浙江高考数列经典例题汇总
- 格式:doc
- 大小:757.50 KB
- 文档页数:19
专题数列一、单选题1(全国甲卷数学(文))等差数列a n 的前n 项和为S n ,若S 9=1,a 3+a 7=()A.-2B.73C.1D.292(全国甲卷数学(理))等差数列a n 的前n 项和为S n ,若S 5=S 10,a 5=1,则a 1=()A.-2B.73C.1D.23(新高考北京卷)记水的质量为d =S -1ln n,并且d 越大,水质量越好.若S 不变,且d 1= 2.1,d 2=2.2,则n 1与n 2的关系为()A.n 1<n 2B.n 1>n 2C.若S <1,则n 1<n 2;若S >1,则n 1>n 2;D.若S <1,则n 1>n 2;若S >1,则n 1<n 2;二、填空题4(新课标全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和,若a 3+a 4=7,3a 2+a 5=5,则S 10=.5(新高考上海卷)无穷等比数列a n 满足首项a 1>0,q >1,记I n =x -y x ,y ∈a 1,a 2 ∪a n ,a n +1 ,若对任意正整数n 集合I n 是闭区间,则q 的取值范围是.三、解答题6(新课标全国Ⅰ卷)设m 为正整数,数列a 1,a 2,...,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,...,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使数列a 1,a 2,...,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,...,a 4m +2是2,13 -可分数列;(3)从1,2,...,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,...,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.7(新课标全国Ⅱ卷)已知双曲线C :x 2-y 2=m m >0 ,点P 15,4 在C 上,k 为常数,0<k <1.按照如下方式依次构造点P n n =2,3,... ,过P n -1作斜率为k 的直线与C 的左支交于点Q n -1,令P n 为Q n -1关于y 轴的对称点,记P n 的坐标为x n ,y n .(1)若k =12,求x 2,y 2;(2)证明:数列x n -y n 是公比为1+k1-k的等比数列;(3)设S n 为△P n P n +1P n +2的面积,证明:对任意的正整数n ,S n =S n +1.8(全国甲卷数学(文))已知等比数列a n 的前n 项和为S n ,且2S n =3a n +1-3.2024年高考真题(1)求a n 的通项公式;(2)求数列S n 的通项公式.9(全国甲卷数学(理))记S n 为数列a n 的前n 项和,且4S n =3a n +4.(1)求a n 的通项公式;(2)设b n =(-1)n -1na n ,求数列b n 的前n 项和为T n .10(新高考北京卷)设集合M =i ,j ,s ,t i ∈1,2 ,j ∈3,4 ,s ∈5,6 ,t ∈7,8 ,2i +j +s +t .对于给定有穷数列A :a n 1≤n ≤8 ,及序列Ω:ω1,ω2,...,ωs ,ωk =i k ,j k ,s k ,t k ∈M ,定义变换T :将数列A 的第i 1,j 1,s 1,t 1项加1,得到数列T 1A ;将数列T 1A 的第i 2,j 2,s 2,t 2列加1,得到数列T 2T 1A ⋯;重复上述操作,得到数列T s ...T 2T 1A ,记为ΩA .(1)给定数列A :1,3,2,4,6,3,1,9和序列Ω:1,3,5,7 ,2,4,6,8 ,1,3,5,7 ,写出ΩA ;(2)是否存在序列Ω,使得ΩA 为a 1+2,a 2+6,a 3+4,a 4+2,a 5+8,a 6+2,a 7+4,a 8+4,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且a 1+a 3+a 5+a 7为偶数,证明:“存在序列Ω,使得ΩA 为常数列”的充要条件为“a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8”.11(新高考天津卷)已知数列a n 是公比大于0的等比数列.其前n 项和为S n .若a 1=1,S 2=a 3-1.(1)求数列a n 前n 项和S n ;(2)设b n =k ,n =a kb n -1+2k ,a k <n <a k +1,b 1=1,其中k 是大于1的正整数.(ⅰ)当n =a k +1时,求证:b n -1≥a k ⋅b n ;(ⅱ)求S ni =1b i .12(新高考上海卷)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.一、单选题1(2024·重庆·三模)已知数列a n 的前n 项和为S n ,a 1=1,S n +S n +1=n 2+1n ∈N ∗ ,S 24=()A.276B.272C.268D.2662(2024·河北张家口·三模)已知数列a n 的前n 项和为S n ,且满足a 1=1,a n +1=a n +1,n 为奇数2a n ,n 为偶数 ,则S 100=()A.3×251-156B.3×251-103C.3×250-156D.3×250-1033(2024·山东日照·三模)设等差数列b n 的前n 项和为S n ,若b 3=2,b 7=6,则S 9=()A.-36B.36C.-18D.184(2024·湖北武汉·二模)已知等差数列a n 的前n 项和为S n ,若S 3=9,S 9=81,则S 12=()A.288B.144C.96D.255(2024·江西赣州·二模)在等差数列a n 中,a 2,a 5是方程x 2-8x +m =0的两根,则a n 的前6项和为()A.48B.24C.12D.86(2024·湖南永州·三模)已知非零数列a n 满足2n a n +1-2n +2a n =0,则a 2024a 2021=()A.8B.16C.32D.647(2024·浙江绍兴·二模)汉诺塔(Tower of Hanoi ),是一个源于印度古老传说的益智玩具. 如图所示,有三根相邻的标号分别为A 、B 、C 的柱子,A 柱子从下到上按金字塔状叠放着n 个不同大小的圆盘,要把所有盘子一个一个移动到柱子B 上,并且每次移动时,同一根柱子上都不能出现大盘子在小盘子的上方,请问至少需要移动多少次?记至少移动次数为H n ,例如:H (1)=1,H (2)=3,则下列说法正确的是()A.H (3)=5B.H (n ) 为等差数列C.H (n )+1 为等比数列D.H 7 <1008(2024·云南曲靖·二模)已知S n 是等比数列a n 的前n 项和,若a 3=3,S 3=9,则数列a n 的公比是()A.-12或1 B.12或1 C.-12D.129(2024·四川·模拟预测)已知数列a n 为等差数列,且a 1+2a 4+3a 9=24,则S 11=()A.33B.44C.66D.8810(2024·北京东城·二模)设无穷正数数列a n ,如果对任意的正整数n ,都存在唯一的正整数m ,使得a m =a 1+a 2+a 3+⋯+a n ,那么称a n 为内和数列,并令b n =m ,称b n 为a n 的伴随数列,则()A.若a n 为等差数列,则a n 为内和数列B.若a n 为等比数列,则a n 为内和数列C.若内和数列a n 为递增数列,则其伴随数列b n 为递增数列D.若内和数列a n 的伴随数列b n 为递增数列,则a n 为递增数列11(2024·广东茂名·一模)已知T n 为正项数列a n 的前n 项的乘积,且a 1=2,T 2n =a n +1n ,则a 5=()A.16B.32C.64D.12812(2024·湖南常德·一模)已知等比数列a n 中,a 3⋅a 10=1,a 6=2,则公比q 为()A.12B.2C.14D.4二、多选题13(2024·湖南长沙·三模)设无穷数列a n的前n项和为S n,且a n+a n+2=2a n+1,若存在k∈N∗,使S k+1 >S k+2>S k成立,则()A.a n≤a k+1B.S n≤S k+1C.不等式S n<0的解集为n∈N∗∣n≥2k+3D.对任意给定的实数p,总存在n0∈N∗,当n>n0时,a n<p14(2024·山东泰安·模拟预测)已知数列a n的通项公式为a n=92n-7n∈N*,前n项和为S n,则下列说法正确的是()A.数列a n有最大项a4 B.使a n∈Z的项共有4项C.满足a n a n+1a n+2<0的n值共有2个D.使S n取得最小值的n值为415(2024·山东临沂·二模)已知a n是等差数列,S n是其前n项和,则下列命题为真命题的是() A.若a3+a4=9,a7+a8=18,则a1+a2=5 B.若a2+a13=4,则S14=28C.若S15<0,则S7>S8D.若a n和a n⋅a n+1都为递增数列,则a n>0 16(2024·山东泰安·二模)已知等差数列a n的前n项和为S n,a2=4,S7=42,则下列说法正确的是()A.a 5=4B.S n=12n2+52nC.a nn为递减数列 D.1a n a n+1的前5项和为421 17(2024·江西·三模)已知数列a n满足a1=1,a n+1=2a n+1,则()A.数列a n是等比数列 B.数列log2a n+1是等差数列C.数列a n的前n项和为2n+1-n-2 D.a20能被3整除18(2024·湖北·二模)无穷等比数列a n的首项为a1公比为q,下列条件能使a n既有最大值,又有最小值的有()A.a1>0,0<q<1B.a1>0,-1<q<0C.a1<0,q=-1D.a1<0,q<-1三、填空题19(2024·山东济南·三模)数列a n满足a n+2-a n=2,若a1=1,a4=4,则数列a n的前20项的和为.20(2024·云南·二模)记数列a n的前n项和为S n,若a1=2,2a n+1-3a n=2n,则a82+S8=.21(2024·上海·三模)数列a n满足a n+1=2a n(n为正整数),且a2与a4的等差中项是5,则首项a1= 22(2024·河南·三模)数列a n满足a n+1=e a n-2n∈N*,a2+a3=3x0,其中x0为函数y=e x-2-x2(x> 1)的极值点,则a1+a2-a3=.23(2024·上海·三模)已知两个等差数列2,6,10,⋯,202和2,8,14,⋯,200,将这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的各项之和为.24(2024·湖南长沙·三模)已知数列a n 为正项等比数列,且a 2-a 3=3,则a 1的最小值为.四、解答题25(2024·黑龙江·三模)已知等差数列a n 的公差d >0,a 2与a 8的等差中项为5,且a 4a 6=24.(1)求数列a n 的通项公式;(2)设b n =a n ,n 为奇数,1a n an +2,n 为偶数,求数列b n 的前20项和T 20.26(2024·湖南长沙·三模)若各项均为正数的数列c n 满足c n c n +2-c 2n +1=kc n c n +1(n ∈N *,k 为常数),则称c n 为“比差等数列”.已知a n 为“比差等数列”,且a 1=58,a 2=1516,3a 4=2a 5.(1)求a n 的通项公式;(2)设b n =a n ,n 为奇数b n -1+1,n 为偶数,求数列b n 的前n 项和S n .27(2024·山东潍坊·三模)已知正项等差数列a n的公差为2,前n项和为S n,且S1+1,S2,S3+1成等比数列.(1)求数列a n的通项公式a n;(2)若b n=1S n,n为奇数,S n⋅sin n-1π2,n为偶数,求数列b n 的前4n项和.28(2024·上海·三模)已知等比数列a n的公比q>0,且a3+a1a5=6,a6=16.(1)求a n的通项公式;(2)若数列b n满足b n=λ⋅3n-a n,且b n是严格增数列,求实数λ的取值范围.29(2024·山东泰安·模拟预测)在足球比赛中,有时需通过点球决定胜负.(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将(也称为守门员)也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有23的可能性扑不到球.不考虑其它因素,在一次点球大战中,求门将在前三次扑到点球的个数X的分布列和期望;(2)好成绩的取得离不开平时的努力训练,甲、乙、丙三名前锋队员在某次传接球的训练中,球从甲脚下开始,等可能地随机传向另外2人中的1人,接球者接到球后再等可能地随机传向另外2人中的1人,如此不停地传下去,假设传出的球都能接住.记第n次传球之前球在甲脚下的概率为p n,易知p1=1,p2=0.① 试证明:p n-1 3为等比数列;② 设第n次传球之前球在乙脚下的概率为q n,比较p2024与q2024的大小.30(2024·湖南邵阳·三模)高中教材必修第二册选学内容中指出:设复数z=a+bi对应复平面内的点Z,设∠XOZ=θ,OZ=r,则任何一个复数z=a+bi都可以表示成:z=r cosθ+i sinθ的形式,这种形式叫做复数三角形式,其中r是复数z的模,θ称为复数z的辐角,若0≤θ<2π,则θ称为复数z的辐角主值,记为argz.复数有以下三角形式的运算法则:若z i=r i cosθi+i sinθi,i=1,2,⋯n,则:z1⋅z2⋅⋯⋅z n=r1r2⋯r n cosθ1+θ2+⋯+θn+i sinθ1+θ2+⋯+θn,特别地,如果z1=z2=⋯z n=r cosθ+i sinθ,那么r cosθ+i sinθn=r n cos nθ+i sin nθ,这个结论叫做棣莫弗定理.请运用上述知识和结论解答下面的问题:(1)求复数z=1+cosθ+i sinθ,θ∈π,2π的模z 和辐角主值argz(用θ表示);(2)设n≤2024,n∈N,若存在θ∈R满足sinθ+i cosθn=sin nθ+i cos nθ,那么这样的n有多少个?(3)求和:S=cos20°+2cos40°+3cos60°+⋯+2034cos2034×20°31(2024·湖南长沙·二模)集合论在离散数学中有着非常重要的地位.对于非空集合A 和B ,定义和集A +B =a +b a ∈A ,b ∈B ,用符号d (A +B )表示和集A +B 内的元素个数.(1)已知集合A =1,3,5 ,B =1,2,6 ,C =1,2,6,x ,若A +B =A +C ,求x 的值;(2)记集合A n =1,2,⋯,n ,B n =2,22,⋯,n 2 ,C n =A n +B n ,a n 为C n 中所有元素之和,n ∈N *,求证:1a 1+2a 2+⋯+n a n <2(2-1);(3)若A 与B 都是由m m ≥3,m ∈N * 个整数构成的集合,且d (A +B )=2m -1,证明:若按一定顺序排列,集合A 与B 中的元素是两个公差相等的等差数列.32(2024·山东泰安·模拟预测)已知数列a n 是斐波那契数列,其数值为:1,1,2,3,5,8,13,21,34⋅⋅⋅⋅⋅⋅.这一数列以如下递推的方法定义:a 1=1,a 2=1,a n +2=a n +1+a n (n ∈N *).数列b n 对于确定的正整数k ,若存在正整数n 使得b k +n =b k +b n 成立,则称数列b n 为“k 阶可分拆数列”.(1)已知数列c n 满足c n =ma n (n ∈N *,m ∈R ).判断是否对∀m ∈R ,总存在确定的正整数k ,使得数列c n 为“k 阶可分拆数列”,并说明理由.(2)设数列{d n }的前n 项和为S n =3n -a a ≥0 ,(i )若数列{d n }为“1阶可分拆数列”,求出符合条件的实数a 的值;(ii )在(i )问的前提下,若数列f n 满足f n =an S n,n ∈N *,其前n 项和为T n .证明:当n ∈N *且n ≥3时,T n <a 21+a 22+a 23+⋅⋅⋅⋅⋅⋅+a 2n -a n a n +1+1成立.。
数列(04年)已知数列}{n a 的前n 项和为n S ,))(1(31*N n a S n n ∈-=。
(Ⅰ)求1a ,2a ;(Ⅱ)求证数列}{n a 是等比数列。
(05年)已知实数a ,b ,c 成等差数列,1+a ,1+b ,4+c 成等比数列,且15=++c b a ,求a ,b ,c 。
(06年)若n S 是公差不为0的等差数列}{n a 的前n 项和,且1S ,2S ,4S 成等比数列。
(Ⅰ)求数列1S ,2S ,4S 的公比;(Ⅱ)若42=S ,求}{n a 的通项公式。
(07年)已知数列}{n a 的相邻两项12-k a ,k a 2是关于x 的方程023)23(2=⋅++-kkk x k x 的两个根,且k k a a 212≤-(=k 1,2,3,…)。
(Ⅰ)求数列1a ,3a ,5a ,7a 及)4(2≥n a n (不必证明);(Ⅱ)求数列}{n a 的前n 2项和n S 2。
(08年)已知数列}{n a 的首项31=x ,通项nq p x n n +=2(*N n ∈,p ,q 为常数),且1x ,4x ,5x 成等差数列。
求: (Ⅰ)p ,q 的值;(Ⅱ)数列}{n a 的前n 项和n S 的公式。
(09年)设n S 为数列}{n a 的前n 项和,n kn S n +=2,*N n ∈,其中k 是常数。
(Ⅰ)求1a 及n a ;(Ⅱ)若对于任意的*N m ∈,m a ,m a 2,m a 4成等比数列,求k 的值。
(10年)设1a ,d 为实数,首项为1a ,公差为d 的等差数列}{n a 的前n 项和为n S ,满足01565=+S S 。
(Ⅰ)若55=S ,求6S 及1a ;(Ⅱ)求d 的取值范围。
(11年)已知公差不为0的等差数列}{n a 的首项1a 为)(R a a ∈,且11a ,21a ,41a 成等比数列。
(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)对*N n ∈,试比较na a a a 2222111132++++ 与11a 的大小。
第六章数列一.基础题组1. 【2012年.浙江卷.理7】设S n是公差为d(d≠0)的无穷等差数列{a n}的前n项和,则下列命题错误的是( )A.若d<0,则数列{S n}有最大项B.若数列{S n}有最大项,则d<0C.若数列{S n}是递增数列,则对任意n∈N*,均有S n>0D.若对任意n∈N*,均有S n>0,则数列{S n}是递增数列【答案】C2. 【2012年.浙江卷.理13】设公比为q(q>0)的等比数列{a n}的前n项和为S n,若S2=3a2+2,S4=3a4+2,则q=__________.【答案】323. 【2010年.浙江卷.理3】设nS为等比数列{}n a的前n项和,2580a a+=,则52SS=(A)11 (B)5 (C)8-(D)11-【答案】D4. 【2010年.浙江卷.理15】设1,a d为实数,首项为1a,公差为d的等差数列{}n a的前n项和为n S,满足56150S S+=,则d的取值范围是__________________ .【答案】(),2222,⎤⎡-∞-+∞⎦⎣U【解析】:5. 【2009年.浙江卷.理11】设等比数列{}na的公比12q=,前n项和为nS,则44Sa=.答案:156. 【2008年.浙江卷.理6】已知{}n a是等比数列,41252==aa,,则13221++++nnaaaaaaΛ= (A)16(n--41)(B)16(n--21)(C)332(n--41)(D)332(n--21)【答案】C7. 【2006年.浙江卷.理11】设Sn为等差数列{}n a的前n项和,若51010,5S S==-,则公差为(用数字作答).【答案】-18. 【2015高考浙江,理3】已知{}na是等差数列,公差d不为零,前n项和是nS,若3a,4a,8a成等比数列,则()A.140,0a d dS>> B.140,0a d dS<< C.140,0a d dS>< D.140,0a d dS<>【答案】B.9.二.能力题组1. 【2013年.浙江卷.理18】(本题满分14分)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |. 【答案】三.拔高题组1. 【2014年.浙江卷.理19】(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221Λ.若{}na 为等比数列,且.6,2231b b a +== (1)求n a 与n b ; (2)设()*∈-=N n b a c nn n 11。
高考压轴题瓶颈系列之之袁州冬雪创作——浙江卷数列【见证高考卷之特仑苏】1. 【2014年.浙江卷.理19】(本题满分14分)已知数列{}n a 和{}n b ()()*∈=N n a a a nb n 221 .若{}n a 为等比数列,且.6,2231b b a +==(Ⅰ)求n a 与n b ; (Ⅱ)设()*∈-=N n b a c nn n 11.记数列{}n c 的前n 项和为n S .(i )求n S ;(ii )求正整数k ,使得对任意*∈N n ,均有n k S S ≥.2. 【2011年.浙江卷.理19】(本题满分14分)已知公差不为0的等差数列{}n a 的首项1a a = (a R ∈),设数列的前n 项和为nS ,且11a ,21a ,41a 成等比数列(Ⅰ)求数列{}n a 的通项公式及nS(Ⅱ)记1231111...n nA S S S S =++++,212221111...nn B a a a a =++++,当2n ≥时,试比较n A 与n B 的大3. 【2008年.浙江卷.理22】(本题14分)已知数列{}n a ,0≥n a ,01=a ,22111()n n n a a a n N •+++-=∈.nn a a a S +++= 21)1()1)(1(1)1)(1(11121211n n a a a a a a T +++++++++=.求证:当•∈N n 时,(Ⅰ)1+<n n a a ;(Ⅱ)2->n S n ;(Ⅲ)3<n T .4. 【2007年.浙江卷.理21】(本题15分)已知数列{}n a 中的相邻两项21,2k ka a -是关于x 的方程2(32)320kkx k x k -++=的两个根,且212(1,2,3,)k k a a k -≤=(Ⅰ)求1,357,,a a a a ;(Ⅱ)求数列{}n a 的前2n 项的和2nS ;(Ⅲ)记1|sin |()(3)2sin n f n n =+,(2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++求证:*15()624n T n N ≤≤∈5. (2015年浙江卷第20题)2*111,()2n n n a a a a n N +==-∈ (1)求证:112nn a a +≤≤ (2)设数列2{}n a 的前n 项和为n S ,证明:*11()2(2)2(1)n S n N n n n ≤≤∈++6.【2016高考浙江理数】设数列{}n a 知足112n n a a +-≤,n *∈N .(I )证明:()1122n n a a -≥-,n *∈N ;(II )若32nn a ⎛⎫≤ ⎪⎝⎭,n *∈N ,证明:2n a ≤,n *∈N .【例题讲解之伊利奶粉】例1.(浙江省新高考研究同盟2017a1=3,,(I (II 1+1n b - (III ,求证:2≤(n nc c+ 例2.(浙江省温州中学2017届高三3例3.(浙江省温州市十校结合体2017(1)m 的值; (2(3n 恒成立,并证明你的结论.例4.(浙江省温州市2017.(Ⅰ)(1(2例5.(浙江省台州市2017(1)(2)(3) k 的最小值.例6.(浙江省杭州高级中学2017届高三2例7.(2017n a n +≤例8.(2017年4月湖州、衢州、丽水三地讲授质量检测)数列(1(2例9.(2017年4(1)(2)例10.(2017年4nn(1)(2)(3)例11.(2017年4n (1)(2)例12.(2017年4n例13:(2016浙江高考样卷20题)(Ⅰ)(Ⅱ)例14:(2016(1)(2)n例15:(2016宁波市第一次摹拟质量检测)对任意正整数n, 求证:(2)例16:(2016(Ⅰ) 1|n a ++- (本题与例13的题型一样)例17:(2016的首项为1a =.求证:91⎡-⎢例18:(2016名校同盟第一次摹拟20例19.(2016嘉兴一模)在,请说明来由.(本题就是例5例20.(2016浙江六校联考20(IIn例21(2016丽水一模20123112a a a a +<对任意例22.(2016十二校联考20).已知各项为正的数列*)N. (I (II n a n +>例23.(2016宁波十校20)设各项均为正数的数列{}n a 的前n 项和n S 知足13n n S n r a =+. (Ⅰ)若1=2a ,求数列{}n a 的通项公式; (Ⅱ)在(Ⅰ)的条件下,设*211(N )n n b n a -=∈,数列{}n b 的前n 项和为n T ,求证:231n nT n ≥+. 例24.(2016桐乡一模20)设函数2(),f x ax bx a b R =+∈、.若231()62x f x x --≤≤+对任意的x R ∈恒成立.数列{}n a 知足*111,()()3n n a a f a n N +==∈. (Ⅰ)确定()f x 的解析式;(Ⅱ)证明:1132n a ≤<; (Ⅲ)设n S 为数列{}n a 的前n 项和,求证:14213n nS n ≥-+. 例25.(2016大联考 20).已知数列{}n a 知足2*11,n n a ca c n N +=+-∈,其中常数1(0,)2c ∈. (1)若21a a >,求1a 的取值范围;(2)若1(0,1)a ∈,求证:对任意*n N ∈,都有01n a <<;(3)若1(0,1)a ∈,设数列{}2n a 的前n 项和为n S .求证:212n S n c>--. 例26.(2016宁波二模)已知数列{}n a 中,11a =,212nn n a a ta +=+.(Ⅰ)若t=0,求数列{}n a 的通项公式. (Ⅱ)若t=1,求证:12122242232223n n na a a a a a ≤+++<+++. 例27.(嘉兴二模 20).已知数列2(,)n nP x x 与(,0)n n A a 知足1n n x x +>,11n n n n P P A P ++⊥,且11n n n n P P A P ++=,其中*1,1n N x ∈=.(Ⅰ)求1n x +与n x 的关系式; (Ⅱ)求证:222222314n n x x x n +<+++≤.例28. (2016温州二模20).(1(2)(1nn>+例29 (2016五校联考二20(3na n+∈.2113na+⎛+<⎝.例30.(2016诸暨质检201,且21123na+<-【课后习之三鹿奶粉】例1.)*N,nS为{}a的前n项和.证明:对任意(Ⅰ(Ⅱ(Ⅲ例22()nba n*+∈N例3(1)(2)例4.(1(2(3)对于(2的和,求证例5(1)例6(Ⅰ(Ⅱ(III例7(1m的值;(2(3n恒成立,并证明你的结论.例8n(1(2n例9(Ⅰ(Ⅱ例10,(Ⅰ)(Ⅱ)例11(1(2例12(1(2(3例13(1(2(3。
v1.0可编辑可修改浙江高考数列经典例题汇总1. 【 2014年 . 浙江卷 . 理 19】(本题满分 14分)已知数列a n和b n满足b na 1a 2 a n 2n N . 若 a n 为等比数列,且 a 1 2,b 3 6 b 2 .( Ⅰ ) 求an 与bn ;c n1 1 n N (Ⅱ)设a nb n。
记数列 c n 的前 n 项和为S n.(i )求S n;(ii )求正整数 k,使得对任意nN,均有S k S n .2. 【 2011年 . 浙江卷 . 理 19】(本题满分 14分)已知公差不为 0的等差数列 { a n } 的首项 a 1 a111(a R), 设数列的前 n 项和为S n,且a 1,a2 ,a 4成等比数列(Ⅰ)求数列{ a n }的通项公式及S n11 11B n1 1 1 ...1A n...a 1 a 2a 22a2n,当n(Ⅱ) 记S 1 S 2 S 3S n ,2时,试比较An 与Bn 的大 小.v1.0可编辑可修改3. 【 2008 年 . 浙江卷 . 理 22】(本题 14 分)已知数列a n , a n 0, a1 0 ,a n21 a n 1 1 a n2 (n N ) .S n a1 a2 a n1 1 1T n(1 a1 )(1 a2 ) a1 )(1 a2 ) an ).1 a1 (1 (1 求证:当 n N 时,(Ⅰ)anan 1;(Ⅱ) S n n2;(Ⅲ)Tn3。
4.【2007 年 . 浙江卷 . 理 21】(本题 15 分)已知数列{ an}中的相邻两项a2 k 1,a2k是关于x的方程的两个根,且a2 k 1a2k(k 1,2,3, )(Ⅰ)求a1,a3, a5, a7;(Ⅱ)求数列{ an}的前 2n 项的和S2 n;v1.0 可编辑可修改f ( n) 1 ( |sin n | 3) T n( 1)f (2) ( 1)f (3)( 1)f (4)( 1)f ( n 1)a 1a 2a 3a 4a 5 a 6a 2 n 1a2n( Ⅲ)记2 sin n ,1T n5(n N * )求证:6245. 【2005年 .浙江卷 .理20】设点An (xn ,0),P n(x n,2n 1 )和抛物线Cn :y = x2+ an x +1bn(n ∈N*) ,其中 an =- 2- 4n -2n 1,x n由以下方法得到: x1 =1,点 P2(x2 , 2) 在抛物线 C1: y = x2+ a1x + b1 上,点 A1(x1 , 0) 到 P2 的距离是 A1 到 C1 上点的最短距离, ,点P n 1 ( x n 1 ,2n) 在抛物线 C n :y = x2 + an x + bn 上,点 A n ( x n , 0) 到Pn 1的距离是 A n 到C n上点的最短距离.( Ⅰ) 求 x2 及 C1的方程.( Ⅱ) 证明 {x n} 是等差数列.16. 【 2015 高考浙江,理 20】已知数列a n满足a1= 2 且an 1 =a n -a n2(nN * )v1.0可编辑可修改a n 2(1)证明: 1 an 1 N *(n);a n2 1 S n 1(2)设数列的前 n 项和为Sn,证明 2( n 2) n 2( n 1) (n N * )a n 11a n满足a n7. 【 2016 高考浙江理数】设数列 2 ,n .(I )证明:an2n 1 a12, n ;3 na n,证明:an2, n.2 ,n(II )若例 1.(浙江省新高考研究联盟2017 届高三下学期期初联考)已知数列a满足a1=3,na n+1=a n2+2a n,n∈ N* ,设b n=log 2(a n+1).(I )求 {a n} 的通项公式;(II )求证: 1+<n(n ≥2) ;(I II )若2c n =b n,求证: 2≤(cn 1)n <3.c n例 2.(浙江省温州中学2017 届高三 3 月高考模拟)正项数列a n满足a 2 a 3a 2 2a , a 1.n n n 1 n 1 1(Ⅰ)求 a2的值;(Ⅱ)证明:对任意的n N ,a 2a ;n n 1(Ⅲ)记数列 a n 的前 n 项和为S n,证明:对任意的n1S n 3 .N , 22n 1例 3.(浙江省温州市十校联合体2017 届高三上学期期末)已知数列 { a n } 满足a1 1,a n 1 1a n2m,8(1)若数列 { a n } 是常数列,求m的值;(2)当m1时,求证:a n a n 1;(3)求最大的正数m ,使得a n 4 对一切整数n 恒成立,并证明你的结论。
专题09 数列【2021年】一、【2021·浙江高考】已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( ) A.100332S << B. 10034S << C. 100942S <<D.100952S << 【答案】A 【解析】【分析】显然可知,10012S >,利用倒数法得到21111124n n a a +⎛⎫==+-⎪⎪⎭,再放缩可得12<,由累加法可得24(1)n a n ≥+,进而由1n a +=113n n a n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【详解】因为)111,N n a a n *+==∈,所以0n a >,10012S >.由211111124n n n a a a ++⎛⎫=⇒==+-⎪⎪⎭2111122n a +⎛⎫∴<+⇒<+⎪⎪⎭12<11122n n -+≤+=,当且仅当1n =时取等号,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++ 113n n a n a n ++∴≤+, 由累乘法可得6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得: 所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100321S <<. 故选:A .24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.【2021·浙江高考】已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-. (1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33()4nn a =-⋅;(2)31λ-≤≤. 【解析】【分析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解. 【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-②,①-②得143n n a a +=122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列, 1933()3()444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-, 所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭,2413333333321(5)(4)444444nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得234113333333(4)4444444n n n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以134()4n nT n +=-⋅, 由n n T b λ≤得1334()(4)()44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤; 4n >时,312344n n n λ≥-=----,得3λ≥-; 所以31λ-≤≤.【点睛】易错点点睛:(1)已知n S 求n a 不要忽略1n =情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中(4)30n n λ-+≥恒成立,要对40,40,40n n n -=->-<讨论,还要注意40n -<时,分离参数不等式要变号.二、【2021·江苏高考】某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm ×12dm 的长方形纸,对折1次共可以得到10dm ×12dm ,20dm ×6dm 两种规格的图形,它们的面积之和S 1=240dm 2,对折2次共可以得到5dm ×12dm ,10dm ×6dm ,20dm ×3dm 三种规格的图形,它们的面积之和S 2=180dm 2,以此类推.则对折4次共可以得到不同规格图形的种数为______ ;如果对折n 次,那么∑S k n k=1= ______ dm 2.【答案】5 240(3−n+32n)【知识点】数列求和方法【解析】解:易知有20dm ×34dm,10dm ×32dm,5dm ×3dm,52dm ×6dm ,54dm ×12dm ,共5种规格; 由题可知,对折k 次共有k +1种规格,且面积为2402k ,故S k =240(k+1)2k,则∑S k n k=1=240∑k+12kn k=1,记T n =∑k+12kn k=1,则12T n =∑k+12k+1n k=1, ∴12T n =∑k+12k n k=1−∑k+12k+1n k=1=1+(∑k+22k+1n−1k=1−∑k+22k+1n k=1)−n+12n+1=1+14(1−12n−1)1−12−n+12n+1=32−n+32n+1,∴T n =3−n+32n,∴∑S k n k=1=240(3−n+32n). 故答案为:5;240(3−n+32n).依题意,对折k 次共有k +1种规格,且面积为2402k ,则S k =240(k+1)2k,∑S k n k=1=240∑k+12knk=1,然后再转化求解即可.本题考查数列的求和,考查数学知识在生活中的具体运用,考查运算求解能力及应用意识,属于中档题.【2021·江苏高考】已知数列{a n }满足a 1=1,a n+1={a n +1,n 为奇数,a n +2,n 为偶数.(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式; (2)求{a n }的前20项和.【答案】解:(1)因为a 1=1,a n+1={a n +1,n 为奇数a n +2,n 为偶数,所以a2=a1+1=2,a3=a2+2=4,a4=a3+1=5,所以b1=a2=2,b2=a4=5,b n−b n−1=a2n−a2n−2=a2n−a2n−1+a2n−1−a2n−2=1+2=3,所以数列{b n}是以b1=2为首项,以3为公差的等差数列,所以b n=2+3(n−1)=3n−1.(2)由(1)可得a2n=3n−1,n∈N∗,则a2n−1=a2n−2+2=3(n−1)−1+2=3n−2,n≥2,当n=1时,a1=1也适合上式,所以a2n−1=3n−2,n∈N∗,所以数列{a n}的奇数项和偶数项分别为等差数列,×3+则{a n}的前20项和为a1+a2+...+a20=(a1+a3+⋯+a19)+(a2+a4+⋯+a20)=10+10×92×3=300.10×2+10×92【知识点】数列的递推关系、数列求和方法【解析】(1)由数列{a n}的通项公式可求得a2,a4,从而可得求得b1,b2,由b n−b n−1=3可得数列{b n}是等差数列,从而可求得数列{b n}的通项公式;(2)由数列{a n}的通项公式可得数列{a n}的奇数项和偶数项分别为等差数列,求解即可.本题主要考查数列的递推式,数列的求和,考查运算求解能力,属于中档题.【2020年】一、【2020·北京高考】在等差数列{a n}中,a1=−9,a5=−1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A. 有最大项,有最小项B. 有最大项,无最小项C. 无最大项,有最小项D. 无最大项,无最小项【答案】B【知识点】等差数列的通项公式、等差数列的性质、数列的函数特征【解析】【分析】本题考查等差数列的通项公式,考查数列的函数特性,考查分析问题与解决问题的能力,是中档题.由已知求出等差数列的通项公式,分析可知数列{a n}是单调递增数列,且前5项为负值,自第6项开始为正值,进一步分析得答案. 【解答】解:设等差数列{a n }的首项为d ,由a 1=−9,a 5=−1,得d =a 5−a 15−1=−1−(−9)4=2,∴a n =−9+2(n −1)=2n −11. 由a n =2n −11=0,得n =112,而n ∈N ∗,可知数列{a n }是单调递增数列,且前5项为负值,自第6项开始为正值. 可知T 1=−9<0,T 2=63>0,T 3=−315<0,T 4=945>0为最大项, 自T 5起均小于0,且逐渐减小. ∴数列{T n }有最大项,无最小项. 故选:B .【2020·北京高考】已知{a n }是无穷数列.给出两个性质:①对于{a n }中任意两项a i ,a j (i >j),在{a n }中都存在一项a m ,使得 a i2a j =a m ;②对于{a n }中任意一项a n (n ≥3),在{a n }中都存在两项a k ,a l (k >l),使得a n =a k2a l.(Ⅰ)若a n =n(n =1,2,…),判断数列{a n }是否满足性质①,说明理由;(Ⅱ)若a n =2n−1(n =1,2,…),判断数列{a n }是否同时满足性质①和性质②,说明理由; (Ⅲ)若{a n }是递增数列,且同时满足性质①和性质②,证明:{a n }为等比数列. 【答案】解:(Ⅰ)不满足,理由:a 32a 2=92∉N ∗,不存在一项a m 使得a 32a 2=a m .(Ⅱ)数列{a n }同时满足性质①和性质②,理由:对于任意的i 和j ,满足a i 2a j=22i−j−1,因为i ∈N ∗,j ∈N ∗且i >j ,所以2i −j ∈N ∗,则必存在m =2i −j ,此时,2m−1∈{a i }且满足a i 2a j=22i−j−1=a m ,性质①成立,对于任意的n ,欲满足a n =2n−1=a k2a l=22k−l−1,满足n =2k −l 即可,因为k ∈N ∗,l ∈N ∗,且k >l ,所以2k −l 可表示所有正整数,所以必有一组k ,l 使n =2k −l ,即满足a n =a k2a l,性质②成立.(Ⅲ)首先,先证明数列恒正或恒负, 反证法:假设这个递增数列先负后正,那么必有一项a l 绝对值最小或者有a l 与a l+1同时取得绝对值最小, 如仅有一项a l 绝对值最小,此时必有一项a m =a l2a j,此时|a m |<|a l |与前提矛盾,如有两项a l 与a l+1 同时取得绝对值最小值,那么必有a m =a i 2a i+1,此时|a m |<|a l |,与前提条件矛盾, 所以数列必然恒正或恒负,在数列恒正的情况下,由②知,存在k ,l 使得a k 2a l=a 3,因为是递增数列,a 3>a k >a l ,即3>k >l ,所以a 22a 1=a 3,此时a 1,a 2,a 3成等比数列,数学归纳法:(1)已证n =3时,满足{a n }是等比数列,公比q =a2a 1,(2)假设n =k 时,也满足{a k }是等比数列,公比q =a2a 1,那么由①知a k 2a k−1=qa k 等于数列的某一项a m ,证明这一项为a k+1即可,反证法:假设这一项不是a k+1,因为是递增数列,所以该项a m =a l2a l−1=qa k >a k+1,那么a k <a k+1<qa k ,由等比数列{a k }得a 1q k−1<a k+1<a 1q k , 由性质②得a 1q k−1<a m2a l<a 1q k ,同时a k+1=a m2a l>a m >a l ,所以k +1>m >l ,所以a m ,a l 分别是等比数列{a k }中两项,即a m =a 1q m−1,a l =a 1q l−1, 原式变为a 1q k−1<a 1q 2m−l−1<a 1q k ,所以k −1<2m −l −1<k ,又因为k ∈N ∗,m ∈N ∗,l ∈N ∗,不存在这组解,所以矛盾, 所以知a k 2ak−1=qa k =a k+1,前{a k+1}为等比数列,由数学归纳法知,{a n }是等比数列得证, 同理,数列恒负,{a n }也是等比数列. 【知识点】等比数列的性质、数列的函数特征 【解析】(Ⅰ)由a 32a 2=92∉N ∗,即可知道不满足性质.(Ⅱ)对于任意的i 和j ,满足a i2a j=22i−j−1,⇒2i −j ∈N ∗,必存在m =2i −j ,可得满足性质①;对于任意的n ,欲满足a n =2n−1=a k2a l=22k−l−1,⇒n =2k −l 即可,必存在有一组k ,l 使使得它成立,故满足性质②.(Ⅲ)先用反证法证明数列必然恒正或恒负,再用数学归纳法证明{a n}也是等比数列,即可.本题属于新定义题,考查等比数列的性质,数学归纳法等,考查逻辑思维能力,属于难题.二、【2020·浙江高考】已知等差数列{a n}的前n项和S n,公差d≠0,a1d⩽1.记b1=S2,b n+1=S n+2−S2n,n∈N∗,下列等式不可能成立的是()A. 2a4=a2+a6B. 2b4=b2+b6C. a42=a2a8D. b42=b2b8【答案】B【知识点】等差数列的通项公式、数列的递推关系、等差数列的求和【解析】【分析】本题考查数列递推式,等差数列的通项公式与前n项和,考查转化思想和计算能力,是中档题.由已知利用等差数列的通项公式判断A与C;由数列递推式分别求得b2,b4,b6,b8,分析B,D成立时是否满足公差d≠0,a1d⩽1判断B与D.【解答】解:在等差数列{a n}中,a n=a1+(n−1)d,S n+2=(n+2)a1+(n+2)(n+1)2d,S2n=2na1+2n(2n−1)2d,b1=S2=2a1+d,b n+1=S n+2−S2n=(2−n)a1−3n2−5n−22d.∴b2=a1+2d,b4=−a1−5d,b6=−3a1−24d,b8=−5a1−55d.A.2a4=2(a1+3d)=2a1+6d,a2+a6=a1+d+a1+5d=2a1+6d,故A正确;B.2b4=−2a1−10d,b2+b6=a1+2d−3a1−24d=−2a1−22d,若2b4=b2+b6,则−2a1−10d=−2a1−22d,即d=0不合题意,故B错误;C.若a42=a2a8,则(a1+3d)2=(a1+d)(a1+7d),即a12+6a1d+9d2=a12+8a1d+7d2,得a1d=d2,∵d≠0,∴a1=d,符合a1d⩽1,故C正确;D.若b42=b2b8,则(−a1−5d)2=(a1+2d)(−5a1−55d),即2(a1d )2+25a1d+45=0,则a1d有两不等负根,满足a1d⩽1,故D正确.∴等式不可能成立的是B.故选:B.【2020·浙江高考】我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题,如数列{n(n+1)2}就是二阶等差数列,数列{n(n+1)2},(n∈N∗)的前3项和______.【答案】10【知识点】数列的通项公式、数列的函数特征【解析】【分析】本题考查数列求和,数列通项公式的应用,是基本知识的考查.求出数列的前3项,然后求解即可.【解答】解:数列{a n}满足a n=n(n+1)2,可得a1=1,a2=3,a3=6,所以S3=1+3+6=10.故答案为:10.【2020·浙江高考】已知数列{a n},{b n},{c n}满足a1=b1=c1=1,c n+1=a n+1−a n,c n+1=b nb n+2⋅c n(n∈N∗).(1)若{b n}为等比数列,公比q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(2)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+⋯+c n<1+1d,n∈N∗.【答案】(1)解:由题意,b2=q,b3=q2,∵b1+b2=6b3,∴1+q=6q2,整理,得6q2−q−1=0,解得q=−13(舍去),或q=12,∴c n+1=b nb n+2⋅c n=1b n+2b n⋅c n=1q2⋅c n=1(12)2⋅c n=4⋅c n,∴数列{c n}是以1为首项,4为公比的等比数列,∴c n=1⋅4n−1=4n−1,n∈N∗.∴a n+1−a n=c n+1=4n,则a1=1,a2−a1=41,a3−a2=42,……a n−a n−1=4n−1,各项相加,可得a n=1+41+42+⋯+4n−1=1−4n1−4=4n−13.(2)证明:依题意,由c n+1=b nb n+2⋅c n(n∈N∗),可得b n+2⋅c n+1=b n⋅c n,两边同时乘以b n+1,可得b n+1b n+2c n+1=b n b n+1c n,∵b1b2c1=b2=1+d,∴数列{b n b n+1c n}是一个常数列,且此常数为1+d,b n b n+1c n=1+d,∴c n=1+db n b n+1=1+dd⋅db n b n+1=(1+1d)⋅b n+1−b nb n b n+1=(1+1d)(1b n−1b n+1),∴c1+c2+⋯+c n=(1+1d)(1b1−1b2)+(1+1d)(1b2−1b3)+⋯+(1+1d)(1b n−1b n+1) =(1+1d)(1b1−1b2+1b2−1b3+⋯+1b n−1b n+1)=(1+1d)(1b1−1b n+1)=(1+1d)(1−1b n+1)<1+1d,∴c1+c2+⋯+c n<1+1d,故得证.【知识点】数列的递推关系、数列求和方法、裂项相消法、等比数列的通项公式【解析】本题主要考查数列求通项公式,等差数列和等比数列的基本量的运算,以及和式不等式的证明问题.考查了转化与化归思想,整体思想,方程思想,累加法求通项公式,裂项相消法求和,放缩法证明不等式,以及逻辑推理能力和数学运算能力,属于综合题.(1)先根据等比数列的通项公式将b 2=q ,b 3=q 2代入b 1+b 2=6b 3,计算出公比q 的值,然后根据等比数列的定义化简c n+1=b nbn+2⋅c n 可得c n+1=4c n ,则可发现数列{c n }是以1为首项,4为公比的等比数列,从而可得数列{c n }的通项公式,然后将通项公式代入c n+1=a n+1−a n ,可得a n+1−a n =c n+1=4n ,再根据此递推公式的特点运用累加法可计算出数列{a n }的通项公式; (2)通过将已知关系式c n+1=b nbn+2⋅c n 不断进行转化可构造出数列{b n b n+1c n },且可得到数列{b n b n+1c n }是一个常数列,且此常数为1+d ,从而可得b n b n+1c n =1+d ,再计算得到c n =1+db n b n+1,根据等差数列的特点进行转化进行裂项,在求和时相消,最后运用放缩法即可证明不等式成立.三、【2020·天津高考】已知{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 5=5(a 4−a 3),b 5=4(b 4−b 3). (Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求证:S n S n+2<S n+12(n ∈N ∗);(Ⅲ)对任意的正整数n ,设c n ={(3a n −2)b na n a n+2,n 为奇数,a n−1bn+1,n 为偶数.求数列{c n }的前2n 项和.【答案】解:(Ⅰ)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 由a 1=1,a 5=5(a 4−a 3),则1+4d =5d ,可得d =1, ∴a n =1+n −1=n , ∵b 1=1,b 5=4(b 4−b 3), ∴q 4=4(q 3−q 2), 解得q =2, ∴b n =2n−1; 证明(Ⅱ)由(Ⅰ)可得S n =n(n+1)2,∴S n S n+2=14n(n +1)(n +2)(n +3),(S n+1)2=14(n +1)2(n +2)2,∴S n S n+2−S n+12=−12(n +1)(n +2)<0, ∴S n S n+2<S n+12(n ∈N ∗);解:(Ⅲ),当n 为奇数时,c n =(3a n −2)b n a n a n+2=(3n−2)2n−1n(n+2)=2n+1n+2−2n−1n,当n 为偶数时,c n = a n−1b n+1=n−12n,对任意的正整数n ,有∑c 2k−1n k=1=∑(n k=122k 2k+1−22k−22k−1)=22n 2n+1−1,和∑c 2k n k=1=∑2k−14knk=1=14+342+543+⋯+2n−14n,①, 由①×14可得14∑c 2k n k=1=14+34+⋯+2n−34+2n−14,②,①−②得34∑c 2k n k=1=14+242+243+⋯+24 n −14--2n−14n+1, ∴∑c 2k n k=1=59−6n+59×4n ,因此∑c 2k 2n k=1=∑c 2k−1n k=1+∑c 2k n k=1=4n 2n+1−6n+59×4−49.数列{c n }的前2n 项和4n2n+1−6n+59×4n−49.【知识点】错位相减法、等差数列的通项公式、数列求和方法、等比数列的通项公式【解析】本题考查了等差数列等比数列的通项公式和求和公式,考查了不等式的大小比较,考查了数列求和的方法,考查了运算求解能力,转化与化归能力,分类与整合能力,属于难题. (Ⅰ)分别根据等差数列的通项公式和等比数列的通项公式即可求出; (Ⅱ)根据等差数列的求和公式和作差法即可比较大小,则可证明; (Ⅲ)分类讨论,再根据错位相减法即可求出前2n 项和.四、【2020·上海高考】计算:lim n→∞ n+13n−1=【答案】13【知识点】极限思想 【解析】 【分析】本题考查数列的极限的求法,注意运用极限的运算性质,考查运算能力,是一道基础题. 由极限的运算法则和重要数列的极限公式,可得所求值. 【解答】解:,故答案为:13.【2020·上海高考】已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则a1+a2+⋯+a9a10=.【答案】278【知识点】等差数列的通项公式、等差数列的求和【解析】【分析】本题考查等差数列的前n项和与等差数列通项公式的应用,注意分析a1与d的关系,属于基础题.根据等差数列的通项公式可由a1+a10=a9,得a1=−d,在利用等差数列前n项和公式化简a1+a2+⋯+a9a10即可得出结论.【解答】解:根据题意,等差数列{a n}满足a1+a10=a9,即a1+a1+9d=a1+8d,变形可得a1=−d,所以a1+a2+⋯+a9a10=9a1+9×8d2a1+9d=9a1+36da1+9d=−9d+36d−d+9d=278.故答案为:278.【2020·上海高考】已知数列{a n}为有限数列,满足|a1−a2|≤|a1−a3|≤⋯≤|a1−a m|,则称{a n}满足性质P.(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P,请说明理由;(2)若a1=1,公比为q的等比数列,项数为10,具有性质P,求q的取值范围;(3)若{a n}是1,2,3,…,m的一个排列(m≥4),{b n}符合b k=a k+1(k=1,2,…,m−1),{a n}、{b n}都具有性质P,求所有满足条件的数列{a n}.【答案】解:(1)对于数列3,2,5,1,有|2−3|=1,|5−3|=2,|1−3|=2,满足题意,该数列满足性质P;对于第二个数列4、3、2、5、1,|3−4|=1,|2−4|=2,|5−4|=1.不满足题意,该数列不满足性质P.(2)由题意:|a1−a1q n|≥|a1−a1q n−1|,可得:|q n−1|≥|q n−1−1|,n∈{2,3,…,9},两边平方可得:q2n−2q n+1≥q2n−2−2q n−1+1,整理可得:(q−1)q n−1[q n−1(q+1)−2]≥0,当q≥1时,得q n−1(q+1)−2≥0此时关于n恒成立,所以等价于n=2时,q(q+1)−2≥0,所以,(q+2)(q−1)≥0,所以q≤−2,或q≥1,所以取q≥1,当0<q≤1时,得q n−1(q+1)−2≤0,此时关于n恒成立,所以等价于n=2时,q(q+1)−2≤0,所以(q+2)(q−1)≤0,所以−2≤q≤1,所以取0<q≤1.当−1≤q<0时:q n−1[q n−1(q+1)−2]≤0,当n为奇数时,得q n−1(q+1)−2≤0,恒成立,当n为偶数时,q n−1(q+1)−2≥0,不恒成立;故当−1≤q<0时,矛盾,舍去.当q<−1时,得q n−1[q n−1(q+1)−2]≤0,当n为奇数时,得q n−1(q+1)−2≤0,恒成立,当n为偶数时,q n−1(q+1)−2≥0,恒成立;故等价于n=2时,q(q+1)−2≥0,所以(q+2)(q−1)≥0,所以q≤−2或q≥1,所以取q≤−2,综上.(3)设a1=p,p∈{3,4,…,m−3,m−2},因为a1=p,a2可以取p−1,或p+1,a3可以取p−2,或p+2,如果a2或a3取了p−3或p+3,将使{a n}不满足性质P;所以{a n}的前5项有以下组合:①a1=p,a2=p−1;a3=p+1;a4=p−2;a5=p+2;②a1=p,a2=p−1;a3=p+1;a4=p+2;a5=p−2;③a1=p,a2=p+1;a3=p−1;a4=p−2;a5=p+2;④a1=p,a2=p+1;a3=p−1;a4=p+2;a5=p−2;对于①,b1=p−1,|b2−b1|=2,|b3−b1|=1,与{b n}满足性质P矛盾,舍去;对于②,b1=p−1,|b2−b1|=2,|b3−b1|=3,|b4−b1|=2与{b n}满足性质P矛盾,舍去;对于③,b1=p+1,|b2−b1|=2,|b3−b1|=3,|b4−b1|=1与{b n}满足性质P矛盾,舍去;对于④b1=p+1,|b2−b1|=2,|b3−b1|=1,与{b n}满足性质P矛盾,舍去;所以P∈{3,4,…,m−3,m−2},均不能同时使{a n}、{b n}都具有性质P.当p=1时,有数列{a n}:1,2,3,…,m−1,m满足题意.当p=m时,有数列{a n}:m,m−1,…,3,2,1满足题意.当p=2时,有数列{a n}:2,1,3,…,m−1,m满足题意.当p=m−1时,有数列{a n}:m−1,m,m−2,m−3,…,3,2,1满足题意.所以满足题意的数列{a n}只有以上四种.【知识点】等差数列与等比数列的综合应用、等比数列的通项公式【解析】本题考查数列的综合应用,不等式以及不等关系,二次函数的性质以及函数的相关性质的综合应用,考查分析问题解决问题的能力是难度大的题目,必须由高的数学思维逻辑修养才能解答.(1)根据定义,验证两个数列3、2、5、1和4、3、2、5、1是否具有性质P即可;(2)假设公比q的等比数列满足性质P,可得:|a1−a1q n|≥|a1−a1q n−1|,推出(q−1)q n−1[q n−1(q+1)−2]≥0,通过q≥1,0<q≤1时,−1≤q<0时:q<−1时,四种情况讨论求解即可.(3)设a1=p,分p=1时,当p=m时,当p=2时,当p=m−1时,以及P∈{3,4,…,m−3,m−2},五种情况讨论,判断数列{a n}的可能情况,分别推出{b n}判断是否满足性质P即可.【2019年】一、【2019·北京高考(理)】设等差数列{a n}的前n项和为S n,若a2=−3,S5=−10,则a5=(1),S n的最小值为(2).【答案】0 −10【知识点】等差数列的通项公式、数列的函数特征、等差数列的求和【解析】【分析】本题考查等差数列的性质,考查等差数列的前n项和的最小值的求法,属于基础题.利用等差数列{a n}的前n项和公式、通项公式列出方程组,能求出a1=−4,d=1,由此能求出a5的S n的最小值.【解答】解:设等差数列{a n}的前n项和为S n,a2=−3,S5=−10,∴{a1+d=−35a1+5×42d=−10,解得a1=−4,d=1,∴a5=a1+4d=−4+4×1=0,S n=na1+n(n−1)2d=−4n+n(n−1)2=12(n−92)2−818,∴n=4或n=5时,S n取最小值为S4=S5=−10.故答案为0,−10.【2019·北京高考(理)】已知数列{a n},从中选取第i1项、第i2项、…、第i m项(i1<i2<⋯<i m),若a i1<a i2<⋯<a im,则称新数列a i1,a i2,…,a im为{a n}的长度为m的递增子列.规定:数列{a n}的任意一项都是{a n}的长度为1的递增子列.(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{a n}的长度为p的递增子列的末项的最小值为a m0,长度为q的递增子列的末项的最小值为a n.若p<q,求证:a m0<a n;(Ⅲ)设无穷数列{a n}的各项均为正整数,且任意两项均不相等.若{a n}的长度为s的递增子列末项的最小值为2s−1,且长度为s末项为2s−1的递增子列恰有2s−1个(s=1,2,…),求数列{a n}的通项公式.【答案】解:(I)1,3,5,6.(II)证明:考虑长度为q的递增子列的前p项可以组成长度为p的一个递增子列,∴a n0>该数列的第p项≥a m,∴a m0<a n.(III)解:考虑2s−1与2s这一组数在数列中的位置.若{a n}中有2s,2s在2s−1之后,则必然存在长度为s+1,且末项为2s的递增子列,这与长度为s的递增子列末项的最小值为2s−1矛盾,∴2s必在2s−1之前.继续考虑末项为2s+1的长度为s+1的递增子列.∵对于数列2n−1,2n,由于2n在2n−1之前,∴研究递增子列时,不可同时取2n与2n−1,∵对于1至2s的所有整数,研究长度为s+1的递增子列时,第1项是1与2二选1,第2项是3与4二选1,……,第s项是2s−1与2s二选1,故递增子列最多有2s个.由题意,这s组数列对全部存在于原数列中,并且全在2s+1之前.∴2,1,4,3,6,5,……,是唯一构造.即a2k=2k−1,a2k−1=2k,k∈N∗.【知识点】数列的递推关系【解析】本题考查了数列递推关系、数列的单调性,考查了逻辑推理能力、分析问题与解决问题的能力,属于难题.(I)1,3,5,6.答案不唯一.(II)考虑长度为q的递增子列的前p项可以组成长度为p的一个递增子列,可得a n0>该数列的第p项≥a m,即可证明结论.(III)考虑2s−1与2s这一组数在数列中的位置,可得2s必在2s−1之前.继续考虑末项为2s+1的长度为s+1的递增子列,即可得出:递增子列最多有2s个.由题意,这s组数列对全部存在于原数列中,并且全在2s+1之前.可得2,1,4,3,6,5,……,是唯一构造.【2019·北京高考(文)】设{a n}是等差数列,a1=−10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求S n的最小值.【答案】解:(Ⅰ)∵{a n}是等差数列,a1=−10,且a2+10,a3+8,a4+6成等比数列.∴(a3+8)2=(a2+10)(a4+6),∴(−2+2d)2=d(−4+3d),解得d=2,∴a n=a1+(n−1)d=−10+2n−2=2n−12.(Ⅱ)由a1=−10,d=2,得:S n=−10n+n(n−1)2×2=n2−11n=(n−112)2−1214,∴n=5或n=6时,S n取最小值−30.【知识点】等差数列的通项公式、等比数列的性质、等差数列的概念、等差数列的求和【解析】本题考查数列的通项公式、前n项和的最小值的求法,考查等差数列、等比数列的性质等基础知识,考查推理能力与计算能力,属于基础题.(Ⅰ)利用等差数列通项公式和等比数列的性质,列出方程求出d=2,由此能求出{a n}的通项公式;(Ⅱ)由a1=−10,d=2,得S n=−10n+n(n−1)2×2=n2−11n=(n−112)2−1214,由此能求出S n的最小值.二、【2019·浙江高考】设a,b∈R,数列{a n}满足a1=a,a n+1=a n2+b,n∈N∗,则()A. 当b=12时,a10>10 B. 当b=14时,a10>10C. 当时,a10>10D. 当时,a10>10【答案】A【知识点】数列的递推关系、数列的函数特征【解析】【分析】本题考查命题真假的判断,考查数列的性质等基础知识,考查化归与转化思想,考查推理论证能力,属于难题.逐项检验,可得结果.【解答】解:对于B,令λ2−λ+14=0,得λ=12,取a1=12,∴a2=12,…,a n=12<10,∴当b =14时,a 10<10,故B 错误;对于C ,令λ2−λ−2=0,得λ=2或λ=−1, 取a 1=2,∴a 2=2,…,a n =2<10, ∴当b =−2时,a 10<10,故C 错误; 对于D ,令λ2−λ−4=0,得λ=1±√172, 取a 1=1+√172,∴a 2=1+√172,…,a n =1+√172<10,∴当b =−4时,a 10<10,故D 错误;对于A ,a 2=a 2+12≥12,a 3=(a 2+12)2+12≥34, a 4=(a 4+a 2+34)2+12≥916+12=1716>1, a n+1−a n >0,{a n }递增, 当n ≥4时,a n+1a n=a n +12a n>1+12=32,∴{ a 5a 4>32a 6a 5>32⋅⋅⋅a 10a 9>32,∴a 10a 4>(32)6,∴a 10>72964>10.故A 正确. 故选:A .【2019·浙江高考】设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N ∗,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列. (Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)记c n =√an2b n,n ∈N ∗,证明:c 1+c 2+⋯+c n <2√n ,n ∈N ∗.【答案】解:(Ⅰ)设数列{a n }的公差为d , 由题意得{a 1+2d =4a 1+3d =3a 1+3d ,解得a 1=0,d =2, ∴a n =2n −2,n ∈N ∗. ∴S n =n 2−n ,n ∈N ∗,∵数列{b n }满足:对每个n ∈N ∗,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列.∴(S n+1+b n )2=(S n +b n )(S n+2+b n ),解得b n =1d (S n+12−S n S n+2), 解得b n =n 2+n ,n ∈N ∗.证明:(Ⅱ)c n =√a n2b n=√2n−22n(n+1)=√n−1n(n+1),n ∈N ∗, 用数学归纳法证明:①当n =1时,c 1=0<2,不等式成立;②假设n =k ,(k ∈N ∗)时不等式成立,即c 1+c 2+⋯+c k <2√k , 则当n =k +1时,c 1+c 2+⋯+c k +c k+1<2√k +√k (k +1)(k +2)<2√k +√1k +1<2√k +√k+1+√k=2√k +2(√k +1−√k)=2√k +1,即n =k +1时,不等式也成立.由①②得c 1+c 2+⋯+c n <2√n ,n ∈N ∗.【知识点】等差数列的通项公式、运用数学归纳法证明、数列的综合应用【解析】(Ⅰ)利用等差数列通项公式和前n 项和公式列出方程组,求出a 1=0,d =2,从而a n =2n −2,n ∈N ∗.S n =n 2−n ,n ∈N ∗,利用(S n+1+b n )2=(S n +b n )(S n+2+b n ),能求出b n .(Ⅱ)c n =√a n2b n=√2n−22n(n+1)=√n−1n(n+1),n ∈N ∗,用数学归纳法证明,得到c 1+c 2+⋯+c n <2√n ,n ∈N ∗.本题考查等差数列、等比数列、数列求和、数学归纳法等基础知识,考查运算求解能力和综合应用能力.三、 【2019·天津高考(理)】设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2−2,b 3=2a 3+4.(Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k,其中k ∈N ∗. (i)求数列{a2n(c2n−1)}的通项公式;(ii)求∑a i 2ni=1c i (n ∈N ∗).【答案】解:(Ⅰ)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 依题意有:{6q =6+2d 6q 2=12+4d,解得{d =3q =2, ∴a n =4+(n −1)×3=3n +1,b n =6×2n−1=3×2n .(Ⅱ)(i)∵数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k ,其中k ∈N ∗. ∴a 2n (c 2n−1)=a 2n (b n −1)=(3×2n +1)(3×2n −1)=9×4n −1, ∴数列{a 2n (c 2n −1)}的通项公式为:a2n (c 2n −1)=9×4n −1. (ii)∑a i 2n i=1c i =∑[2n i=1a i +a i (c i −1)]=∑a i 2n i=1+∑a 2i ni=1(c 2i −1)=(2n ×4+2n (2n −1)2×3)+∑(n i=19×4i −1) =(3×22n−1+5×2n−1)+9×4(1−4n )1−4−n =27×22n−1+5×2n−1−n −12.(n ∈N ∗).【知识点】等差数列的通项公式、分组转化求和法、等比数列的求和、等比数列的通项公式、等差数列的求和【解析】本题考查等差数列、等比数列通项公式及前n 项和等基础知识,考查化归与转化思想和数列求和的基本方法以及运算求解能力.(Ⅰ)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,利用等差数列、等比数列的通项公式列出方程组,能求出{a n }和{b n }的通项公式.(Ⅱ)(i)由a2n (c 2n −1)=a 2n (b n −1),能求出数列{a 2n (c 2n −1))}的通项公式. (ii)∑a i 2n i=1c i =∑[2n i=1a i +a i (c i −1)]=∑a i 2n i=1+∑a 2i n i=1(c 2i −1)=(2n ×4+2n (2n −1)2×3)+∑(n i=19×4i −1),由此能求出结果.【2019·天津高考(文)】设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设数列{c n }满足c n ={1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+⋯+a 2n c 2n (n ∈N ∗).【答案】解:(Ⅰ){a n }是等差数列,{b n }是等比数列,公比大于0,设等差数列{a n}的公差为d,等比数列{b n}的公比为q,q>0,由题意可得:3q=3+2d①,3q2=15+4d②,解得:d=3,q=3,故a n=3+3(n−1)=3n,b=3×3n−1=3n,(Ⅱ)数列{c n}满足a1c1+a2c2+⋯+a2n c2n(n∈N∗)=(a1+a3+a5+⋯+a2n−1)+(a2b1+a4b2+a6b3+⋯+a2n b n)=[3n+n(n−1)2×6]+(6×3+12×32+18×33+⋯+6n×3n)=3n2+6(1×3+2×32+⋯+n×3n)令T n=(1×3+2×32+⋯+n×3n)①,则3T n=1×32+2×33+⋯+n3n+1②,②−①得:2T n=−3−32−33…−3n+n3n+1=−3×1−3n1−3+n3n+1=(2n−1)3n+1+32,故a1c1+a2c2+⋯+a2n c2n=3n2+6T n=(2n−1)3n+2+6n2+92(n∈N∗).【知识点】错位相减法、分组转化求和法、数列的递推关系【解析】本题主要考查等差等比数列通项公式和前n项和的求解,考查数列求和的基本方法分组和错位相减法的运算求解能力,属中档题.(Ⅰ)由等差等比数列通项公式和前n项和的求解{a n}和{b n}的通项公式即可.(Ⅱ)利用分组求和和错位相减法得答案.四、【2019·上海高考】已知数列{a n},a1=3,前n项和为S n.(1)若{a n}为等差数列,且a4=15,求S n;(2)若{a n}为等比数列,且limn→+∞S n<12,求公比q的取值范围.【答案】解:(1)设公差为d∵a4=a1+3d=3+3d=15,∴d=4,∴S n =3n +n(n−1)2×4=2n 2+n ;(2)设公比为q ,当q =1时,S n =3n ,显然不满足lim n→∞S n <12,故q ≠1, ∴S n =3(1−q n )1−q ,∵lim n→+∞S n 存在,∴−1<q <1,且q ≠0, ∴lim n→+∞S n =lim n→+∞3(1−q n )1−q=31−q , ∴31−q <12,∴q <34,∴−1<q <0或0<q <34, ∴公比q 的取值范围为(−1,0)∪(0,34).【知识点】等比数列的求和、极限思想、等差数列的求和【解析】本题考查了等差数列和等比数列的前n 项和及等差数列的通项公式,考查了极限的定义,考查了推理能力与计算能力,属于中档题.(1)求出公差即可求S n ;(2)当q =1时,显然不合题意,由lim n→+∞S n 存在得−1<q <1且q ≠0,由lim n→+∞S n <12得q <34,取交集可得公比q 的取值范围.【2019·上海高考】已知等差数列{a n }的公差d ∈(0,π],数列{b n }满足b n =sin(a n ),集合S ={x|x =b n ,n ∈N ∗}.(1)若a 1=0,d =2π3,求集合S ; (2)若a 1=π2,求d 使得集合S 恰好有两个元素;(3)若集合S 恰好有三个元素:b n+T =b n ,T 是不超过7的正整数,求T 的所有可能的值.【答案】解:(1)∵等差数列{a n }的公差d ∈(0,π],数列{b n }满足b n =sin(a n ),集合S ={x|x =b n ,n ∈N ∗}. ∴当a 1=0,d =2π3, 集合S ={−√32,0,√32}. (2)∵a 1=π2,数列{b n }满足b n =sin(a n ),集合S ={x|x =b n ,n ∈N ∗}恰好有两个元素,如图:根据三角函数线,①等差数列{a n }的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d =π, ②a 1终边落在OA 上,要使得集合S 恰好有两个元素,可以使a 2,a 3的终边关于y 轴对称,如图OB ,OC ,此时d =2π3, 综上,d =23π或者d =π.(3)①当T =1时,b n+1=b n ,数列{b n }为常数列,S 仅有1个元素,显然不符合条件;②当T =2时,b n+2=b n ,,数列{b n }的周期为2,S 中有2个元素,显然不符合条件;③当T =3时,b n+3=b n ,集合S ={b 1,b 2,b 3},(1)情况满足,符合题意.④当T =4时,b n+4=b n ,sin(a n +4d)=sina n ,a n +4d =a n +2kπ,k ∈Z ,或者a n +4d =π+2kπ−a n ,k ∈Z ,当时,集合S ={−1,0,1},符合条件.⑤当T =5时,b n+5=b n ,sin(a n +5d)=sina n ,a n +5d =a n +2kπ,k ∈Z ,或者a n +5d =π+2kπ−a n ,k ∈Z ,因为d ∈(0,π],取,,集合S ={sin π10,1,−sin 3π10}满足题意.⑥当T =6时,b n+6=b n ,sin(a n +6d)=sina n ,所以a n+6d=a n+2kπ,k∈Z,或者a n+6d=π+2kπ−a n,k∈Z,d∈(0,π],取a1=0,,S={−√32,0,√32},满足题意.⑦当T=7时,b n+7=b n,sin(a n+7d)=sina n,所以a n+7d=a n+2kπ,k∈Z,或者a n+7d=π+2kπ−a n,k∈Z,d∈(0,π],故取,k=1,2,3,当k=1时,如果b1~b7对应着3个正弦值,故必有一个正弦值对应着3个点,必然存在1≤n<m≤7,有a m−a n=2π,,d=2πm−n =2π7,m−n=7,m>7,不符合条件.当k=2时,如果b1~b7对应着3个正弦值,故必有一个正弦值对应着3个点,必然存在1≤n<m≤7,有a m−a n=2π,d=2πm−n =4π7,m−n不是整数,不符合条件.当k=3时,如果b1~b7对应着3个正弦值,故必有一个正弦值对应着3个点,必然存在1≤n<m≤7,有a m−a n=2π或者4π,d=2πm−n =6π7,或者d=4πm−n=6π7,此时,m−n均不是整数,不符合题意.综上,T=3,4,5,6.【知识点】数列综合、集合中元素的性质、正弦、余弦函数的图象与性质【解析】本题考查等差数列的相关知识、集合元素的性质以及三角函数的周期性,是一道综合题.(1)根据等差数列及三角函数周期性求解;(2)由集合S的元素个数,结合题意进而可求得答案;(3)分别令T=1,2,3,4,5,6,7进行验证,判断T的可能取值.【2018年】一、【2018·北京高考(理)】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于√212.若第一个单音的频率为f ,则第八个单音的频率为( )A. √23fB. √223fC. √2512fD. √2712f【答案】D 【知识点】等比数列的应用【解析】【分析】本题考查等比数列的应用,考查计算能力,属于基础题.根据题意,进行求解即可.【解答】解:由题意,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于√212.若第一个单音的频率为f ,则第八个单音的频率为:(√212)7⋅f =√2712f .故选:D .【2018·北京高考(理)】设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为______.【答案】a n =6n −3【知识点】等差数列的通项公式【解析】【分析】本题考查等差数列的通项公式,属于基础题.列出方程组,求出d ,由此能求出{a n }的通项公式.【解答】解:设数列{a n }的公差为d ,∵{a n }是等差数列,且a 1=3,a 2+a 5=36,∴{a 1=3a 1+d +a 1+4d =36, 解得a 1=3,d =6,∴a n =a 1+(n −1)d =3+(n −1)×6=6n −3.∴{a n }的通项公式为a n =6n −3.故答案为a n =6n −3.【2018·北京高考(文)】设{a n}是等差数列,且a1=ln2,a2+a3=5ln2.(Ⅰ)求{a n}的通项公式;(Ⅱ)求e a1+e a2+⋯+e a n.【答案】解:(Ⅰ){a n}是等差数列,且a1=ln2,a2+a3=5ln2.可得:2a1+3d=5ln2,可得d=ln2,{a n}的通项公式;a n=a1+(n−1)d=nln2,(Ⅱ)e a n=e ln2n=2n,∴e a1+e a2+⋯+e a n=21+22+23+⋯+2n=2(1−2n)=2n+1−2.1−2【知识点】等差数列的通项公式、等比数列的求和【解析】本题考查等差数列以及等比数列的应用,数列的通项公式以及数列求和,考查计算能力.(Ⅰ)求{a n}的通项公式;(Ⅱ)化简数列的通项公式,利用等比数列求和公式求解即可.二、【2018·浙江高考】已知a1,a2,a3,a4成等比数列,且若a1>1,则()A. a1<a3,a2<a4B. a1>a3,a2<a4C. a1<a3,a2>a4D. a1>a3,a2>a4【答案】B【知识点】等比数列的性质、对数与对数运算、对数函数及其性质、分类讨论思想【解析】【分析】本题考查等比数列的性质的应用,函数的值的判断,对数函数的性质,考查分类讨论思想,难度比较大.利用等比数列的性质以及对数函数的单调性,通过数列的公比的讨论分析判断即可.【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,有a1+a2+a3+a4>a1+a2+a3,所以a1+a2+a3+a4=ln(a1+a2+a3)不成立;当q=−1时,a1+a2+a3+a4=0,ln(a1+a2+a3)=ln(a1)>0,等式不成立,所以q≠−1;当q<−1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立;所以q ∈(−1,0),此时有a 1>a 3>0,a 2<a 4<0,并且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),能够成立, 故选B .【2018·浙江高考】已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项 .数列{b n }满足b 1=1,数列{(b n+1−b n )a n }的前n 项和为2n 2+n .(Ⅰ)求q 的值;(Ⅱ)求数列{b n }的通项公式.【答案】解:(1)等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项,可得2a 4+4=a 3+a 5=28−a 4,解得a 4=8,由8q +8+8q =28,可得q =2或q =12(舍去),则q 的值为2;(2)由q =2及a 3+a 4+a 5=28可得a 1(q 2+q 3+q 4)=28,解得a 1=1,故a n =1×2n−1=2n−1,设c n =(b n+1−b n )a n =(b n+1−b n )2n−1,可得n =1时,c 1=2+1=3,n ≥2时,可得c n =2n 2+n −2(n −1)2−(n −1)=4n −1,上式对n =1也成立,则(b n+1−b n )a n =4n −1,即有b n+1−b n =(4n −1)⋅(12)n−1,可得b n =b 1+(b 2−b 1)+(b 3−b 2)+⋯+(b n −b n−1)=1+3×(12)0+7×12+⋯+(4n −5)⋅(12)n−2,12b n=12+3×12+7×(12)2+⋯+(4n −5)⋅(12)n−1, 相减可得12b n =72+4[12+(12)2+⋯+(12)n−2]−(4n −5)⋅(12)n−1=72+4⋅12(1−12n−2)1−12−(4n −5)⋅(12)n−1,化简可得b n =15−(4n +3)⋅(12)n−2.【知识点】等差数列与等比数列的综合应用【解析】本题考查等比数列的通项公式、前n 项和公式及等差数列的性质、错位相减法的运用,考查运算能力,属于中档题.(1)运用等比数列的通项公式和等差数列中项性质,解方程可得公比q ;(2)设c n =(b n+1−b n )a n =(b n+1−b n )2n−1,运用数列的递推式可得c n =4n −1,再由数列的恒等式求得b n =b 1+(b 2−b 1)+(b 3−b 2)+⋯+(b n −b n−1),运用错位相减法,可得所求数列的通项公式.三、【2018·天津高考(理)】设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N ∗),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设数列{S n }的前n 项和为T n (n ∈N ∗),(i)求T n ;(ii)证明∑(T k +b k+2)b k (k+1)(k+2)n k=1=2n+2n+2−2(n ∈N ∗).【答案】(Ⅰ)解:设等比数列{a n }的公比为q ,由a 1=1,a 3=a 2+2,可得q 2−q −2=0.∵q >0,可得q =2.故a n =2n−1.设等差数列{b n }的公差为d ,由a 4=b 3+b 5,得b 1+3d =4,由a 5=b 4+2b 6,得3b 1+13d =16,∴b 1=d =1.故b n =n ;(Ⅱ)(i)解:由(Ⅰ),可得S n =1−2n 1−2=2n −1,故T n =∑(n k=12k −1)=∑2k n k=1−n =2×(1−2n )1−2−n =2n+1−n −2;(ii)证明:∵(T k +b k+2)b k (k+1)(k+2)=(2k+1−k−2+k+2)k (k+1)(k+2) =k⋅2k+1(k+1)(k+2)=2k+2k+2−2k+1k+1. ∴∑(T k +b k+2)b k (k +1)(k +2)n k=1=(233−222)+(244−233)+⋯+(2n+2n +2−2n+1n +1) =2n+2n+2−2.【知识点】等差数列与等比数列的综合应用、裂项相消法。
一.基础题组1. 【2012年.浙江卷.理7】设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误的是( )A .若d <0,则数列{S n }有最大项B .若数列{S n }有最大项,则d <0C .若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0 D .若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列 【答案】C【解析】 若{S n }为递增数列,则当n ≥2时,S n -S n -1=a n >0,即n ≥2时,a n 均为正数,而a 1是正数、负数或是零均有可能,故对任意n ∈N *,不一定S n 始终大于0.2. 【2012年.浙江卷.理13】设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q =__________.3. 【2010年.浙江卷.理3】设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S =( ) (A )11 (B )5 (C )8- (D )11- 【答案】D【解析】通过2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得q =-2,带入所求式可知答案选D ,本题主要考察了本题主要考察了等比数列的通项公式与前n 项和公式,属中档题4. 【2010年.浙江卷.理15】设1,a d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,满足56150S S +=,则d 的取值范围是__________________ . 【答案】(),2222,⎡-∞-+∞⎣【解析】:5. 【2009年.浙江卷.理11】设等比数列{}n a 的公比12q =,前n 项和为n S ,则44S a = . 答案:15【解析】对于4431444134(1)1,,151(1)a q s q s a a q q a q q --==∴==--6. 【2008年.浙江卷.理6】已知{}n a 是等比数列,41252==a a ,,则13221++++n n a a a a a a =( )(A )16(n --41) (B )16(n --21) (C )332(n --41) (D )332(n--21)7. 【2006年.浙江卷.理11】设S n 为等差数列{}n a 的前n 项和,若51010,5S S ==-,则公差为 (用数字作答). 【答案】-1【解析】设首项为1a ,公差为d ,由题意得11115101022110455291a d a d d a d a d +=+=⎧⎧⇒⇒=-⎨⎨+=-+=-⎩⎩ 所以答案应填:-18. 【2015高考浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D.140,0a d dS <>9. 【2016高考浙江理数】如图,点列{A n },{B n }分别在某锐角的两边上,且1122,,n n n n n n A A A A A A n ++++=≠∈*N ,1122,,n n n n n n B B B B B B n ++++=≠∈*N ,(P Q P Q ≠表示点与不重合).若1n n n n n n n d A B S A B B +=,为△的面积,则( )A .{}n S 是等差数列B .2{}n S 是等差数列 C .{}n d 是等差数列 D .2{}n d 是等差数列【答案】A 【解析】试题分析:n S 表示点n A 到对面直线的距离(设为n h )乘以1n n B B +长度一半,即112n n n n S h B B +=,由题目中条件可知1n n B B +的长度为定值,那么我们需要知道n h 的关系式,过1A 作垂直得到初始距离1h ,那么1,n A A 和两个垂足构成了等腰梯形,那么11tan n n n h h A A θ+=+⋅,其中θ为两条线的夹角,即为定值,那么1111(tan )2n n n n S h A A B B θ+=+⋅,111111(tan )2n n n n S h A A B B θ+++=+⋅,作差后:1111(tan )2n n n n n n S S A A B B θ+++-=⋅,都为定值,所以1n n S S +-为定值.故选A .考点:等差数列的定义.【思路点睛】先求出1n n n +∆A B B 的高,再求出1n n n +∆A B B 和112n n n +++∆A B B 的面积n S 和1n S +,进而根据等差数列的定义可得1n n S S +-为定值,即可得{}n S 是等差数列.10.【2016高考浙江理数】设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1= ,S 5= .二.能力题组1. 【2013年.浙江卷.理18】(本题满分14分)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.【答案】【解析】:(1)由题意得5a 3·a 1=(2a 2+2)2, 即d 2-3d -4=0, 故d =-1或d =4.所以a n =-n +11,n ∈N *或a n =4n +6,n ∈N *. (2)设数列{a n }的前n 项和为S n .因为d <0,由(1)得d =-1,a n =-n +11. 则当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =212122n n -+. 当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=212122n n -+110. 综上所述,|a 1|+|a 2|+|a 3|+…+|a n |=22121,11,22121110,12.22n n n n n n ⎧-+≤⎪⎪⎨⎪-+≥⎪⎩ 三.拔高题组1. 【2014年.浙江卷.理19】(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221 .若{}na 为等比数列,且.6,2231b ba +==(1)求n a 与n b ; (2)设()*∈-=N n b a c nn n 11。
浙江高考数列经典例题汇总1.【2014年.浙江卷.理19】(本题满分14分)已知数列 和'bn ■满足a 1a2an= (J 2 F (n 匸 N )若 En }为等比数列 且 a 1 = 2, 3 = 6 + b 2 .(I ) 求 a n 与 bn ;(∏ )设Cn TE 「N l 记数列⑺的前n 项和为S n(i )求 Sn ;(ii )求正整数k ,使得对任意n ∙ N ",均有S k- S n2.【2011年.浙江卷•理19】(本题满分14分)已知公差不为O 的等差数列{an }的首项a ^ a(aR ),设数列的前n 项和为Sn ,且a 1 ,(I)求数列{a n}的通项公式及 SnA l与Bn 的大小.% , %成等比数列A n(∏)记丄丄丄SS2S 3-B nSn丄丄丄a 〔 a ? a ?2丄a2n ,当n 一 2时,试比较3.【2008年•浙江卷•理22】 (本题14分)已知数列^n [ an≥0 a 1 = Oa ; 1 a . 1 T = a 2(n ∙ N t ) S n ^ a 1a 2 R nT n+1 a 1(1 a 1)(1 a 2)+…+(1 *1)(1 *2厂(1 a n )求证: 当n . N •时, (I) an ::: an 1 ;(∏)S n n -'2;(川)Tn < 3O4.【2007年浙江卷 理21】(本题15分)已知数列{an }中的相邻两项 舷」,如 是关于X 的 方程的两个根,且a 2k 」-a 2k (k =1,2,3,…) (I)求 a 1,a 3,a 5,a 7 ;1 5 *求证:Ln 讨n N )5.【2005年•浙江卷•理20】设点An (Xn , 0), Pn(Xn ,2 )和抛物线Cn : y = x2 + an X +1n 4bn(n ∈ N*)其中an = - 2 — 4n — 2 , Xn 由以下方法得到: x1 = 1,点P2(x2 , 2)在抛物 线C1 : y = x2 + a1x + b1上,点 A1(x1 , 0)到P2的距离是 A1到C1上点的最短距离,(∏)求数列{an}的前2n 项的和S2n ;f(n)T 直 3)(川)i 己 2 Sln n ,Tna.(-1)f ⑶.(-1)f (4). (-1)f (τa 5a6a2n∕a2na 3a4点 P n 1 (X n I ,2 )在抛物线 C n : = χ2 + an X + bn 上,点 Al(Xn , 0)到 Pn -1 的距离是 An 到 Cn 上点的最短距离.(求 x2及C1的方程. (∏证明{xn }是等差数列.16.【2015高考浙江,理20】已知数列 E 满足a ι=2且a n 1 = a n -a ^ ( n N i )-电-2*(1 )证明:1a n1( nN );1 / S n 』1/ 2 A(2)设数列® '的前n 项和为S n ,证明2(n∙2) n 2(n I) ( n N )a n% 1 < 12 丨 n = N*(I )证明: a n 白2心(a 1 -2 ) n 乏N *.a n(II )若7.【2016高考浙江理数】 设数列y 满足n2n ,证明:例1 .(浙江省新高考研究联盟 2017届高三下学期期初联考) 已知数列^a n 满足a 1=3,(III )若 2c n=b n ,求证:2≤(c ^1)n <3∙C n例2 •(浙江省温州中学 2017届高三3月高考模拟)正项数列a n a n- 3an 12an 1 ,a i _ 1•(I )求a 2的值;(∏)证明:对任意的 n∙ N , a n 乞2a n1;(川)记数列Ia nI 的前n 项和为S h ,证明:对任意的 n∙ Na n+ι=a n 2+2a n , n ∈ N* , 设b n =∣og 2(a n +1)∙ ⑴求{a n }的通项公式;:a n ∙'满足(II )求证:例3•(浙江省温州市十校联合体2017届高三上学期期末) 已知数列{a n}满足12a naι =1,a8 n(1)若数列{a n}是常数列,求m的值;(2)当m∙1时,求证:a n::: a n 1;(3)求最大的正数m,使得a n 4对一切整数n恒成立,并证明你的结论。
1已知二次函数()y f x 的图像经过坐标原点,其导函数为()62f x x。
数列n a 的前n项和为n S ,点*(,)()n n S nN 均在函数()yf x 的图像上。
(Ⅰ)求数列na 的通项公式;(Ⅱ)设13nn nb a a ,n T 是数列nb 的前n 项和,求使得20nm T 对所有*n N 都成立的最小正整数m 。
2. 己知各项均不相等的等差数列{a n }的前四项和S 4=14,且a 1,a 3,a 7成等比数列.(I )求数列{a n }的通项公式;(II )设T n 为数列11n na a 的前n 项和,若T n ≤1n a ¨对*n N 恒成立,求实数的最小值.3. 设数列n a 的前n 项和为n S ,已知11a ,26a ,311a ,且1(58)(52)nnn S nS An B ,1,2,3,n ,其中A 、B 为常数.(Ⅰ) 求A 与B 的值;(Ⅱ) 证明数列n a 为等差数列;(Ⅲ) 证明不等式51mnm na a a 对任何正整数m 、n 都成立.4. 已知数列n a ,n b 满足13a ,2n na b ,12()1nn nnb a b a ,*n N .(1)求证:数列1{}nb 是等差数列,并求数列n b 的通项公式;(2)设数列n c 满足25n nc a ,对于任意给定的正整数p ,是否存在正整数q ,r (pqr ),使得1p c ,1q c ,1rc 成等差数列?若存在,试用p 表示q ,r ;若不存在,说明理由.5. 已知函数x a x x f ln )()0(a .(1)若1a ,求)(x f 的单调区间及)(x f 的最小值;(2)若0a,求)(x f 的单调区间;(3)试比较222222ln 33ln 22ln nn 与)1(2)12)(1(n n n 的大小)2(*nN n且,并证明你的结论.6已知)1(10)(,)1()(2x x g x x f ,数列}{n a 满足0)()()(1n n n n a f a g a a ,21a ,)1)(2(109nna nb (I )求数列}{n a 的通项公式;(Ⅱ)求数列}{n b 中最大项.7. 设k R,函数2()(1)(0)xf x ex kx x.(Ⅰ)若1k ,试求函数()f x 的导函数()f x 的极小值;(Ⅱ)若对任意的0t,存在0s,使得当(0)xs ,时,都有2()f x tx ,求实数k 的取值范围.8.已知等差数列{a n }的公差不为零,且a 3 =5, a 1 , a 2.a 5成等比数列(I )求数列{a n }的通项公式:(II)若数列{b n }满足b 1+2b 2+4b 3+…+2n -1b n =a n 且数列{b n }的前n 项和T n 试比较T n与113n n 的大小9.已知函数xa x a xx f ln )12()22(21)(2(I )求f(x)的单调区间;(II)对任意的]2,1[,],25,23[21x x a,恒有|211|)(|)(|121x x x f x f ,求正实数的取值范围.1. 解:(I )依题意可设2()(0),f x axbx a 则`()2f x ax b由`()62f x x 得3,2,a b所以2()32.f x xx 又由点(,)n n S (*)nN 均在函数()yf x 的图像上得232nS nn当2n 时221323(1)2(1)65n n na S S nn n n n当1n 时2113121615a S 所以*65()na nn N (II )由(I )得133111(),(65)6(1)526561nn n b a a n n nn 故,111111(1)()()277136561nT n n =11(1).261n 因此使得*11(1)()26120m n N n 成立的m 必须且必须满足1,220m 即10m 故满足最小的正整数m 为102. (Ⅰ)设公差为d.由已知得)6()2(146411211d a a d a d a ………………………………3分解得10(d d 或舍去),所以1,21n a a n故………………………………6分(Ⅱ)11111(1)(2)12n n a a n n n n ,11112334nT …11122(2)n n nn ……………………………9分1n n T a ≤对nN 恒成立,即22(2)n n n≤(+)对nN 恒成立又211142(2)2(44)162(4)n nn n≤∴的最小值为116……………………………………………………………12分3. 解:(Ⅰ)由11a ,26a ,311a ,得11S ,22S ,318S .把1,2n 分别代入1(58)(52)nn n S nS An B ,得28,248A B AB解得,20A ,8B.(Ⅱ)由(Ⅰ)知,115()82208n n nnn S S S S n ,即11582208nnn na S S n ,①又2215(1)8220(1)8nnnn a S S n .②②-①得,21215(1)58220n n n nn a na a a ,即21(53)(52)20n n n a n a .③又32(52)(57)20nnna na .④④-③得,321(52)(2)0n nn n a a a ,∴32120n n n a a a ,∴3221325nnnna a a a a a ,又215a a ,因此,数列n a 是首项为1,公差为5的等差数列.(Ⅲ)由(Ⅱ)知,54,()na n n N .考虑55(54)2520mn a mn mn.2(1)211m nm nm nm n mn a a a a a a a a a a ,2515()9mn m n .∴25(1)15()291522910mn m n a a a mn 厖.即25(1)mn m n a a a ,∴51mn m na a a .因此,51mnm na a a .4. (1)因为2n na b ,所以2nn a b ,则142242221221n nn nn nn nnna b b b a b a b b b ,………………………2分所以11112nnb b ,又13a ,所以123b ,故1n b 是首项为32,公差为12的等差数列,……4分即1312(1)222nn n b ,所以22nb n.………………………6分(2)由(1)知2n a n,所以2521n nc a n ,①当1p 时,11p c c ,21qc q ,21r c r ,若1pc ,1qc ,1rc 成等差数列,则2112121q r(),因为p q r ,所以2q ≥,3r ≥,2121q ,11121r,所以()不成立.…………………………9分②当2p ≥时,若1pc ,1q c ,1rc 成等差数列,则211212121q p r ,所以121421212121(21)(21)p q rq p p q ,即(21)(21)21421p q rpq,所以22421pq p qrpq ,………………………12分欲满足题设条件,只需21qp ,此时2452rp p ,………………14分因为2p ≥,所以21q p p ,224734(1)10rqppp p ,即rq .…………………………15分综上所述,当1p时,不存在q ,r 满足题设条件;当2p ≥时,存在21qp ,2452rpp,满足题设条件.…16分5. (1) 当1x 时,x x x f ln 1)(,.011)(,x x f )(x f 在,1上是递增.当10x时,x x x f ln 1)(,011)(,xx f .)(x f 在1,0上是递减.故1a 时, )(x f 的增区间为,1,减区间为1,0,0)1()(minf x f .………4分(2)○1若1a , 当a x时,x axx f ln )(,0111)(,xx xx f ,则)(x f 在区间,a 上是递增的; 当a x 0时,x x a x f ln )(, 011)(,xx f ,则)(x f 在区间a ,0上是递减的…………6分○2若10a , 当a x时,x axx f ln )(,xx xx f 111)(,,0)(,1,x f x ;0)(,1,x f xa . 则)(x f 在,1上是递增的,)(x f 在1,a 上是递减的; 当a x 0时,x xax f ln )(, 011)(,xx f )(x f 在区间a ,0上是递减的,而)(x f 在a x处有意义;则在区间,1上是递增的,在区间1,0上是递减的…………8分综上: 当1a 时, )(x f 的递增区间是,a ,递减区间是a ,0;当10a,)(x f 的递增区间是,1,递减区间是1,0………9分xf(3)由(1)可知,当1,1x a时,有,0ln 1x x 即xxx 11ln 则有222222ln 33ln 22ln nn 22211311211n)13121(1222nn …………12分)1(1431321(1nn n )11141313121(1n nn )1121(1n n =)1(2)12)(1(n n n 故:222222ln 33ln 22ln nn )1(2)12)(1(n n n . …………15分6. (1)由题意:)1()1(10)(21nnn na a a a 经化简变形得:)1910)(1(1nnna a a ………3分,1na 019101nna a ………5分变形得:109111nn a a 所以}1{n a 是以1为首项,109为公比的等比数列。
浙江高考数列经典例题汇总1. 【2014年.浙江卷.理19】(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221Λ.若{}na 为等比数列,且.6,2231b ba +==(Ⅰ)求na 与nb ;(Ⅱ)设()*∈-=N n b a c nn n 11。
记数列{}n c 的前n 项和为n S .(i )求nS ;(ii )求正整数k ,使得对任意*∈N n ,均有nk S S ≥.2. 【2011年.浙江卷.理19】(本题满分14分)已知公差不为0的等差数列{}n a 的首项1a a=(a R ∈),设数列的前n 项和为n S ,且11a ,21a ,41a 成等比数列(Ⅰ)求数列{}n a 的通项公式及nS(Ⅱ)记1231111...n n A S S S S =++++,212221111...n nB a a a a =++++,当2n ≥时,试比较nA 与nB 的大小.3. 【2008年.浙江卷.理22】(本题14分)已知数列{}n a ,0≥n a ,01=a ,22111()n n n a a a n N •+++-=∈.nn a a a S +++=Λ21)1()1)(1(1)1)(1(11121211n n a a a a a a T +++++++++=ΛΛ.求证:当•∈N n 时,(Ⅰ)1+<n n a a ;(Ⅱ)2->n S n ;(Ⅲ)3<n T 。
4. 【2007年.浙江卷.理21】(本题15分)已知数列{}n a 中的相邻两项21,2k ka a -是关于x 的方程的两个根,且212(1,2,3,)k k a a k -≤=L(Ⅰ)求1,357,,a a a a ;(Ⅱ)求数列{}n a 的前2n 项的和2nS ;(Ⅲ)记1|sin |()(3)2sin n f n n =+,(2)(3)(4)(1)123456212(1)(1)(1)(1)f f f f n n n n T a a a a a a a a +-----=++++L求证:*15()624n T n N ≤≤∈5. 【2005年.浙江卷.理20】设点n A (nx ,0),1(,2)n n n P x -和抛物线nC :y =x2+an x +bn(n∈N*),其中an =-2-4n -112n -,nx 由以下方法得到: x1=1,点P2(x2,2)在抛物线C1:y =x2+a1x +b1上,点A1(x1,0)到P2的距离是A1到C1上点的最短距离,…,点11(,2)n n n P x ++在抛物线nC :y =x2+an x +bn 上,点n A (nx ,0)到1n P +的距离是nA 到nC上点的最短距离.(Ⅰ)求x2及C1的方程.(Ⅱ)证明{nx }是等差数列.6. 【2015高考浙江,理20】已知数列{}n a 满足1a =12且1n a +=n a -2n a (n ∈*N )(1)证明:112nn a a +≤≤(n ∈*N );(2)设数列{}2n a的前n项和为nS,证明112(2)2(1)nSn n n≤≤++(n∈*N)7.【2016高考浙江理数】设数列{}na满足112nnaa+-≤,n*∈N.(I)证明:()1122nna a-≥-,n*∈N;(II)若32nna⎛⎫≤ ⎪⎝⎭,n*∈N,证明:2na≤,n*∈N.例1.(浙江省新高考研究联盟2017届高三下学期期初联考)已知数列{}n a 满足a 1=3,a n+1=a n 2+2a n ,n ∈N* , 设b n =log 2(a n +1). (I )求{a n }的通项公式; (II )求证:1+<n(n≥2);(III )若2n c=b n ,求证:2≤1()nn nc c +<3.例2.(浙江省温州中学2017届高三3月高考模拟)正项数列{}n a 满足221132n n n n a a a a +++=+,11a =.(Ⅰ)求2a 的值;(Ⅱ)证明:对任意的n N *∈,12nn a a +≤;(Ⅲ)记数列{}n a 的前n 项和为n S ,证明:对任意的n N *∈,11232n n S --≤<.例3.(浙江省温州市十校联合体2017届高三上学期期末)已知数列{}n a 满足21111,8n n a a a m +==+,(1)若数列{}n a 是常数列,求m 的值; (2)当1m >时,求证:1n n a a +<;(3)求最大的正数m ,使得4n a <对一切整数n 恒成立,并证明你的结论。
例4.(浙江省温州市2017届高三下学期返校联考)设数列均为正项数列,其中,且满足: 成等比数列,成等差数列。
(Ⅰ)(1)证明数列是等差数列;(2)求通项公式,。
(Ⅱ)设,数列的前项和记为,证明:。
例5.(浙江省台州市2017届高三上学期期末质量评估)已知数列{}n a 满足112a =,,212016n n n a a a a +=+,n N *∈ (1) 求证1n na a +>(2) 求证20171a <(3) 若证1k a >,求证整数k 的最小值。
例6.(浙江省杭州高级中学2017届高三2月高考模拟考试)数列{}n a 定义为10a >,11a a =,2112n n n a a a +=+,n N *∈(1)若1(0)12aa a a=>+,求1210111222a a a ++⋅⋅⋅++++的值; (2)当0a >时,定义数列{}n b ,1(12)k b a k =≥,11n b +=-数,()i j i j ≤,使得2112i j b b a a +=+。
如果存在,求出一组(,)i j ,如果不存在,说明理由。
例7.(2017年浙江名校高三下学期协作体)已知函数4()415f x x =+,(Ⅰ)求方程()0f x x -=的实数解;(Ⅱ)如果数列{}n a 满足11a =,1()n n a f a +=(n N *∈),是否存在实数c ,使得221n n a c a -<<对所有的n N *∈都成立?证明你的结论.(Ⅲ)在(Ⅱ)的条件下,设数列{}n a 的前n 项的和为n S ,证明:114nS n<≤.例8.(2017年4月湖州、衢州、丽水三地教学质量检测)数列{}n a 满足,2121n n n n a a a a +=-+n +∈N () (1)证明:n n a a <+1;(2)设}{n a 的前n 项的和为n S ,证明:1n S <.例9.(2017年4月浙江金华十校联考)数列{}n a 满足,11n n a a n+=g n +∈N ()(1) 求证:21n n a an n +<+; (2)求证:3421111....23(1)n n a a n a +≤+++≤+例10.(2017年4月杭州高三年级教学质量检测)已知数列数列{}n a 的各项均为非负数,其中前n 项和为n S ,且对任意N n +∈,都有212n n n a a a +++≤(1) 若11a =,5052017a =,求6a 的最大值(2) 对任意N n +∈,都有1Sn ≤,求证120(1)n n a a n n +≤-≤+1设数列{}n a 满足()2*11n n n a a a n +=-+∈N ,n S 为{}n a 的前n 项和.证明:对任意*n ∈N , (Ⅰ)当101a ≤≤时,01n a ≤≤;(Ⅱ)当11a >时,()1111n n a a a ->-;(Ⅲ)当112a =时,n n S n -<.2.已知数列{}n a 满足2111()2n n n a a a ba n *+==+∈N 且 (1) ,1-=b 求证:211≤≤+n n a a (2) ,2=b 数列⎭⎬⎫⎩⎨⎧+n a 211的前n S n 项和为,求证:1321<<-n n S3.已知各项均为正数的数列{}n a ,11=a ,前n 项和为n S ,且122-=-n n n S a a . (1) 求证:4212++<n n n a a S (2)求证:212121-<+⋯⋯++<+n n n S S S S S4.设()())(,,)(,2211x f x B x f x A 是函数xx x f -+=1log 21)(2的图象上的任意两点. (1)当121=+x x 时,求)()(21x f x f +的值;(2)设⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=1111211n n f n n f n f n f S n Λ,其中*n ∈N ,求n S ; (3)对于(2)中的n S ,已知211⎪⎪⎭⎫ ⎝⎛+=n n S a ,其中*n ∈N ,设n T 为数列{}n a 的前n 项的和,求证:3594<≤n T .5.给定正整数n 和正数M .对于满足条件2211n a a M ++≤的所有等差数列123,,,a a a …, 1221=n n n S a a a +++++…+,(1)求证:2251S M n ⎛⎫≤ ⎪+⎝⎭6.已知数列}{n a 满足31=a ,n n n a a a 221+=+,*,2n n ∈≥N ,设 )1(log 2+=n n a b . (Ⅰ)求}{n b 的前n 项和n S 及}{n a 的通项公式; (Ⅱ)求证:)2(1131211≥<-+⋅⋅⋅+++n n b n ; (III )若n c b n =2,求证:3)(21<≤+n nn c c .7.已知数列满足,(1)若数列是常数列,求m 的值;(2)当时,求证:;(3)求最大的正数,使得对一切整数n 恒成立,并证明你的结论.8.已知数列{}n a 的前n 项和为,n S 且32,2n n n S a =- *∈n N . (1)求证1{}2n n a -为等比数列,并求出数列{}n a 的通项公式; (2)设数列1{}nS 的前n 项和为n T ,是否存在正整数λ,对任意*m n ,,-0∈<m n T S λN 不等式恒成立?若存在,求出λ的最小值,若不存在,请说明理由9.已知数列{}n a 满足:()()21121,1n n n a a a a n n *+==+∈+N . (Ⅰ)证明:()12111n n a a n +≥++; (Ⅱ)证明:()12113n n a n n ++<<++.10.已知数列{}n a 满足:11=a ,221)1(++=+n a a a n n n .(*n ∈N ), 证明:当*n ∈N 时, (Ⅰ) 21)1(11++≥+n a a n n ; (Ⅱ) 13)1(21+<<+++n a n n n .11.已知数列}{n a 满足521=a ,n n n a a a -=+321,n *∈N . (1)求2a ,并求数列}1{na 的通项公式; (2)设}{n a 的前n 项的和为n S ,求证:1321))32(1(56<≤-n n S .12.数列{}n a 满足11=a ,1221+=+n a n a n n n +∈N () (1)证明:n n a a <+1;(2)证明:nn a a a a a a n n 1213221-+≤+⋯⋯+++; (3)证明:41>n a .13.对任意正整数n ,设n a 是关于x 的方程31x nx -=的最大实数根(11n n a a +<<(2)当4n ≥时,对任意的正整数m n m n a a +<-<(3)设数列21{}n a 的前n 项和为n S ,求证:ln(1)13n n S +<<+。