热力学第二定律教学设计
- 格式:doc
- 大小:22.15 KB
- 文档页数:6
高中物理《热力学第二定律》教案设计一、教学目标1.理解热力学第二定律的表述,掌握其基本概念和内涵。
2.能够运用热力学第二定律分析实际问题,提高解决物理问题的能力。
3.培养学生的逻辑思维能力,提高科学素养。
二、教学内容1.热力学第二定律的表述2.熵的概念及熵增加原理3.热力学第二定律的应用三、教学重点与难点1.热力学第二定律的基本概念和内涵2.熵的概念及熵增加原理3.热力学第二定律在实际问题中的应用四、教学方法1.启发式教学:通过提问、讨论等方式,激发学生的思考,引导学生主动学习。
2.案例分析:结合实际例子,让学生更好地理解热力学第二定律的应用。
3.小组合作:培养学生团队合作精神,提高解决问题的能力。
五、教学过程1.导入:通过回顾热力学第一定律,引导学生思考自然界中的能量转化和守恒问题。
然后提出热力学第二定律,激发学生的好奇心。
2.新课讲解:(1)热力学第二定律的表述:不可能把热从低温物体传到高温物体而不产生其他影响;不可能从单一热源取热使之完全转换为有用的功而不产生其他影响。
(2)熵的概念及熵增加原理:熵是系统无序程度的度量,熵增加原理指出,孤立系统的总熵不会自发减少。
(3)热力学第二定律的应用:分析实际问题,如热机效率、制冷剂循环等。
3.案例分析:举例说明热力学第二定律在实际问题中的应用,如汽车发动机的热效率、空调制冷过程等。
引导学生运用热力学第二定律分析问题。
4.课堂互动:学生提问、讨论,解答疑惑。
教师引导学生思考热力学第二定律的意义和价值。
六、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。
同时,关注学生在学习过程中的表现,培养学生的科学素养和逻辑思维能力。
七、教学评价1.学生课堂参与度:观察学生在课堂上的发言、讨论等情况,评价学生的参与度。
2.学生作业完成情况:检查学生作业的完成质量,评价学生对课堂所学知识的掌握程度。
3.学生实际问题分析能力:通过课后辅导、提问等方式,了解学生运用热力学第二定律分析实际问题的能力。
第4节热力学第二定律教学目标(1)知道热现象发生过程的方向性,掌握热力学第二定律的两种描述并理解其物理意义。
(2)了解“能量耗散”和节约能源的意义。
教学重难点教学重点热力学第二定律的两种表述、热力学第二定律对生产生活的指导意义教学难点热力学第二定律的两种表述、热力学第二定律对生产生活的指导意义教学准备多媒体课件、烧杯、水、墨水教学过程新课引入教师演示:将水倒入烧杯中,向水中滴入墨水。
学生活动:观察老师演示的实验。
教师设问:请同学们描述一下实验现象。
学生活动:集体回答老师所提问题。
教师活动:简述实验现象,即墨水逐渐扩散到水中。
教师设问:大家思考一下,扩散后的墨水能否自发地重新聚集在一起,而其余部分又变成清水?学生活动:思考老师所提问题。
教师口述:这节课我们就来研究这类问题。
讲授新课一可逆过程与不可逆过程教师活动:讲解新课引入时所演示的实验中,扩散后的墨水是不能自发地与水分开的。
教师活动:讲述生活中水杯中的开水向环境传热的实例,并说明这个过程是有方向性的。
一杯开水放在空气中,温度会逐渐降低,最后与室温相同,但要使其温度升高,就必须给它加热,消耗外界的能量。
教师活动:显式地指出热传递是有方向性的。
自然界中与热传递有关的宏观过程不可能自动地逆向进行。
要使它们逆向进行,就必须由外界对它们施加影响。
教师活动:讲解可逆过程与不可逆过程。
一个系统由某一状态出发,经过某一过程到达另一状态,如果存在另一过程,它能使系统和外界完全复原,即系统回到原来的状态,同时消除原来过程对外界的一切影响,则原来的过程称为可逆过程;如果用任何方法都不能使系统和外界完全复原,则原来的过程称为不可逆过程。
教师活动:显式地指出扩散与热传递是不可逆过程。
教师活动:讲解热功转换过程是不可逆过程。
在焦耳的桨叶搅拌实验中,重物可自动下落,使叶轮在水中转动,与水相互摩擦使水温上升,这是机械能转化为内能的过程。
与此相反的过程,即水温自动降低,产生水流,推动叶轮转动,带动重物上升的过程是不可能发生的,尽管这样的过程不违背热力学第一定律。
热力学第二定律的备课教案一、引言热力学第二定律是热力学中最重要的定律之一,它揭示了自然界中热流的方向,以及热量如何转化为有用的能量。
本备课教案将深入探讨热力学第二定律的概念、背后的原理以及实际应用。
通过本节课的学习,学生将能够全面理解热力学第二定律,并能够运用所学知识解决相关问题。
二、核心概念1. 热力学第二定律的定义热力学第二定律表明,自发发生的热流只能从高温物体传向低温物体,而不会相反。
这意味着在孤立的系统中,热量不会自动从冷物体传到热物体,除非外界做功。
2. 熵的增加与熵的理解熵是一个用来描述系统混乱程度的物理量,也可以理解为热力学系统的无序程度。
根据热力学第二定律,孤立系统的熵总是增加的,直到达到最大值,达到熵最大值的状态为热死状态。
熵的增加体现了热流不可能自动从冷物体传到热物体的事实。
三、原理解析1. 卡诺热机的工作原理卡诺热机是热力学第二定律的一个重要应用实例,它由两个等温过程和两个绝热过程组成。
卡诺热机的工作原理是基于热量从高温热源到低温热源的自发传递,通过循环过程将热量转化为有用的功。
2. 热力学温标的定义与实践热力学温标是基于热力学第二定律的概念,将绝对零度作为温标的零点。
根据热力学第二定律,温度可以作为确定热流方向的一个参考。
热力学温标在实践中广泛应用,例如摄氏度和开尔文温标。
3. 热力学第二定律的推论:熵增原理热力学第二定律的一个重要推论是熵增原理,也被称为熵不减原理。
熵增原理表明在孤立系统中,熵的增加是系统自发发生的,不会自动降低。
这一原理在实际中有着广泛的应用,例如解释自然界中的不可逆过程。
四、实际应用1. 热力学第二定律在工程中的应用热力学第二定律在工程领域中具有广泛的应用,如汽车发动机、电力工厂和制冷设备等。
通过热力学第二定律,工程师可以根据系统的性质和工作要求来设计高效的能量转换装置。
2. 热力学第二定律在环境保护中的意义热力学第二定律对环境保护具有重要意义。
通过深入理解熵增原理,我们可以意识到资源的有限性以及废弃物对环境的影响。
第4节热力学第二定律[学习目标]1.知道传热、扩散现象、机械能与内能的转化等都具有方向性。
具有方向性的过程是不可逆的。
2.理解热力学第二定律的两种表述。
3.学会用热力学第二定律解释自然界中的能量转化、转移及方向性问题。
知识点1热力学第二定律1.热传导的方向性(1)热量可以自发地由高温物体传到低温物体。
(2)热量不能自发地由低温物体传到高温物体。
(3)热传导过程是有方向性的。
2.热力学第二定律的克劳修斯表述热量不能自发地从低温物体传到高温物体。
即热传导的过程具有方向性。
3.热力学第二定律的开尔文表述不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响。
(该表述阐述了机械能与内能转化的方向性)[判一判]1.(1)热量不能由低温物体传给高温物体。
()(2)科技发达后,热机的效率可以达到100%。
()(3)机械能可以全部转化为内能,而内能不能自发地全部转化为机械能。
()提示:(1)×(2)×(3)√知识点2能源是有限的1.能量耗散能量在数量上虽然守恒,但其转移和转化却具有方向性。
在各种各样的活动中,其他形式的能最终都转化成内能流散到周围环境中,再也不能自动聚集起来驱动机械做功了,这种转化过程叫作能量耗散。
2.品质降低能量从高度有用的形式降级为不大可用的形式叫品质降低。
能量在利用过程中,总是由高品质的能量最终转化为低品质的能量。
能源的使用过程中虽然能的总量保持守恒,但能量的品质下降了。
[判一判]2.(1)能量耗散不遵循能量守恒定律。
()(2)能量耗散会导致能量品质的降低。
()(3)为了可持续发展,必须节约能源。
()提示:(1)×(2)√(3)√1.(对热力学第二定律的理解)关于热力学定律,下列说法中正确的是() A.在一定条件下物体的温度可以降到绝对零度B.第二类永动机和第一类永动机一样,都违背了能量守恒定律C.热机的效率可以达到100%D.在热传递中,热量不可能自发地从低温物体传给高温物体解析:选D。
《热力学第二定律》教学设计方案(第一课时)一、教学目标1. 理解热力学第二定律的基本观点和原理。
2. 掌握热力学第二定律的几种表述方式。
3. 能够运用热力学第二定律诠释生活中的现象。
二、教学重难点1. 重点:理解热力学第二定律的基本观点和原理。
2. 难点:运用热力学第二定律诠释生活中的现象。
三、教学准备1. 准备教学PPT,包含图片、视频、案例等教学资源。
2. 准备相关实验器械,进行实验演示。
3. 准备习题集,供学生练习。
4. 了解学生已掌握的物理学基础知识。
四、教学过程:本节课的教学目标是让学生理解热力学第二定律的内容和意义,掌握熵的观点和基本定律,能够运用熵的观点分析实际问题。
1. 引入课题:通过一些平时生活中的现象,如空调制冷、热机的工作等,引出热力学第二定律的内容和意义,激发学生的兴趣和好奇心。
2. 讲解热力学第二定律的内容和意义:通过PPT和视频等形式,详细讲解热力学第二定律的内容和意义,包括方向性、不可逆性、熵增加原理等。
3. 讲解熵的观点:通过PPT和图片等形式,介绍熵的观点和定义,包括熵的定义、熵的物理意义等。
同时,可以通过一些简单的实验和例子,帮助学生理解熵的观点。
4. 熵的基本定律:通过PPT和视频等形式,介绍熵的基本定律和性质,包括熵增原理、熵平衡方程等。
同时,可以通过一些实际问题,引导学生运用熵的基本定律进行分析。
5. 实例分析:通过一些实际例子,如空调制冷、热机的工作等,引导学生运用熵的观点和基本定律进行分析,加深学生对热力学第二定律的理解和应用。
6. 教室讨论:让学生分组讨论一些与热力学第二定律相关的问题,如能源利用、环境珍爱等,鼓励学生积极思考,发表自己的看法和建议。
7. 总结回顾:对本节课所学的知识进行总结回顾,强调热力学第二定律的重要性和应用,鼓励学生将所学知识应用到实际生活中去。
8. 安置作业:让学生回家复习本节课所学的知识,并完成一些与热力学第二定律相关的作业,稳固所学知识。
《热力学第二定律》教学设计[范文大全]第一篇:《热力学第二定律》教学设计《热力学第二定律》教学设计【教学目标】一、知识和技能1、能判断涉及热现象的宏观过程是具有方向性的;2、知道并理解热力学第二定律的两种经典表述;3、形成关于宏观热现象都具有不可逆性的概念;4、认识到热力学第一定律与热力学第二定律具有同样重要的意义。
二、过程和方法分析各种热学现象的过程,归纳出现象背后的普遍规律──热力学第二定律。
三、情感、态度和价值观1、体会科学发现的曲折性和必然性;2、体会热力学第二定律对于人类实践的指导意义。
【教学重点和难点】重点:热力学第二定律内容的理解。
难点:热力学第二定律的两种表述的理解。
【设计思路与教学流程】设计思路:本节内容的课程标准是:“通过自然界中宏观过程的方向性,了解热力学第二定律。
”热力学第二定律是紧跟在热力学第一定律之后的一节内容。
学生早在初中就知道了能量的转化与守恒定律,在学完了热力学第一定律之后,对于能量守恒的认识就更深刻了。
因此在此基础上提出“利用海水降温释放的热量作为新能源”这一设想,让学生思考、讨论而引入新课。
然后再列举一些自发的热学现象,归纳出其中共同的特征:过程的不可逆性。
然后就其中的热传导与功热转化两个过程具体分析,归纳出热力学第二定律的两种经典表述:克劳修斯表述和开尔文表述。
热力学第二定律的实质就是指宏观自发的涉及热现象的过程都是不可逆的,任何一类宏观自发的热学过程都可以作为热力学第二定律的表述。
本节课的难点在于如何理解热力学第二定律的两种表述,特别是开尔文表述。
教学中尽可能多地让学生分析实例,再借助于一些多媒体素材(我利用了一些视频及热机、内燃机两个flash动画),从正、反两方面帮助学生形成对热学现象中的过程认识:热量可以自发地从高温物体传到低温物体;功可以全部转化为热;热量可以从低温物体传到高温物体(但要有条件);热可以转化为功(但不完全)。
最终认识到热力学第二定律是与热力学第一定律并重的一条客观规律。
热力学第二定律【教学目的】1、了解某些热学过程的方向性2、了解什么是第二类永动机,为什么第二类永动机不可能制成3、了解热力学第二定律的两种表述,理解热力学第二定律的物理实质4、知道什么是能量耗散5、知道什么是热力学第三定律【教学重点】1、热力学第二定律的实质,定律的两种不同表述2、知道什么是第二类永动机,以及它不能制成的原因【教学难点】热力学第二定律的物理实质【教具】扩散装置【教学过程】○、引入学生答问:1、热力学第一定律的形式若何,符号法则怎样?2、什么是第一类永动机?热力学第一定律和能量守恒定律具有相同的实质,表征的是能量转移或转化过程中总量不变。
既然能量只是在不停地转移或转化,而不会消失,我们为什么还在面临能源危机,还在不停地呼吁节约能源呢?我们今天来探讨一下这个问题——一、某些热学过程的方向性人们认识问题,总是先有素材,再有思索,然后才有理论的总结与上升。
我们先看这样的事实:根据初中学过的物理常识,我们知道热传导会在两个有温差的物体间产生,会自发的从高温物体传至低温物体,那么,热传导会不会从低温物体传至高温物体呢?不会。
我们把这种现象称之为——热传导的方向性在看另一个事实:表述教材图11-12的物理情形…(人们也做过理论上的预测:扩散既然是分子无规则运动引起,那么,原来A容器中的气体分子恰好全部回到A容器是可能的,只是这种几率非常非常小,以至于在现实中还从来没有发生过)这说明——扩散现象有方向性事实三:有初速度的物体,在水平面上运动,总要停下来,因为摩擦生热,机械能转化成了内能;但是,由于内能的增量一部分转移到物体和地面,另一部分转移到了空中(通常称之为耗散),我们要把这部分内能收集起来,然后通过某种机器或装置让它转化成物体重新运动的机械能,这可能吗?答案必然是否定的。
甚至人们还尝试过,即便能够把这部分内能完全收集(不散失),要使它完全转化成机械能,也是绝对不可能的。
所以,我们说,涉及到热现象的——能量转化有方向性怎样表征这种热学过程的方向性呢?——二、热力学第二定律在介绍热力学第二定律之前,先介绍相关概念——热机:将内能转化成机械能的装置。
一、教学目标1. 知识目标:(1)了解热力学第二定律的基本概念;(2)掌握克劳修斯表述和开尔文表述;(3)理解熵的概念及其在热力学中的作用;(4)掌握热力学第二定律在现实生活中的应用。
2. 能力目标:(1)能够运用热力学第二定律解释实际问题;(2)培养逻辑思维和分析问题的能力。
3. 情感目标:(1)激发学生对热力学第二定律的兴趣;(2)培养学生的科学精神和创新意识。
二、教学重点1. 热力学第二定律的基本概念;2. 克劳修斯表述和开尔文表述;3. 熵的概念及其在热力学中的作用;4. 热力学第二定律在现实生活中的应用。
三、教学难点1. 熵的概念及其在热力学中的作用;2. 热力学第二定律在现实生活中的应用。
四、教学过程(一)导入1. 引入热力学基本概念,如能量守恒定律;2. 提出问题:如何描述热力学过程的不可逆性?(二)新课讲解1. 热力学第二定律的基本概念:(1)孤立系统自发地朝向热力学平衡方向演化;(2)第二类永动机永不可能实现。
2. 克劳修斯表述和开尔文表述:(1)克劳修斯表述:不可能把热从低温物体传到高温物体而不产生其他影响;(2)开尔文表述:不可能从单一热源取热使之完全转换为有用的功而不产生其他影响。
3. 熵的概念及其在热力学中的作用:(1)熵是系统微观粒子无序程度的量度;(2)熵增定律:在自然过程中,一个孤立系统的总混乱度(即熵)不会减小。
4. 热力学第二定律在现实生活中的应用:(1)热机效率;(2)能源利用;(3)生态学等领域。
(三)课堂练习1. 分析一个实际生活中的热力学现象,运用热力学第二定律进行解释;2. 讨论热力学第二定律在实际应用中的重要性。
(四)总结与作业1. 总结本节课所学内容;2. 布置作业:阅读相关资料,了解热力学第二定律在某一领域的应用,撰写一篇短文。
五、教学反思1. 本节课通过讲解热力学第二定律的基本概念、克劳修斯表述和开尔文表述、熵的概念及其在热力学中的作用等内容,使学生掌握了热力学第二定律的基本知识;2. 在课堂练习环节,引导学生运用所学知识分析实际问题,培养学生的实际应用能力;3. 通过本节课的学习,激发学生对热力学第二定律的兴趣,培养学生的科学精神和创新意识。
《热力学第二定律》教课设计三维教课目的1、知识与技术(1)认识热力学第二定律的发展简史;(2)认识什么是第二类永动机,为何第二类永动机不能够制成;(3)认识热传导的方向性;(4)认识热力学第二定律的两种表述方法,以及这两种表述的物理本质;(5)认识什么是能量耗散。
2、过程与方法:3、感情、态度与价值观:教课要点:热力学第二定律及所反应出的热现象的宏观过程的方向性。
教课难点:热力学第二定律中所描绘的" 不发生其余变化 " 。
教课方法:多媒体协助教课,剖析议论解说相联合。
教课器械:多媒体演示系统、自制电脑教课软件。
教课过程:第四节热力学第二定律(一)引入新课发问:热力学第必定律的内容是什么?第一类永动机为何没有制成?能量守恒定律是如何表述的?在能量守恒定律中,存在着能量的 " 转移 " 和 " 转变 " ,详细到热力学第二定律,内能和内能之间存在着 " 转移 " 以及内能和机械能之间也存在着 " 转变 " 的过程,引入课题:热力学第二定律。
(二)新课教课1、内能的转移 : 内能转移本质就是热传达。
例 1:冰箱中的冰激凌在停电时的消融过程,指引学生剖析消融的原由。
(热量能够从高温物体传达给低温物体)冰箱里的冰激凌在冰箱正常工作时并无消融。
进一步指引学生思虑热量只好从高温物体传达给低温物体这类说法能否稳当。
假如不稳当应当如何说。
进而得出所谓的热量从高温物体向低温物体传达是一个自觉的过程,热量从低温物体向高温物体转移需要其余的物理过程参加。
(以模拟动画说明内能转移过程的方向性)(1)热力学第二定律克劳修斯表述:不行能使热量从低温物体传达到高温物体而不产生其余变化。
内能转移过程的方向性说明 : 不产生其余变化是指没有其余物理过程参加。
2、内能和机械能之间的转变( 1)第二类永动机瓦特蒸汽机的发明说明人们开始了热机理论的研究,(" 热机 " 就是一种把内能转变成机械能的机械)1824 年,卡诺在《论火的动力》中指出" 凡是有温度差的地方便可以发生动力"1834 年,克拉珀龙把卡诺这一思想几何化为" 卡诺循环 "热机从高温热源汲取热量Q,此中一部分对外做功W,另一部分被开释给低温热源,依据能量守恒定律 Q1 = Q 2 + W η=W/ Q1 = (Q 1- Q 2) /Q 1 =1 - Q 2/ Q 1,能够知道 Q2越少,η越高,于是人们就考虑可否让Q2不存在,这样便可以产生一个η=100%的热机,便可以产生另一种永动机,能够看到这类机械其实不违犯能量守恒定律,这一类永动机叫第二类永动机。
热学第二定律教案一、引言热学第二定律是热力学中的重要定律之一。
它揭示了热量的传递方向以及能量转化的不可逆性。
本教案将以热学第二定律为中心,围绕该定律的定义、表述、热力学实例等方面进行详细论述。
二、热学第二定律的定义与表述热学第二定律,又称卡诺定理或卡诺原理,是指在一个孤立系统中,热量只能自热量较高的物体传递到热量较低的物体,而不会发生相反的情况。
简言之,热量不会自发地从低温物体传递到高温物体。
三、卡诺循环的介绍与实例分析卡诺循环是热学第二定律的一个重要示例,它能够实现最高效率的热能转化。
卡诺循环由两个等温过程和两个绝热过程组成,通过假设具有理想热机特性的卡诺循环来研究热学第二定律的应用和实际问题。
四、卡诺循环的理论效率卡诺循环的理论效率是指卡诺热机在给定低温热源和高温热源的温度下所能达到的最高效率。
根据热学第二定律,实际热机的效率不可能高于理论效率。
本节中,我们将详细介绍卡诺循环的理论效率计算方法,并结合数值实例加以说明。
五、热力学第二定律的应用热学第二定律不仅仅在理论上有重要意义,它也在实际生活和工程领域中有着广泛的应用。
例如,热力学第二定律能够解释为什么冷水无法自发地变热、为什么空调需要花费大量的能源、以及为什么汽车引擎需要散热等。
在本节中,我们将以实际案例来阐述热力学第二定律在工程实践中的应用。
六、违反热学第二定律的假说与争议热学第二定律的初始提出遭遇了一些争议和质疑。
一些科学家和哲学家提出了一系列假说,试图推翻或修正热学第二定律的内容。
然而,通过对这些假说的深入分析和实验验证,我们可以得出结论,热学第二定律是一个基本而不可逆的物理规律。
七、总结热学第二定律是热力学领域中的重要定律,它在能量转化和热力学过程中具有重要的应用价值。
通过对热学第二定律的定义、表述、卡诺循环、实际应用等方面的介绍,我们对该定律有了更深入的了解。
了解热学第二定律不仅对于工程师和科学家而言具有实际指导意义,也有助于我们更好地理解能量的转化与利用。
《热力学第二定律》教学设计【教学目标】一、知识和技能1、能判断涉及热现象的宏观过程是具有方向性的;2、知道并理解热力学第二定律的两种经典表述;3、形成关于宏观热现象都具有不可逆性的概念;4、认识到热力学第一定律与热力学第二定律具有同样重要的意义。
二、过程和方法分析各种热学现象的过程,归纳出现象背后的普遍规律──热力学第二定律。
三、情感、态度和价值观1、体会科学发现的曲折性和必然性;2、体会热力学第二定律对于人类实践的指导意义。
【教学重点和难点】重点:热力学第二定律内容的理解。
热力学第二定律的两种表述的理解。
难点:【设计思路与教学流程】设计思路:本节内容的课程标准是:“通过自然界中宏观过程的方向性,了解热力学第二定律。
”热力学第二定律是紧跟在热力学第一定律之后的一节内容。
学生早在初中就知道了能量的转化与守恒定律,在学完了热力学第一定律之后,对于能量守恒的认识就更深刻了。
因此在此基础上提出“利用海水降温释放的热量作为新能源”这一设想,让学生思考、讨论而引入新课。
然后再列举一些自发的热学现象,归纳出其中共同的特征:过程的不可逆性。
然后就其中的热传导与功热转化两个过程具体分析,归纳出热力学第二定律的两种经典表述:克劳修斯表述和开尔文表述。
热力学第二定律的实质就是指宏观自发的涉及热现象的过程都是不可逆的,任何一类宏观自发的热学过程都可以作为热力学第二定律的表述。
本节课的难点在于如何理解热力学第二定律的两种表述,特别是开尔文表述。
教学中尽可能多地让学生分析实例,再借助于一些多媒体素材(我利用了一些视频及热机、内燃机两个flash动画),从正、反两方面帮助学生形成对热学现象中的过程认识:热量可以自发地从高温物体传到低温物体;功可以全部转化为热;热量可以从低温物体传到高温物体(但要有条件);热可以转化为功(但不完全)。
最终认识到热力学第二定律是与热力学第一定律并重的一条客观规律。
教学流程:【教学资源】多媒体课件(包括视频及flash动画)】教学实录【一、引入新课师:我们刚刚学过了热力学第一定律,即能量的转化与守恒定律。
既然能量的总量是不变的,但为什么还说有能源危机,还要提倡节约能源呢?曾经有这样一个设想(展示幻灯片),试图来解决我们的能源危机。
18t,如果这些海水的4×10.(幻灯片内容)地球上有大量的海水,它的总质量约为1o3C J/(kg·℃).=42×10C,将要放出多少焦耳的热量?海水的比热容为10温度降低.师:请大家计算一下,上述过程将释放多少能量?23J的热量。
.8×10生:放出5 师:这相当于1800万个大亚湾核电站一年的发电量。
(秦山核电站装机容量为30万千瓦、大亚湾核电站装机容量为百万千瓦)(幻灯片)师:请大家相互讨论一下,该方案可行吗?……(学生分组讨论)生1:这个方案可行,因为不违背能量守恒定律。
生2:这个方案不可行,若可行的话,科学家早就将这一想法付诸实践了。
生3:不同意2的说法。
并不是我们能想到的就一定能实现的。
……二、提出热力学第二定律师:那么这一想法实现的困难是技术上的障碍呢?还是理论上根本不可能?是否还存在一些除了能量的转化与守恒定律之外的一些我们还必须遵循的客观规律呢?现在让我们一起来学习本章第五节:热力学第二定律。
师:我们先从分析一组物理现象开始。
请看下面的一些视频:①空气和二氧化氮气体的扩散;②烧红的铁棒浸入水中冷却;③向密闭的广口瓶中充气,将瓶塞充开;④在草坪上滚动的足球最终停下来;⑤一玻璃杯从桌子边缘摔在地面上破碎。
(展示视频)师:这些是我们眼中能看到的现象,大家能否描述一下上述现象的逆过程?并判断这些逆过程可能实现吗?注意语言表述的准确性,大家相互讨论一下。
……(学生分组讨论)生1:现象①的逆过程是均匀混合的空气与二氧化氮气体过一段时间变的泾渭分明:上面是空气,下面是二氧化氮。
该过程不可能。
生2:现象②的逆过程是浸在水中的铁棒过一段时间后吸收水的热量变红了,而水温降低了。
该过程不可能。
生3:现象③的逆过程是从瓶中冲出去的气体又自动回到瓶中,瓶中气体的压强达到了将瓶塞冲开时的压强。
该过程不可能。
生4:现象④的逆过程是静止在草坪上的足球自动地吸收草地的热量转化为足球的动能,足球滚了起来。
该过程不可能。
生5:现象错误!链接无效。
的逆过程是碎在地面上的玻璃杯自动地变成完整的杯子,并跳回桌面。
该过程不可能。
师:所有的这些现象有何共同特征?生:都是不可逆的。
师:既然在不同的现象背后存在着一个共同特征,那么就应该存在着一个普遍的客观规律。
事实上,许多科学家已经从不同的角度分别进行了归纳总结,提出了热力学第二定律。
三、热传导过程分析──克劳修斯表述师:分析诸如②的热传导过程,要发生热传导必须具备什么条件?生:要有温度差。
师:那么自发的热传导过程有什么特征?生:总是从高温物体向低温物体传导。
师:热量能否从低温物体传导到高温物体?生1:不能,诸如②中不可能出现铁棒变红、水温降低的现象。
生2:可能的,电冰箱工作时就是将热量从低温环境传导到高温环境。
师:很好,让我们一起来分析电冰箱的工作过程。
请考虑三个问题:一是电冰箱中热量传导的方向性;二是电冰箱中这种热量传导有没有条件?三是分析电冰箱工作时能量转化情况。
请大家相互讨论一下。
……(学生分组讨论)生1:电冰箱工作时是将热量从低温环境传到高温环境;生2:只有在电冰箱插上电源后,才能实现上述热量传导过程;生3:电冰箱工作时,消耗了电能。
师:电冰箱工作时,消耗了电能,再考虑电冰箱制冷剂在箱内吸收的热量与在箱外释放的热量,该过程中能量守恒吗?生4:能量肯定是守恒的,也许释放到电冰箱外的热量大于在电冰箱内吸收的热量。
师:你的说法不错,诸如过程②和电冰箱的工作过程可以用下面的流程图来表示:可见,热量传导可以从低温物体到高温物体。
可以设想,拔掉电源的冰箱是不可能达到制冷效果的,也就是下面的过程不可能:(展示幻灯片)师:早在1850年德国物理学家克劳修斯总结了热传导过程的规律,称之为热力学第二定律的克劳修斯表述:热量不能自发地从低温物体传到高温物体。
请大家再将这一意思换一种表述方法。
生:也可以说成:热量不可能从低温物体传到高温物体而不产生其他影响。
四、功热转化过程分析──开尔文表述师:足球在草坪上滚动最终停下来,试分析该过程中的能量转化情况。
生:足球的动能转化为内能。
师:再比如小球从高处落下掉进沙坑,能量的转化情况怎样?生:小球的机械能转化为内能。
师:机械能可以全部转化为内能,那么内能能否转化为机械能?生1:不能,因为上面的过程是不可逆的。
生2:可以的,热量可以由高温物体传到低温物体,但也可以由低温物体传到高温物体。
师:你的类比不错。
这一问题先搁一下,我们再分析两个实例:一是热机;二是内燃机。
(展示flash动画)请观察热机与内燃机的工作流程,并分析能量转化的情况。
生1:热机工作过程中,锅炉中的水被加热变成水蒸气,水蒸气推动汽缸活塞对外做功,然后排出的尾气经过冷凝器变成液态水回到锅炉。
该过程中的能量转化过程是:煤的化学能转化为水蒸汽的内能,再变为活塞运动的机械能。
生2:内燃机工作过程中,先吸入空气与汽油的混合气体,接着活塞向上运动压缩混合气体,点火后混合气体爆炸,推动活塞对外做功,最后将汽缸中的尾气排出。
该过程中混合气体的内能转化为机械能。
师:以上两个过程都存在内能转化为机械能的现象。
请分析这些过程中,内能全部转化为机械能吗?生3:不能,因为机械装置存在摩擦损耗,要消耗部分能量。
生4:从汽缸中排出的尾气也带走了部分能量。
师:这样看来,机械能与热能之间的转化也可以用下面的流程图来表示:(展示幻灯片)QW,到低温热源放出,其中对外做功为师:热机或内燃机就是从高温热源吸收热量1Q。
这一过程是通过工作物质如水蒸气、汽油和空气混合气体的燃烧等来完成,这些热量2工作物质简称为工质。
即使将摩擦损耗的能量理想化地降低到零,也不可能排除尾气带走的热量。
在1851年,开尔文就功与热的转化提出了:不可能从单一热源吸收热量,使之完全变为功,而不产生其它影响。
这就是热力学第二定律的开尔文表述。
所以热机、内燃机的效率总有:。
即下面的过程是不可能完成的:(展示幻灯片)师:大家能否就开尔文表述换一种说法?生:不可能有效率为100%的热机。
师:这种说法更简洁。
事实上,一般的汽车上的汽油机械效率只有20%~30%,蒸汽轮机的效率比较高,也只能达到60% 。
五、热力学第二定律的实质师:热传导过程与功热转化过程的分析,得到了热力学第二定律的克劳修斯表述和开尔文表述。
这两种表述的共同点是什么?生:都指明了物理进程的一种方向性。
师:不错,热力学第二定律的实质就是指明了自发的宏观热现象具有方向性。
任何一类宏观自然过程进行方向的说明可以作为热力学第二定律的表述。
请观察扩散现象、气体向真空扩散的过程(展示幻灯片)。
大家能否结合这些现象给出热力学第二定律的其他表述呢?生1:热力学第二定律也可表述为:扩散过程是不可逆的。
生2:热力学第二定律也可表述为:气体向真空中自由膨胀的过程是不可逆的。
师:这些说法都不错,当然还有其他不同的表述,所有的这些表述都是等价的。
请同学们课后相互讨论交流。
.六、回顾与思考师:现在让我们来回顾一开始提出的设想:能否利用海水降温的方法获取有用功?生1:不行,该过程尽管不违背能量守恒定律,但却违背了热力学第二定律。
师:违背了热力学第二定律中的哪种表述?生2:违背了开尔文表述。
即不可能从海水这单一热源吸收热量,使之变为有用功,而不产生其他影响。
师:不错。
但是在没有发现热力学第二定律之前,有许多科学家就试图制造诸如此类的机器,这称之为第二类永动机。
现在看来,第二类永动机也不可能实现。
开尔文表述是从功能关系来表述的,因此开尔文表述也可说成:第二类永动机不可能实现。
可见我们不仅要受制于能量的转化与守恒定律,还要受到能量转化方向的制约。
也可以说热力学第一定律指明了我们所拥有的“资本”总量;热力学第二定律则规定了我们“资本”运营的方式和方法。
.课后请同学们再利用热力学定律说明开始的五个视频的逆过程为什么不能完成,并完成教材后的问题与练习题。
【教学反思】与热力学第一定律不同的是,热力学第二定律与日常的生活、学习较远,并且热力学第二定律的两种表述实质上是通过大量实例归纳出来的,因此教学过程中利用好学生熟悉的热学现象和曾经接触过的物理模型就非常重要。
而课堂中学生积极主动地发表个人的看法,不管是对的,还是错的,都对本课达成教学目标起到的推进作用。
教学中利用流程图形象地将能量转化与守恒的特征与转化的方向性特征并重地表示出来,并从多角度描述热力学第二定律,有效地帮助学生建构了比较完整的宏观热学规律体系。