-• 1a a - •()()2211a a +-=()()()2111a a a -+-=11a a +-. 20. ()1 ()219,x -= 13x -=或1 3.x -=-14x =, 2 2.x =-()32827.x =3278x =3.2x == 21.(1)1a =, 4b =;(2)22.不同意李明的说法解:设面积为300平方厘米的长方形的长宽分为3x 厘米,2x 厘米,则3x •2x =300,x 2=50,解得x=400平方厘米的正方形的边长为20厘米,由于>20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2.试题解析:解:不同意李明的说法.设长方形纸片的长为3x(x>0)cm,则宽为2x cm,依题意得:3x•2x=300,6x2=300,x2=50,∵x>0,∴x∴长方形纸片的长为cm,∵50>49,∴7,∴21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长.答:李明不能用这块纸片裁出符合要求的长方形纸片.可以编辑的试卷(可以删除)。
(七年级下数学)《实数》单元测试
班级:___________姓名:_____________学号: 得分:___________
一、选择题(每小题3分,共30分)
1( )
A. .±4
B. 4
C. 2
D. ±2
2、下列语句中正确的是( )
A 9的平方根是3-
B 9的平方根是3
C 9的算术平方根是3±
D 9的算术平方根是3
3、下列各式中,正确的是( )
A 、25=±5
B 、=
C 21
D 、4=-
4、在实数0.3 ,0,7,
2π ,2270.1010010001…中,其中无理数的个数是( )
A.2
B.3
C.4
D.5 5、以下各数没有平方根的是 ( )
A 、64
B 、()2
2- C 、0 D 、22-
6、 一个数的平方根等于它的立方根,这个数是( )
A.0
B.-1
C.1
D.不存在 7、 下列各组数中互为相反数的一组是( )
A .-2与2
1- B .-2与38- C .-2与2)2(- D .|-2|与2
8、在三个数0.5、313
-中,最大的数是( )
A 、0.5
B 、3
C 、13
- D 、不能确定 9、若()2320m n -++=,则2m n +的值为( )
A 、-4
B 、-1
C 、0
D 、4
104=,则b=( )
A 、2
B 、2±
C 、4
D 、4±
二、填空题(每空2分,共36分) 1.16的平方根是 ; 的平方根是7± ;
2、5的算术平方根是_ _ ,81的平方根是_ _.
3、8的立方根是 ;6427-
的立方根是 ; 4.9= ,4936±= , 3718
--= , 1.21-= ,23()-= ,
5.7的相反数是________,32-的绝对值是________.
6.比较大小:63⎽⎽⎽⎽⎽⎽⎽⎽ -3.14________-π
.
7x =9,那么x =___ __.
8.若a 、b 互为相反数,c 、d 3______a b cd +=;
9.点A 在数轴上和原点相距5个单位,则A 所表示的数为_ ___
三、解答题(30分)
1、计算:(必须有求解过程,否则该题只得答案正确1分)(每题4分共8分)
(13825144- (2210.01(1)4-
2.求x (每题4分,共8分) (1) 23x 128+= (2) 3(21)27x +=-
3.(4分)若x 、y 2(2)x y -=0,求3x 2y +的立方根.
4.(4分)如果一个数的平方根为26a -与3a 3-+,求这个数。
5.(54,3==,求3()y x -
.
6、(5分)把一个体积为125m3的铝块改铸成8个同样大小的立方体铝块,求每个立方体铝块的表面积。
.。